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Abstract

This paper examines the finite-sample power of tests of structural
invariance and superexogeneity hypotheses in econometric models
with contemporaneous conditioning variables. We consider both
direct paramelric tests of superexogeneity, as well as indirect
procedures based on temporal stability tests for the parameters of
interest. Our Monte Carlo analysis reveals that both types of tests
may lack power in interesting classes of models. An empirical
illustration  investigates the superexogeneily of the short-term

interest  rate in a dynamic specification for the U.S. term
structure.
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1. INTRODUCTION

The dangers of using models with parameterizations which are not invariant
relative to interesting classes of changes in the economic structure have
been long acknowledged in econometrics [see Aldrich (1989) and Morgan (1990)
for useful historical perspectives]. In environments of structural changes
and regime shifts, such models provide a poor basis for analysis, as the
conditional forecasts of the variables modelled are affected by changes (or
"interventions”) in the laws of motion of the contemporaneous conditioning
variables. Conversely, econometric equations that remain constant in response
to changes embodied in the conditioning process are serious candidates for
useful descriptions of the invariants of economic behaviour, and are capable
of sustaining meaningful forecast and policy simulation exercises. As argued
in Engle, Hendry, and Richard (1983), such invariance characteristics are
indeed guaranteed for a given set of interventions when the conditioning
variables are superexogenous relalive to the interventions under
consideration. This also implies that the conditional specification is not
interpretable as a reparameterized forward-looking model involving
model-based expectations, and the Lucas critique [Lucas(1976)] does not apply
for the relevant class of interventions [cf. Hendry(1988), Ericsson and

Hendry(1989), and Favero and Hendry(1992)}]."

In spite of the obvious importance of superexogeneity in econometric
modelling, little attention has been devoted to the development of formal
procedures for empirically assessing the validity of supefexogeneity and
invariance claims. The latter have been typically tested only indirectly via
tests for predictive failure or for constancy of a set of parameters of

interest. Recently, however, Engle and Hendry (1993) showed that it is also
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possible 1o determine (lestable) parametric conditions under which
conditioning variables in linear regression models are superexogenous with
respect to a specified class of interventions (e.g., those that have occurred
in a given sample period). The objective of this paper is to investigate,
using Monte Carlo methodology, the finite-sample performance of such direct
parametric tests, and in particular 10 evaluate their power against false
superexogeneity assertions. The detectability of parameter non-constancy
induced by shifts in the generating process of the conditioning variables is

also examined, by various tests for parameter instability and structural

change.

The paper is organized as follows. Section 2 describes procedures for testing
invariance and superexogeneity hypotheses. Section 3 provides a Monte Carlo
analysis of the power of these procedures in the case of regime changes in
the marginal distribution of the conditioning variables. Section 4 examines
the superexogeneity of short-term interest rates for the parameters of a
dynamic specification for the U.S. term structure based on the linearized

expectations model. Some concluding remarks are made in Section 5.
2. TESTING SUPEREXOGENEITY HYPOTHESES

Consider a bivariate random sequence lw' = (y'. x‘)': t 2 1) with associated
conditional density functions (D(w | & w)), where & is the o-field

generated by W: E(z‘. Zo W 2, wl), (z‘] is a sequence of

vectors of valid conditioning variables, and y is a parameter vector. Let

(\ul. v,) be a reparameterization of y which supports the factorization:

D(“,l| ®l; W) = Dylx(‘yllxl’ @l; \"I)'Dx(xJ gt; WZ)

(2]




Then Engle, Hendry, and Richard (1983) define x 1o be superexogenous for a

set of parameters of interest ¢ if:

(a) x is weakly exogenous for ¢, that is ¢ can be uniquely determined from
v, alone, and v, and Y, are variation free (i.e. not subject to cross-
restrictions); and

b) Dyh(y‘|x(. 9{ V) is structurally invariant, i.e. Y, is invariant to a
class of interventions which affect v,

It is therefore evident that formal testing of the null hypothesis of

superexogeneity of a set of conditioning variables requires formulation of an

alternative which allows for failures of both weak exogeneity and invariance

and which explicitly specifies the way in which such failures occur.

To outline the testing procedure advocated in Engle and Hendry (1993), let

{ wt] have the Gaussian probabilistic structure:

W19 ~Nw, £), 121 (1)

where

M=, WY = E(w|9),

I =[0]=E(w - W™ -w|g) Gj=y .

The parameter of interest for the analysis is assumed to be the vector

(8, p’) in the theoretical behavioural relationship:
T 8K + Pz, 93]

where 8t is allowed to vary under a set of possible interventions 1l

(3]




affecting the distribution of (xl| Q‘l.

From the properties of the bivariate normal distribution, it follows that the

conditional expectation of Y, given (x', @') is:

E(y‘|x', Qt) = Bl(xt ) l.l:) + ui" &)

where B = 0{’(0:‘)". Letting € =y - E(y|x, 9). substitution of (2)

into (3) and rearranging yields:
y, = 8'(ll)x‘ + p’z' +[B‘ - 8‘(1‘)](x' - u’l‘) + €. @)

Note that, by construction, (ell defines a Gaussian martingale difference
sequence relative to the o-field generated by (x P W:H), with

EE) = o]’ - (0" (a?)'

®.
t

It is easy to see now that the conventional linear regression model:

y, = ﬁ\" + p’z' + €, € ~ IN(0, ) )

is a valid basis for inference about (8, p’) only if:

(a) X, is weakly exogenous for the parameters of interest; a necessary
condition for this is B =8(). ensuring that o’:", 0{“ and u’: do not
enter the conditional model;

b) 8: is invariant to the events in the intervention set l‘, so that
5((1() = 8., Vi,

(©) B‘ is constant over time, so that B( =B, V& if, in addition,
O‘Ty =+ Bo"“. then {e ) is a homoscedastic process with variance .

These requirements entail that B = §, and provide a set of necessary

(4]




conditions for model (5) to constitute a statistically adequate, temporally
stable and structurally invariant parametric representation of the

conditional mean EQy |x, @).

