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Abstract 
We analyze the main dynamical properties of the evolutionarily stable strategy ESS for asymmetric 
two-population games of finite size in its corresponding replicator dynamics. We introduce a 
defnition of ESS for two-population asymmetric games and a method of symmetrizing such an 
asymmetric game. Then, we show that every strategy profile of the asymmetric game corresponds 
to a strategy in the symmetric game, and that every Nash equilibrium (NE) of the asymmetric game 
corresponds to a (symmetric) NE of the symmetric version game. So, we study (standard) replicator 
dynamics for the asymmetric game and define corresponding (non-standard) dynamics of the 
symmetric game. 
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Resumen 
Presentamos una extensión del concepto de estrategias evolutivamente estables al caso de juegos 
asimétricos. El objetivo de esta extensión es el de aprovechar las propiedades bien conocidas de 
estas estrategias en el caso simétrico y su relación con los equilibrios de la dinámica del replicador 
en este tipo de juegos, para analizar las propiedades dinámicas de dichas estrategias, cuando las 
ecuaciones diferenciales que rigen la evolución de las poblaciones no surgen de juegos simétricos. 
Para esto se crea una versión simétrica para cada juego asimétrico, y se comprueba que las 
estrategias evolutivamente estables de los juegos asimétricos siguen siendo evolutivamente estables 
para la versión simétrica y que se conservan algunas de las propiedades de estabilidad cuando se 
vuelve al caso asimétrico. 
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1 Introduction

Evolutionary dynamics was originally motivated by biology, then for economics and concerns
pairwise random matching of individuals drawn from a single infinitely large population, and
usually playing a symmetric game. Evolutionary stability, introduced by Maynard Smith and Price
(1973), is a criterion for the robustness of an incumbent strategy against the entry of individuals or
mutants using a different strategy. The framework considered is a conflict within a homogenous
population (a symmetric game). A game in normal form is symmetric if all players have the
same strategy set, and the payoff to playing a given strategy depends only on the strategies being
played, not on who plays them.

Nevertheless, many economic applications come from attention for multi-population rather
than single-population dynamics on asymmetric environments. So, in most applications, the
game is not going to be symmetric and involve at least two players with different strategies and
each player role is represented by a different population in the spirit of Nash’s (1950) ”mass action
interpretation” where each type of player being drawn from his or her “player-role population”.
For instance, the player roles may be those individuals of buyers and sellers, incumbents and
entrants in oligopolistic markets, workers and firms, or the social relationships between migrants
and residents; all of them with non-homogeneous behaviors about the state of the economy or
different attitudes towards - and perceptions about - development efforts or environmental quality
of the state of the economy and so forth.

Recall that, from the framework of symmetric games, there is a seminal refinement of the
Nash equilibrium (NE) concept that is the notion of Evolutionarily Stable Strategy (ESS) (see
Maynard Smith and Price (1973), Maynard Smith (1974)). From it, we known that every ESS
is at the same time, a stable strategy against mutants, i.e., is robust when is invaded by a small
population playing a different strategy, and asymptotically stable steady state in the associated
replicator dynamics. Hence, the relationship between NE , ESS and the steady states (SS) on
this replicator dynamic, are well known (see Weibull (1995)).

Hence, in this paper, we consider the evolution of two populations facing a conflictive situation
being modeled by an asymmetric normal form game. Analyzing the evolution and stability of the
behaviors of the populations involved in asymmetric games is the main purpose of this work. In this
vein, we should symmetrize the asymmetric game because it give us, the possibility to characterize
the ESS using the well known properties of these strategies for the cases of symmetric games.

Then, we extend the concept of ESS for asymmetric two-population games, equivalently in
the definition of Selten (1980) and Samuelson (1998) but in those papers was not analyzed the
evolutionary dynamics of such a population. More close to our argument is the work of Fishman
(2008), nevertheless our approach is quite different, since by symmetrizing the game we get the
advantage of generalizing the standard definition of ESS and its relationship existing between
stability of the dynamical equilibria corresponding to the replicator dynamics, and their strategic
stability for the case of asymmetric games. Note that, much of the topic of this paper can be
generalized for cases of finite asymmetric populations on n > 2, however to simplify notation,
generally, we shall consider the case of two-player asymmetric populations.