To derive a class of tests for the null hypothesis of superexogeneity, Engle
and Hendry (1993) let 81(11) be a time-invariant function of the moments of
(x| ). The parameter 8‘(),1:. o’:x) is thus allowed to vary under the

alternative hypothesis according to the approximation:
x XXy _ x XX XX, Xyl
al(ut‘ ol ) = A’O + le.( + x2(,1 + XJO’. (ul) * (6)
on the assumption that u’: # 0, Ve,

When the coefficient [3l is time-varying (under the null or the alternative),

an expansion of the form:
B =B, + B, @
combined with (6) and (4) gives rise to the regression model:

Y= Aot + By - A)e - ) + ot - w) + A

+ Ao + Ao +pz + €. €]

Under the null of superexogeneity of x for (8, p’) in (5), the following
(testable) conditions are satisfied: Bo - 7&0 = 0 (weak exogeneity of xl);
A =0 (i=1,2, 3), taking o’:‘ to have distinct values over different

regimes (invariance of §); [3, = 0 (constancy of [il).l

]Weak exogeneily and invariance alone obviously ensure superexogeneity of the
conditioning variable, but as Engle and Hendry (1993, p. 124) point out it is
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If, on the other hand, it is maintained that 23l is time-invariant, and hence
Bt = B, a test for superexogeneity of x reduces to a test of B - ;‘o = Xl =0

in (9):
o= R + (B - A)lx - 1) + A + Pz + €. )

In what follows 8‘(I() is also allowed to vary with the first two moments of
li@l] via a linear as well as a quadratic approximation to the function

81(“:’ a ), i.e.:
8((;1‘, o) = }‘o +Ap+ Ao, (10)
and

X XX x XX X\ 2 XX\ 2 X __XX
8‘(;1', o) = ’/\.O + klu‘ + Xzo| + ka(ul) + k4(°, )+ Xsp‘o’: . (11)

When time heterogeneity in the second moments of lw‘| Ql is allowed for,
substitution of (10) into (4) and use of expansion (7) yields the test

regression:
yt = }"0'\’1 + (BO ) xo)(xn ) u’:) + Xl(p‘:)z + 7\.2},1:0:‘
+ Blo’:"(x( - u"‘) + p’z‘ + €. - (12)

Similarly, the regression model corresponding to (11) is:

not clear how the condition for weak exogeneity is to be satisfied if the
coefficient B( varies in unknown ways.

[6]




¥, = Ax + (B0 - ko)(x! - p’:) + k‘(u"‘)2 + Ao’ + )‘.3(;,1’:)3

X XXy2 XX, Xy2 xx x ’
+ xdpl(o‘ )+ 7»,0, (“|) + Blol (xt - u() +p'z + €. (13)

Superexogeneity of x for (8, p’) requires that Bo - 7»0 = 0, Bl =0 and

A=0G=1, .52

An operational test of superexogeneity for historical interventions which
have affected the distribution of [.r‘| @!l may be constructed along the lines
described above by parameterizing the conditional mean u’: through an
appropriate set of instruments which allows for past changes in the marginal
process. Inferences about the conditional variance o’:" may also be based on
such a model, using, for instance, a heteroscedasticity function or the
autoregressive  conditional  heteroscedasticity (ARCH) formulation of

Engle (1982) and its various extensions.

A related class of tests examines structural invarianée and superexogeneity
hypotheses indirectly via tests for parameter constancy and predictive
failure. In cases where the marginal process (xllgl] is subject to changes
over the sample period, failure of superexogeneity is liable to induce
parameter non-constancy in a model of E(yl|x‘. @‘) Hence, temporal stability
of (5) in the face of a time-varying marginal representation provides a
necessary condition for superexogeneity of X under the class of
interventions which have occurred in the sample [see, e.g., Engle, Hendry,

and Richard (1983) and Anderson and Mizon (1989) for further discussion].

If Z‘ is taken to be constant over time, the test regressions (12) and (13)
do not include terms involving c’l”‘.

(71




3. MONTE CARLO EVIDENCE

To examine the power of the tests discussed in the previous section to detect
false superexogeneity claims, a series of simulation experiments is performed
for altemative regime shifts in a two-equation model derived from
forward-looking behavioural assumptions. Below we first outline the Monte
Carlo design, describing the data-generating mechanism chosen and the tests

to be analysed. The results of the simulation analysis follow.
3.1 Experimental Design and Simulation

The data-generating process (DGP) used in the Monte Carlo sampling

experiments is the following specific, but theoretically relevant, mechanism:

= 8 + SBE(x, |D+¢, (14)

It

2. 2
(1-6B-08) =6 +(©B+86B)y +¢, (15)

-] [ w])

where @: is the o-field generated by [(yi, xi): 1 <i <t}, and B denotes the

L2 ..,T

lag operator defined by the transformation Bkw‘ =W, Equation (14) is a
typical rational expectations efficient markets model: it could represent,
inter alia, a present value relation for stock prices, or a model of the term
structure of interest rates, or a relation between forward and spot exchange

rates.

The regression model of interest is the relationship between Y, and X

(8]




obtained by substitution of E(xm| @l) from (15) into (14). This is given by:

(1-¢B)y,=0,+ (b, +6Bx +¢, (16)
where
¢0 = a(So + 8190), ¢: = a8194, ¢2 = aslel. ¢3 = a8!92.
d 2
It - IN 0 o OII (1012
2 0 (10'12 022
with & = (1 - 8193)".

From (14)-(15), the conditional expectation of Y, given (x‘, Q”) implies

the regression:

= P - - )
(1-8B-$8 =8 + @ +6B+dBI +u, (17
where
- T Po_ -1
0o aeoolzczz 4’1 - ‘b aesclzczz ¢2 - 0.940’120'22,
- r -
3 ¢ + (10'2622 4 ¢ ae‘onon ¢5 - ’aezonczz‘

2
u - INQO, o (0” -0, 22))

It is now evident that when o, # 0, X is not weakly exogenous for
(4)0, 4)1. 4)2, ¢3, azo“) because these parameters are not recoverable from the
parameters of the conditional process (17) alone. Weak exogeneity of x also
fails when G, = 0, as can be seen directly from (16) where the ¢’s are not
variation free with the parameters of the marginal model (15). In this case

however, given that (16) coincides with the conditional expectation

(9]




E(ytlxl. QDH). it is unlikely that weak exogeneity be rejected on the basis
of a conventional limited-information "exogeneity test" which seeks to detect
the presence of x - E(xJ@H) in model (16) [see, e.g., Holly (1987) and
Pesaran and Smith (1990)]. Finally, since (¢, ¢. ¢, ¢,. a’c ) directly
depends on the 0’s, (16) is not structurally invariant to interventions which
alter the parameters of (15). Hence, the autoregressive distributed lag
specification in (16) is by construction subject to the Lucas critique due to

lack of superexogeneity of X

As observed earlier, superexogeneity claims are testable if it is known that
the parameters of the distribution of the conditioning variables have changed
over the sample period. Thus, in the experiments conducted, the marginal
process lx‘| @“l is allowed to undergo a single regime shift, the timing and
magnitude of which are deterministically fixed. We consider three different
types of regime shifts, namely a change in the intercept 90, a change in the
variance G,, and a change in 93. Letting n (0 < n < 1) denote the proportion
of the sample that precedes the break, structural changes are parameterized
as:
90! =6, + Veo-dl, 6, = ()3 + V93~d(, G, =0, + Vcn-d',

when VGO, V()3 and V(522 are respectively the changes in 60, 93 and S,, dl =0
for 1 <+t < [Tn], dt =1 for [Tn] + 1 <+t < T, and [Tn] is the integer part

of Tn.

In the sampling experiments, we consider variable-addition tests for
superexogeneity of x in (16) based on the Engle-Hendry expansion (6), as
well as tests derived on the basis of linear and quadratic approximations of

the form (10) and (11). These tests, referred to as EHT, LAT and QAT below,

[10]




are conventional F-type tests for the joint significance of all terms
involving A in the ofdinary least-squares (OLS) regressions (8), (12) and
(13) respectively, when z = (yH, xl_l)’. In addition, since in many cases
the conditional variance E(y, - E0,|x, @))* = (1 - 80)%0, - o’,0.)
is non-constant, we also compute robust superexogeneity Wald tests, utilizing
White’s (1980) heteroscedasticity-consistent covariance matrix estimator with
a degrees-of-freedom correction [see MacKinnon and White (1985)]. Wald
statistics are divided by the number of restrictions under the null to obtain
tests based upon the central F distribution. Abstracting from problems
associated with misspecification of the marginal model for {xl|@ﬂl,3

x - €, is used as a measure of the conditional mean u’: = E(x!| @H) for all

tests; the conditional variance o’:x = E((x - u:)2|@!_l] is proxied by its

2 4

natural estimator ¢ »

We also examine the power of temporal stability tests to detect the non-
constancy of (16) and hence reject structural invariance. A widely used test
that might be employed to check for a one-time shift in the regression
coefficients at a pre-specified point [Tn] is the split-sample analysis-of-
covariance F-test (denoted below by CF(n)) [see Chow (1960)].5 However, since
the number and location of break-points are typically unknown in practice,
researchers may conduct tests designed to detect alternative hypotheses more

general than that of the F-test. In this study we investigate the behaviour

3Speciﬁcation errors in the formulation of the marginal model are likely to
reduce the power of superexogeneity tests.

4Almosl identical simulation results are obtained when the predictable
first-order ARCH component of €, is used as a measure of 0’:".

5The power of Chow’s (1960) prediction error test in a context similar to the
one considered here is investigated in Favero and Hendry (1992). However, as
Hansen (1991) shows, such tests have no asymptotic local power against
changes in parameters other than the regression error variance.

(1]




of several Lagrange multiplier tests for the null of constancy of the
parameter vector (¢0, ¢)l, ¢2, ¢3). These include: (i) a test for a single
shift at time [Tn] (denoted by LM(n)); (ii) the supremum over n € A" of the
LM(n) test (denoted by supLM), when A" < (0, 1) and 4 is bounded away from
zero and one; (iii) the average of LM(n) tests over n € A" (denoted by
meanL.M); and (iv) a test based upon the average of the squared forward

cumulative scores (denoted by Lc) [for details see Hansen (1990)].

The last four tests are all tests of the same null, but differ in their
choice of alternative hypothesis. For LM(n) and supLM the aliernative is that
of a single shift in regime (with known and unknown location, respectively),
whereas meanl.M and Lc treat the parameters as martingale processes (with
respectively varying and constant hazard of instability across the sample).
Under the hypothesis of constant parameters, LM(n) is asymptotically
distributed as a central chi-squared variate with degrees of freedom equal to
the number of parameters tested for constancy. The limiting distributions and
critical values for the remaining test statistics can be found in
Andrews (1993) and Hansen (1990). Following Andrews’ (1993) suggestion, we

select the trimming region as 4" = [0.15, 0.85] in the experiments.
Our Monte Carlo design sets 11 parameters as fixed, i.e.:6

8 =03, & =0.5, 90 = -0.14, 9l = 0.06, 92 = -0.01,

93 = 0.98, 94 = -0.13, o, = 0.31, o,, = 0.14,

T = 100, n=0.5.

6To ensure the relevance of our simulations, these parameter values are
obtained from estimation of a model for the spread between six-month and
three-month U.S. Treasury Bill rates and the first-differences of the three-
month rate.