To sum up, our approach allow us to characterize in an unified way the main characteristics
of the ESS for the asymmetric cases. Following this approach it is straightforward to see that in
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asymmetric games, a strategic profile is an ESS if and only if is a strict Nash equilibrium (see
Balkenborg and Schlag (1995), (2007); Samuelson (1998); Selten (1980); Weibull (1995)) and that
every ESS is an asymptotically stable steady state of the replicator dynamic (see Retchkiman
(2007); Samuelson and Zhang (1992)) and other results.

The paper is organized as follows. Section 2 draws the notation and basic definitions to set up
the baseline model, namely a two-player asymmetric normal-form game. Section 3 defines the ESS
for our model. In section 4, we introduce the symmetric version of an asymmetric two population
game. Section 5 studies the dynamics from our model. Section 6 states the relationships between
ESS, NE and SS. Section 7 draws some concluding remarks.

2 The model

Let us denote by G a normal-form (strategic) game with a player set composed by individuals that
comprise τ populations, namely residents, R, and migrants, M : τ = {R, M}. Each population
splits in different clubs denoted by nτ

i and i = 1, ..., kτ , i.e. (nR
1 , ..., nR

kR
) and (nM

1 , ..., nM
kM

). The
split depends on the strategy agents play or the behavior that agents follow. Strategies are in
correspondence with the clubs, individuals belonging to the nτ

i club will be called ni−strategists.
Thus, the set Sτ of pure strategies are: SR =

{
nR

1 , ..., nR
k

}
and SM =

{
nM

1 , ..., nM
k

}
. Individuals

belong only to one club in each period of time, but they can move from one club to another at
the beginning of every period.

For each population τ ∈ {M, R} we represent the set of mixed strategies by:

∆τ =



x ∈ Rkτ :

kτ∑

j=1

xj = 1, xj ≥ 0, j = 1, ..., ni





Note that, a profile distribution x = (x1, ..., xkτ ) ∈ ∆τ can bee seen as the individual behavior
of a player spending a part of his time, given by xj , in the nj−club, hence x represents the
population state as the vector of individuals’ share belonging to each club i = 1, ..., kτ ∀ τ ∈
{R,M}.

The normal form representation for our described game, is given by the next matrix payoff:

R � M y1 · · · ykM

x1 a11, b11 · · · a1kM
, b1kM

...
... · · · ...

xkR
akR1, bkR1 · · · akRkM

, bkRkM

(1)

where aij denotes the payoff of an i−strategist from population R playing against a j−strategist
from population M . Conversely for bij from M to R.

The matching between individuals from different population is given in a random way. We use
the notation:

ER(nR
i | y) =

kM∑

j=1

aijyj , ∀ nR
i ∈ SR
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to represent the i−strategist’s expected payoff who belongs to the ni−club from population R given
that the fitness of strategists conform the clubs’ distribution in y for the opposite population, M .

Analogously, the expected payoff of the i−strategist belonging to ni−club from population M
is given by:

EM (nM
i /x) =

kR∑

j=1

bijxj , ∀nM
i ∈ SM

where x is the clubs’ distribution for the other population, R. Rational individuals follow the
strategic profile that maximize the expected payoffs.