(12]




The error covariance and the magnitude of structural breaks are, on the other

hand, chosen by the grid:

o, e (0.15, 0],
Ve, € (035, 07, 1.4, 2.8, 4.2),
V6, e (035, -0.7, -1.4, -2.8, -4.2),
Vo, e (035,07, 1.4, 2.8, 42).7

In all experiments, 5,000 samples of 51 + T observations on (y', xl) are
generated from (14)-(15), starting with Y SX, =Yy = %= 0. However, in
order to attenuate the effect of the choice of initial values, only the last
T observations of each sample are used for the calculation of the test
statistics of interest. Pseudo-random samples of values of (en’ 82‘) from
the bivariate normal distribution are obtained using the RNDN function of the

GAUSS-386i 3.0 matrix programming language.
3.2 Post-simulation Analysis

Table 1 reports rejection frequencies of variable-addition superexogeneity
tests in the case of a change in 90. These are estimated as the proportion of
rejections in 5,000 Monte Carlo replications, using 5% critical values from
the upper tail of the central F distribution with appropriate degrees of

8

freedom.” When o, = 0.15, test rejection frequencies are low for changes

7In the model of the U.S. term structure, the equation for the
first-differences of the three-month rate had an error variance of 0.14
before 1979:3, which increased to 1.54 during 1979:4-1982:3; changes in the
equation coefficients were of much smaller magnitude.

The accuracy of an estimate P of a test rejection frequency can be assessed

[13]




approximately equal to one error standard deviation, but rapidly approach
unity as the magnitude of the structural break increases. However, when
o, = 0 all three tests have rejection frequencies which hardly exceed 50%,

in spite of immense changes (larger than thirty-fold) in the intercept.

Such results are perhaps more easily understood if we note that, for the
parameterization with g, * 0, the component of the null hypothesis which
appears to be largely responsible for rejection is that of weak exogeneity.
More specifically, whereas a standard r-test for the separate hypothesis of a
zero effect from x - p’: has a high rejection frequency, estimates of A’s are
rarely statistically different from zero. As a summary statistic, the row of
Table 1 labelled r-inv shows the maximum rejection frequency of two-sided
t-type tests for Xi =0 ((=1,2,..) over all éxperimems (using a
two-tailed standard normal critical region of size 0.05). This lack of power
of tests for invariance is also apparent for the DGP with c,, = 0. However,
as anticipated from the- discussion in Section 3.1, neither do statistics for
the significance of the component X - u’: provide powerful tests of weak
exogeneity in this case, so the rejection frequency of tests for the joint

hypothesis of superexogeneity is reduced dramatically.

When heteroscedasticity-robust tests are employed, the probability of
rejecting the null of superexogeneity increases considerably, especially when
using QAT. Nevertheless, such results must be treated with caution since the
exact finite-sample size of heteroscedasticity-robust tests in homoscedastic
models tends to be substantially larger than its nominal value [see MacKinndn:’

and White (1985), Chesher (1989), and Chesher and Austin (1991), inter

by noting that its variance is consistently estimated by M 'P(1 - P), where M
is the number of Monte Carlo replications. ‘

[14]




9

alia).

The estimated rejection frequencies of EHT, LAT and QAT in the case of a
change in 93 are recorded in Table 2. The performance of the tests for the
DGP with O, = 0.15 appears very impressive, but the rejection frequency
never exceeds 20% when 0,, = 0. Moreover, accounting for the structural break
in E (y‘ - E(yl|xl, @H)]2 induced by V()3 # 0 by means of heteroscedasticity-
robust tests does not improve matters substantially, except perhaps for QAT.
Note, however, that these figures are probably spuriously high, as our
earlier remark about the true rejection frequencies of h.e:teroscedasticity-

robust tests under the null hypothesis remains true even for heteroscedastic

models.

The rejection frequency of the tests for changes in the variance o, is even
lower, as the first block of Table 3 reveals, presumably partly because of
the large error variances induced by Vcs22 > 0. When c,* 0, rejection rarely
exceeds 25% for conventional F-tests, or 50% for heteroscedasticity-robust
tests. For the parameterization with 0, =0, on the other hand, the
estimated rejection frequencies of OLS-based tests are rarely statistically
different from 5%. This should be no surprise since if G, = 0, OLS on (16)
gives a consistent (albeit inefficient) estimate, and (4)0, ¢1’ ¢2, 4>3, a20")
is invariant to changes in o, (i.e., all test variables ought to enter (16)

with zero coefficients). The rejection frequencies of heteroscedasticity-

9Chesher (1989) and Chesher and Austin (1991) also show that the magnitude of
size dislortion is very sensitive to the degree of balance in the regression
design. Since designs like (13) were typically found in our experiments to
contain points of very high leverage (as measured by the corresponding
diagonal element of the matrix that rrojects orthogonally onto the column
space of the regressor matrix - see, e.g., Cook and Weisberg (1982)), the
rejection frequencies of QAT are highly suspect.

[15]




robust tests in this case confirm our earlier reservations about the
reliability of tests based on the White covariance matrix estimator when

heteroscedasticity is in fact absent.

Finally, in order to examine the effects on the power of the test procedure
of ignoring potential non-constancy of the regression coefficient of y on x
conditional on Q? ,» We investigate the performance of superexogeneity tests
under the false maintained assumplion of time-invariance of the second
moments of ((yl. x()'|®“l. The lower block of Table 3 reports estimated
rejection frequencies of Wald-type tests for the joint significance of
[x, - 1 ()’ and [e - 12, G, (£)’) when added to (16), in the case
that V(!2 , #0and O,, = 0.15; the tests are respectively denoted by EHT.C and
QAT.C.lO Comparison of these rejection frequencies with the corresponding
figures in the top block of Table 3 reveals that substantial loss in power
can indeed occur as result of failing to allow for a changing regression

coefficient under the alternative hypothesis.

We now tumn our attention to the power of tests for parameter instability and
structural change to detect the non-constancy of (16) induced by regime
shifts in the marginal process '.\“lgb 1. Table 4 records the estimated test
rejection frequencies for changes in the intercept 90. As before, these are
obtained from 5,000 Monte Carlo replications, using asymptotic critical
values at the 5% significance level. First note that all tests, except for
CF(O.S), have null rejection frequencies which differ from their nominal

level by more than 2.576 Monte Carlo standard errors, a result which should

10Nole that expansions of the form (6) and (10) lead to the same test

regression, when ):l is constant.




be borne in mind when comparing the power of different tests. When the null
of constancy is false, tests which utilize information on the exact date of
the break (CF(0.5), LM(0.5)) outperform substantially tests designed for
alternatives which involve breaks of unknown location (supLM) or random walk
parameters (meanlLM, Lc). Even so, for the parameterization with o, = 0
CF(0.5) and LM(0.5) have rejection frequencies which rarely exceed 50%,
despite radical changes in 90. The performance of Lc is particularly
disappointing, the test often being biased for substantial intercept shifts.
However, this is not perhaps surprising since Lc is specifically designed to
detect gradual shifts in parameters (when the likelihood of instability is

constant throughout the sample period).

When o, = 0.15 and non-constancy is due to a change in 93 in the marginal
process, the probability of detecting a break in (16) increases
substantially, as the figures in Table 5 reveal: rejection frequencies are
nearly 100% even for relatively small changes in 93. However, as with
variable-addition superexogeneity tests, shifts in the conditional model are
much harder to detect when G, = 0. Also note that when VO3 # 0, the
estimated rejection frequencies of CF(0.5) must be viewed with scepticism
since, unlike the Lagrange multiplier tests, CF(0.5) is not robust to time-

varying regression error variances.

Rejection frequencies of the tests for changes in c,, are given in Table 6.
As before, parameter constancy tests perform very well when o,* 0. In the
case of the DGP with o,= 0, the estimated rejection frequencies merely
reflect the invariance of (16) to changes in the error variance of the

marginal process.

[17]



Finally, to investigate the possibility that non-constancy in an invalid
conditional model induced by shifts in the generating mechanism of the
conditioning variables is more difficult to detect than breaks in the
marginal process [see Favero and Hendry (1992)], we examine the power of
temporal stability tests when applied to (15). To save space, Table 7 records
estimated test rejection frequencies only for the DGP which is least
favourable to tests applied to (16) (similar results were obtained for other
DGP’s). In contrast to the results in Table 5, the structural break in the
marginal process is always detected with a high probability, even when using
tests not specifically designed for alternatives incorporating swift changes

in regime.
4. THE TERM STRUCTURE OF INTEREST RATES

In this section, the rational expectations model of the term structure of
interest rates is used to illustrate empirically some of the difficulties
encountered when testing structural invariance and superexogeneity
assertions. As observed earlier, the expectations model (linearized around

equilibrium) may be expressed by an equation like (14), i.e.:
R -r= s, = 80 + 8|E(Arl+||@|) +E. (18)

In (18), Rl is the yield to maturity on a two-period pure discount bond, r
is the yield to maturity on a one-period bond, @' is the information set

available at time ¢, €, is a zero-mean white-noise innovation orthogonal to

E(Ar

t+1

|9, A=1-8B, and 8 =051 As well as being theoretically

11'I'he expeclations model has been formulated in terms of the yield spread and
the first-difference of the short-term rate in order to ensure that no

(18]




appealing, such a model has been found to provide a statistically adequate
representation of the short end of the U.S. term structure, once the
1979-1982 regime shift to monetary base control is accounted for [see

Driffill, Psaradakis, and Sola (1992) and Sola and Driffill (1992)].

In what follows we investigate the applicability of the Lucas critique in the
context of a dynamic model for the spread between long-term and short-term
U.S. interest rates. Such a model may be obtained from (18) by imposing a
dynamic structure like (15) on the process generating Ar', and is therefore
intrinsically subject to the Lucas critique [see the discussion on model
(14)-(17) in Section 3.1]. The measure for the short-term rate is the yield
on three-month Treasury Bills, while the long-term rate is the yield on
six-month bills. Both rates are expressed as decimals at annual rates, and

the sample consists of quarterly observations for the period 1962:1 to

1987:3.

The following model for the yield spread was developed by sequential
reduction of an autoregressive distributed lag specification allowing for up

to six lags on (sl, Ar|) and for an intercept (estimation is by OLS):12

5,= 0225 + 0.632 Ar - 0.662 Ar , - 0.924 5+ 0814 5 (19)
(0.088) (0216)  (0.252) 0292)  (0.220)

T = 93 [1964:3-1987:3], R® = 04200, & =0.8190, mean = 0.2025,
SD = 1.0519, DW = 2.092, NOR[x’(2)] = 32.888, HET{F(8,79)] = 4.046,
ARCH[F(4,80)] = 4.950, SC[xz(S)] = 2.109, OV[xz(l)] = 2.012.

stochastic trend components are present in the variables involved.

12All of the empirical results reported in this section were obtained using
PcGive 7 [see Doomik and Hendry (1992)].
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Numbers in parentheses beneath coefficients are heteroscedasticity-
consistent standard errors (computed as in White (1980), with a degrees-of-
freedom correction); R? is the squared multiple correlation coefficient; G is
the equation standard error; mean and SD respectively denote the mean and
unconditional standard deviation of the dependent variable; DW is the
Durbin-Watson statistic; NOR[-] is the Jarque and Bera (1987) test for
non-normal residual skewness and kurtosis; HET[-] is White's (1980) test for
residual heteroscedasticity; ARCH[-] is Engle’s (1982) test for fourth-order
ARCH residuals; SC[-] is a Godfrey (1978)-type test for residual serial
correlation up to order five; and OV[] is a Ramsey (1969) first-order
RESET-type test for omitted variables and incorrect functional form. The last
two tests are performed by means of the robust artificial regression
procedure discussed in Davidson and MacKinnon (1985) and Wooldridge (1990,
1991), thus ensuring that the hypotheses of interest are tested in a manner
which is asymptotically valid in the presence of heteroscedasticity of
unknown form. The computed statistics indicate substantial residual
non-normality and lack of homogeneity in the residual variance, evidence
which can be consistent with the presence of outliers and/or unaccounted-for

structural shifts.