A more general case with n different populations can be considered by extending this model. In
this case we consider a set of n populations indexed by τ = {p1, ..., pn} and each population splits
in mτ clubs. Consequently, if y = (yp1 , ..., ypm) is the vector of distributions of the populations
over its own clubs, i.e.: yps = (yps

1 , ...yps
ms) ∈ ∆s, then yps

h represents the percentage of individuals
of the population ps belonging to the npi

h club, or equivalently, the percentage of individuals in
the population ps, following the h pure strategy or behavior, 1 ≤ h ≤ ns. So, the expected value
for each strategist, in each population pi ∈ τ will be denoted by:

EPi(npi

h /y) =
∑

1≤js≤ms ∀ s 6=i

bihij1...jnyp1
j1

...y
pi−1

ji−1
y

pi+1

ji+1
...ypn

jn

where bihij1...jn denotes the payoff of an h pure strategist from the population pi, given that the
individuals from the population ps 6= pi are playing according with js, s 6= i, pure strategy or
behavior. However, without loss of generality, to simplify notation we shall work on the case of a
two-population normal form games.

3 The asymmetric game and the definition of ESS
Consider the above two-population normal form game:

G = {(τ ∈ {R, M}) , Sτ , (A = (aij) , B = (bij))} (2)

where each population splits into clubs denoted by nτ
i , ∀ τ = {R,M} and i = 1, ..., kτ . Hence:

• The population of residents is the set: R =
⋃kR

i=1 nR
i , and ∀ h 6= j nR

h

⋂
nR

j = ∅.

• The population of migrants is the set: M =
⋃kM

i=1 nM
i , and ∀ h 6= j nM

h

⋂
nM

j = ∅.

Let p ∈ ∆τ be the profile distribution of individuals’ behavior from population R, in a given
period of time t0, and that in the same time, the profile distribution of individuals’ behavior in
population M is q ∈ ∆τ . Assume that in a post-period of time t1 > t0 a small mutation affects
the individuals’ behavior from population M . Hence, the profile distribution from population M
after the mutation, is denoted by the offspring:

qε = ((1− ε)q + εq̄,
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which is called the fitness of the post-entry population. Analogously, the profile distribution from
population R after suffering a small mutation is:

pε = ((1− ε)p + εp̄.

Now, we can state the next definition:

Definition 1 Let (p∗, q∗) ∈ ∆R × ∆M be a profile of mixed strategies. We say that the profile
(p∗, q∗) is an ESS for an asymmetric two-population normal form game, if for each (p̄, q̄) 6=
(p∗, q∗) ∈ ∆R ×∆M there exists ε̄ such that:

1) ER(p∗/q∗ε ) > ER(p̄/q∗ε ) and

2) EM (q∗/p∗ε ) > EM (q̄/p∗ε ),
(3)

for all ε, 0 < ε ≤ ε̄, where p∗ε = (1− ε)p∗+ εp̄ and q∗ε = (1− ε)q∗+ εq̄, are the respective post-entry
populations.

So, individuals’ behavior who adopt an ESS brings more offspring (with higher fitness) than
the mutant individuals’ behavior from the post-entry population.

Definition 1 can be extended to the case of multipopulation models. For such cases we consider
x = (xp1 , ..., xpm) such that xpi ∈ ∆i, i = 1, ..., m is a distribution of probability over the set of
clubs or pure strategies, for each population. So, x∗ is an ESS if and only if for each x̄ 6= x∗, there
exist an εq̄ > 0 such that the following inequalities hold:

Epi(x∗pi/x∗ε ) > Epi(x̄pi/x∗ε ), ∀ pi ∈ τ , and 0 < ε < εx̄

where x∗ε = (1− ε)x∗ + εx̄.
The following theorem characterizes the ESS in terms of Nash equilibria (see, for instance,

Swinkels J., 1992).

Proposition 1 A profile x is ESS if and only if x is a strict Nash equilibrium.

The evolutive properties of the ESS and its relationship with the set of Nash equilibria and
the stationary states (SS) of the replicator dynamics for the case of symmetric games are well
known (see Hofbauer and Sigmund (1998); Weibull (1995)). Then, with the purpose of analyzing
the dynamical properties of the ESS, let us introduce the symmetric (one-population) version for
the asymmetric two-population game, G.

4 The symmetrized game, the NE and ESS
Consider, the asymmetric two-population normal form game G defined by (2), where each popula-
tion splits into clubs nR

1 , ..., nR
kR

and nM
1 , ..., mM

kM
and the payoffs matrix are A and B, respectively.