In order to examine the superexogeneity of Ar( in (19), we develop an
empirical model for the marginal process generating the short-term rate. The
following specification was obtained by sequential simplification of a model
with six lags on (sl, Ar‘) and various dummy variables designed to allow for
and define potential structural breaks/regime shifts that occurred during the

period of implementation of the Federal Reserve System’s New Operating

Procedures:

[20]




Ar = -0.193 + 0.081 Ar, + 1.001 5 - 0.162 D'79.4:s
(0.040) (0.035) (0.078)  (0.081)

+0.300 D'79.4:5 , + 1.634 D79.4 - 1.260 D80.2

(0.073) [0.379] [0.420]
+ 0.756 D80.4l + 2.627 D81.1 - 2.033 D82.4| (20)
[0.478] [0.633] [0.391]

T = 97 [1963:3-1987:3], R>=0.8979, & = 03722, mean = 0.0288,
SD = 1.1089, DW = 1.820, NOR[x’(2)] = 5.764, HET[F(13,73)] = 0.696,
ARCH[F(4,79)] = 4.062,  SC[X’(5)] = 2203, OV[xX(1)] = 1.767.

In (20), [-] below coefficient estimates are conventionally calculated OLS

standard errors, 13

D'79.4‘ is a step-change dummy variable which takes the
value unity over the period 1979:4-1982:3 and zero otherwise, and Dp.q'
denotes an impulse dummy variable which is equal to unity at the q"' quarter
of year p and zero otherwise. The misspecification test statistics indicate
that, apart from some evidence of ARCH effects, (20) provides an adequate
characterization of the data. Furthermore, the significance of the terms

involving regime-shift dummy variables clearly reflects the importance of

changes in monetary policy that took place during the period 1979-1982.

Model (20) is used to obtain proxies for the first two conditional moments of

Ar‘. The conditional mean is approximated by A;l, whilst the predictable

13In the absence of severe heteroscedasticity, tests for the significance of
the dummy variables based on conventional estimated standard errors are
likely to be more reliable than heteroscedasticity-robust tests, given the
tendency of the latter to be adversely affected by the leverage points which
isolate the non-zero values of the dummies from the body of the data.
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fourth-order ARCH component of (Ar' - A;')2 (denoted by 8:') is used as a
measure of the conditional variance. Following Hendry and Ericsson (1991),
Favero and Hendry (1992) and Engle and Hendry (1993), Ar' - A;(, 6:' and
(Arl - A;t)2 - 6’:, as well as their one-period lagged values, were then
included in (19) and their coefficients were tested for significance.
However, none of these variables appeared 1o have a non-zero effect (eiiher
in the most general model or in simplifications thereof), indicating that
there is little evidence against superexogeneity of Arl in the conditional

model.

We also examined the significance in (19) of test variables like those
implied by approximations of the form of 6), (10) and (11). In particular,
the conditional model was augmented as in equation (13) and was subsequently
simplified by sequentially deleting test variables with insignificant
coefficients. The final specification  included 6:' (Arl - A;:) with a
coefficient of -3.295 and a heteroscedasticity-consistent t-ratio of -2.147,
S0 superexogeneity of Ar‘ may now be rejected. It is worth noting however
that the result is not robust to alternative procedures for performing a test
that remains valid under heteroscedasticity. More specifically, the Davidson
and MacKinnon (1985) analogue of a r-test for the significance of
c}’:'("Arl - A;‘) yields -1.823, while the value of a t-statistic based on the
jackknife covariance matrix estimator described in MacKinnon and White (1985)
is only -1.593. Given that such tests generally outperform those based on the
White variance estimator, it would appear that the empirical evidence for

superexogeneity of Arl in (19) is not particularly strong.

Further, since structural invariance implies that the determinants of

parameter non-constancy in the marginal process ought not to affect the
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conditional model, we tested the significance of the dummy variables in (20)

when added to (19). The resulting equation is:

5,= 0.247 + 0.464 Ar, - 0.265 Ar,, - 0444 5+ 0353 5
(0.133) (0.218)  (0.189) (0.246)  (0.261)

- 0.835 D79.4' - 4211 D80.2l + 2.128 D80.4( - 1.051 D81.l‘

[0.789] [0.867] [0.914] [1.323]
+ 0398 D824 - 0.275 D'79.4.5 + 0.015 D'79.4.s | @1
[0.834] (0.176) (0.224)

T = 93 [1964:3-1987:3], R®>=0.6145, & = 0.6960, DW = 1.90,
NOR[X'(2)] = 26.030, HET[F(17,63)] = 0.304, ARCH[F(4.73)] = 0.195,
SClx*(5)] = 2.907, ovi(D] = 3.327.

Contrary to (19), (21) satisfies the diagnostic checks for heteroscedasticity
reported, and it also variance-dominates the original model (the significant
non-normality statistic is due to an outlier at 1980:1). Moreover, (19) fails
to parsimoniously encompass (21) on an F-test [F(7,81) = 5.838], thereby

rejecting superexogeneity.

Finally, we investigate the superexogeneity of Arl via an examination of the
temporal stability properties of the conditional and marginal model. Figure 1
records one-step residuals from a recursive least-squares regression of Ar‘

on a constant, Arts, 5, and S.4 bordered with 0 + 26 for every

|
. increasing sub-sample [cf. Dufour (1982)]. It is visually apparent that, when

regime shifts are not accounted for, the equation standard error of the

marginal model is non-constant, almost doubling over the sample period. The




most notable breaks appear to have occurred during the period 1979-1982.14
Moreover, the sequence of one-step residuals from (19) shown in Figure 2
indicates that the instability episode in the marginal process is transferred
to the conditional model. This is also apparent in Figure 3 which records the
recursive estimates of the coefficient of Arl in (19), together with a
confidence region based upon plus-or-minus twice the estimated coefficient
standard error at each sample size. A formal analysis-of-covariance test of
parameter constancy over 1964:3-1979:3 versus 1979:4-1987:3 yields
F(5,83) = 6.352, strongly rejecting stability of (19).!5 Such evidence is
clearly inconsistent with superexogeneity of Ar in (19) for the class of
interventions that have occurred during the sample period. Also note that
these results are in full accordance with the Monte Carlo evidence in
Section 3. As the latter suggested, when the generating process of the
conditioning variables is subject to changes in the error variance, parameter
constancy lests are more likely to reject false invariance assertions than

direct superexogeneity tests (cf. Tables 3 and 6).
S. CONCLUDING REMARKS
Given the significance and important implications of structural invariance

and superexogeneity for econometric modelling, it is essential that such

hypotheses be carefully and reliably tested. The procedures proposed by Engle

14This is confirmed by a variance-ratio test for a break at 1979:3 (which
yields F(28,61) = 3.524), as well as by Hansen’s (1992) test for variance
instability (which yields a value of 0.605). Note, howevér, that there is no
significant evidence of a structural change in the coefficients of the
marginal model.

15Following Goldfeld and Quandt (1978), the test is made asymptotically robust
to heteroscedasticity by deflating the data with an estimate of the
appropriate sub-period error standard deviation.
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and Hendry (1993) provide an ingenious and simple way of doing so, but may
yield incorrect information in certain cases. As our Monte Carlo analysis
revealed, non-rejection of superexogeneity is indeed compatible with invalid
conditioning and low test power, especially so in circumstances where
failures of weak exogeneity do not violate the standard orthogonality
condition required for consistent least-squares estimation of a conditional

model.

In the case of direct superexogeneity tests, test power does not appear to be
sensitive to the specification of the relationship between the parameters of
interest and the moments of the generating process of the conditioning
variables that is contemplated under the alternative =~ hypothesis.
Nevertheless, since the test variables implied by such expansions are likely
to be collinear, there is much to gain from using the most parsimonious

approximation believed to be relevant for the problem under scrutiny.

In connection with indirect tests of superexogeneity, it is worth pointing
out that although tests for parameter constancy which utilize correct prior
information about the point at which structural change occurs tend to be more
powerful than tests that treat the location of the break as unknown, their
outcome must be tempered with caution. Since the choice of a candidate
break-point is rarely independent of the data on which constancy tests are
applied -it is typically determined by historical evidence for shifts in the
process of the conditioning variables- inferences based on asymptotic
distributional theory may be misleading. Estimates of the parameters of
interest generated by rolling and recursive sampling schemes can provide
valuable information about the structural invariance of a model, and thus

assist considerably in the interpretation of evidence provided by formal
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tests for temporal stability.

Finally, let us end by noting that the findings of our analysis reenforce
earlier evidence against the usefulness of superexogeneity tests as a means
of assessing the empirical relevance of forward-looking model-based
expectational mechanisms [cf. Favero and Hendry (1992)]. The observation that
structural non-invariance fails to hold in an empirical setting involving
changing expectations does not necessarily entail rejection of
forward-looking behaviour: it may merely reflect low test power due to zero
off-diagonal elements in the covariance matrix of the errors of the
structural and expectations-generating equations. Since many important
economic phenomena are indeed consistent with forward-looking models with
disturbances which are contemporaneously uncorrelated with the innovation on
the relevant forcing variables, insignificant superexogeneity and invariance
tests should be viewed with much caution. A prudent startegy would appear to
involve testing of the relevant hypotheses in all possible ways and via a
variety of different tests, in an attempt to maximize the possible evidence

against maintained superexogeneity and invariance assumptions.
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Table 1
Rejection Frequencies of Superexogeneity Tests at Nominal 5% Level,

when VBo #0

S, VBO EHT LAT QAT

0.15 035 0.439 (0.595) 0.475 (0.588) 0.389 (0.690)
0.70 0.772 (0.865) 0.807 (0.864) 0.708 (0.887)
1.40 0.910 (0.952) 0.929 (0.951) 0.870 (0.953)
2.80 0.954 (0.976) 0.961 (0.978) 0.923 (0.976)
4.20 0.968 (0.985) 0.974 (0.985) 0.943 (0.982)
t-iny 0.057 (0.105) 0.057 (0.103) 0.057 (0.132)

0.00 035 0.148 (0.333) 0.159 (0.300) 0.125 (0.505)
0.70 0.295 (0.510) 0.327 (0.492) 0.243 (0.634)
1.40 0.432 (0.642) 0.471 (0.628) 0.374 (0.729)
2.80 0.510 (0.705) 0.554 (0.692) 0.434 (0.768)
4.20 0.546 (0.739) 0.590 (0.726) 0.469 (0.800)
t-iny 0.054 (0.102) 0.053 (0.100) 0.055 (0.131)

Notes: Numbers in parentheses are the estimated rejection frequencies of
heteroscedasticity-robust tests. Critical values for EHT, LAT and QAT are

taken from the F(5,91), F(4,92) and F(7,89) distributions, respectively.
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Table 2
Rejection Frequencies of Superexogeneity Tests at Nominal 5% Level,

when VG3 #0

o, VG)3 EHT LAT QAT

0.15 -0.35 0.885 (0.944) 0.912 (0.948) 0.852 (0.962)
-0.70 0.996 (0.998) 0.997 (0.999) 0.993 (0.999)
-1.40 0.999 (1.000) 0.999 (1.000) 0.999 (1.000)
-2.80 0.999 (1.000) 1.000 (1.000)  0.999 (1.000)
-4.20 0.998 (1.000) 1.000 (1.000) 0.998 (1.000)
t-iny 0.163 (0.161) 0.162 (0.161) 0.162 (0.179)

000 -0.35 0.062 (0.244) 0.067 (0.207) 0.075 (0.494)
-0.70 0.090 (0.279) 0.095 (0.239) 0.135 (0.567)
-1.40 0.119 (0.291) 0.121 (0.252) 0.187 (0.581)
-2.80 0.112 (0.261) 0.108 (0.222) 0.152 (0.497)
-4.20 0.086 (0.227) 0.079 (0.301) 0.115 (0.438)
t-iny 0.137 (0.138) 0.137 (0.138) 0.149 (0.166)

Notes: See Table 1.
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Table 3
Rejection Frequencies of Superexogeneity Tests at Nominal 5% Level,
when Vo22 #0

o, Vo22 EHT LAT QAT
0.15 035 0.227 (0.455) 0.226 (0.401) 0.215 (0.612)
0.70 0.277 (0.501) 0.279 (0.443) 0.259 (0.645)
1.40 0.251 (0.460) 0.251 (0.405) 0.244 (0.625)
2.80 0.179 (0.400) 0.188 (0.335) 0.175 (0.585)
420 0.138 (0.359) 0.145 (0.304) 0.139 (0.562)
t-inv 0.084 (0.146) 0.085 (0.143) 0.113 (0.168)
000 035 0.045 (0.225) 0.049 (0.180) 0.046 (0.453)
0.70 0.043 (0.234) 0.046 (0.189) 0.047 (0.464)
1.40 0.046 (0.239) 0.047 (0.189) 0.048 (0.468)
2.80 0.047 (0.241) 0.047 (0.191) 0.048 (0.473)
4.20 0.046 (0.243) 0.047 (0.190) 0.048 (0.471)
t-inv 0.051 (0.121) 0.054 (0.125) 0.057 (0.145)
o, V(s22 EHT.C QAT.C
0.15 035 0.066 (0.097) 0.063 (0.153)
0.70 0.055 (0.086) 0.057 (0.147)
1.40 0.049 (0.078) 0.053 (0.143)
2.80 0.046 (0.076) 0.047 (0.141)
4.20 0.044 (0.076) 0.046 (0.140)

Notes: Critical values for EHT.C and QAT.C are taken from the F(2,94) and

F(3,93) distributions, respectively. See also Table 1.
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Table 4
Rejection Frequencies of Parameter Constancy Tests for (16)
at Nominal 5% Level, when VOO 0

- o, ve, CF(0.5) LM(0S5) supLM meanlM L~
v 0.15 0.00 0053 0076 0022° 0.119° 0050
0.35 0417 0447 0217 0449 0239

0.70 0780 0770 0447 0673  0.261

1.40 0919 089 0580 0763  0.084

2.80 0956 0939 0.620 0784  0.022

420 0968 0961 0639 0784 0013
0.00 0.00 0.049 0070 0016 0.103° 0037

0.35 0.147 0.173 0048  0.194  0.053

0.70 0309 0323 0091 0280  0.032

1.40 0.463 0451  0.127 0314  0.009

2.80 0544 0520 0.135 0306 0.004

4.20 0.582  0.559 0.143 0308  0.003

Notes: An asterisk indicates that the estimated rejection frequency is
different at the 1% level from the value implied by the relevant asymptotic
null distribution. Critical values are taken from the F(4,92) distribution
for CF(0.5), from the x2(4) distribution for LM(0.5), from Andrews (1993,

Table I) for supLM, from Hansen (1990, Table 2) for meanLM, and from
Hansen (1990, Table 1) for Lc.
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Table 5§
Rejection Frequencies of Parameter Constancy Tests for (16)
at Nominal 5% Level, when VG3 #0

g, VG3 CF(0.5) LM(0.5) suplM meanlM Lc i
0.15 -0.35 0.926 0.936 0.675 0.894 0.663 -
-0.70 0.998 0.999 0.972 0.995 0.881
-1.40 1.000 1.000 0.998 1.000 0.895
-2.80 1.000 1.000 0.999 1.000 0.798
-4.20 1.000 1.000 1.000 1.000 0.711
0.00 -0.35 0.056 0.098 0.024 0.134 0.033
-0.70 0.080 0.169 0.050 0.194 0.049
-1.40 0.142 0.370 0.155 0.377 0.104
-2.80 0.238 0.762 0.486 0.703 0.198
-4.20 0.301 0.906 0.744 0.863 0.258

Notes: See Table 4.
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Table 6
Rejection Frequencies of Parameter Constancy Tests for (16)
at Nominal 5% Level, when V(r22 #0

. G Vo CF(0.5) LM(0.5) supLM meanlM L

12 22 ¢

. 0.15 0.35 0.863 0.874 0.498 0.807 0.443
0.70 0.965 0.963 0.648 0.897 0.424

1.40 0.990 0.982 0.700 0.917 0.298

2.80 0.995 0.987 0.692 0.909 0.158

4.20 0.997 0.987 0.674 0.902 0.099

0.00 0.35 0.053 0.071 0.018 0.106 0.035
0.70 0.052 0.071 0.017 0.104 0.033

1.40 0.053 0.067 0.018 0.099 0.029

2.80 0.051 0.068 0.019 0.096 0.024

420 0.050 0.066 0.020 0.094 0.020

Notes: See Table 4.

Table 7
Rejection Frequencies of Parameter Constancy Tests for (15)
at Nominal 5% Level, when VG3 20

o, Ve R CF(0.5) LM(.5) suplM meanlM Lc
0.00 0.00 0.047 0075 0014 0115 0037
-0.35 0937 0928 0602 0.878 0.650
-0.70 1.000  1.000 0980 0997 0939
. -1.40 1.000 1000 0998  1.000 0959
-2.80 1.000  1.000 0999 1000 0876
. -4.20 1.000  1.000 0999 1000 0.751

Notes: Critical values for CF(0.5) and LM(0.5) are taken from the F(5,90) and
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‘ x2(5) distributions, respectively. See also Table 4.
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FIGURE 1: One-step residuals and corresponding estimated equation standard errors for the
marginal model.
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FIGURE 2: One-step residuals and corresponding estimated equation standard errors for the
conditional modcl (19).
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FIGURE 3: Recursive estimates of the coefficient of Ar, in model (19), with £2 estimaied standard
errors.
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