Its corresponding symmetrized one-population game is defined as:
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Definition 2 Let G be an asymmetric game defined by (2), consider:

1. The big population: P = R ∪M .

2. Individuals from the big population P face their own population.

3. Let N =
{

nR
1 , ..., nR

kR
, nM

1 , ..., mM
kM

}
be the set of pure strategy for P.

4. The matrix payoff for the big population P is:

Π =
[

0 A
BT 0

]
(4)

Hence, the numbered list item 1-4 characterizes the symmetrized game version Gs = {P , N , Π}
of the asymmetric game G.

Much of the work on evolution has been studied for the case of a single homogeneous population
playing a symmetric game like Gs. For this reason, our interest is to use the well know properties
of the symmetric games, and so to obtain the main characteristics of the ESS in an asymmetric
(original) games. This will be doing by using the symmetrized version of the asymmetric game.
Then, for each asymmetric two-population game G, there exists a corresponding symmetric version
as defined by Gs. It is worth to note that, these two versions are not equivalent in several aspects,1

but as we shall show every Nash equilibrium of the asymmetric game is a Nash equilibrium of
the symmetric version. Hence, our purpose is to characterize the main dynamics properties of the
ESS, and to do this we do not need a full equivalence between these two versions.

Let us consider the strategic profile (p, q) ∈ ∆p×∆q, the profile distribution x = (x1, ..., xkR+kM
)

verifying the following identities:

xi =





pi
|R|

|R|+|M | if 1 ≤ i ≤ kR

qi
|M |

|R|+|M | if kR < i ≤ kR + kM

(5)

(where by |·| we denote the cardinality on the sets R and M defining the corresponding mixed
strategy for the symmetric version Gs.

Proposition 2 For each strategic profile (p, q) ∈ ∆R×∆M , there exists a mixed strategy x ∈ ∆P

of the corresponding one-population game, and reciprocally.

Proof. Let (p, q) ∈ ∆R ×∆M be a strategic profile for the asymmetric game. Consider x ∈ ∆P

given by the expression (5), i.e. x =
( |R|
|M |+|R|p, |M |

|M |+|R|q
)
. Thus, x is a mixed strategy for the

symmetric game. To see the reciprocal, suppose that x ∈ ∆P and consider the above equalities
1For instance, for expected payoffs not invariant with respect to positive affine transformations, i.e. substracting

a sufficiently large constant from all payoffs in the asymmetric game; then the equilibria of the asymmetric game
are unchanged, but in the symmetric version all symmetric strategy combinations become equilibria.
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but in the opposite sense, since xi = |Ri|
|R|+|M | if 1 ≤ i ≤ kR and xi = |Mi|

|R|+|M | if kR < i ≤ kR + kM

where |Ri| represents the cardinality of individuals in the nR
i club, i = 1, ..., kR, analogously for

|Mi|, i = 1, ..., kM . So, pi = |R|+|M |
|R| xi, i = 1, ..., kR and qi = |R|+|M |

|M | xi, i = kR + 1, ..., kR + kM .
Now, let us denote by Bτ (z) the set of best replies for the population τ ∈ {M, R}, where the

profile distribution over the clubs in the opposite population τ ′ 6= τ is given by z, and τ ′ ∈ {M, R}.
The following propositions offer an insight about the relationship between the set of NE and

the set of ESS for asymmetric games and their respective symmetric versions.

Proposition 3 If the strategic profile (p∗, q∗) is a NE of the original asymmetric two-population
game, then the corresponding x∗ defined by the expression (5) is the symmetric NE in the corre-
sponding symmetric version.

Proof. Suppose that the profile (p∗, q∗) is aNE of the asymmetric two-population game. Let x∗ =
(x∗1, ..., x

∗
kM+kR

) be the corresponding strategy in the corresponding symmetrized one-population
game (Definition 2). Then, note that p∗ ∈ BR(q∗) and q∗ ∈ BM (p∗) implies that x∗Px∗ ≥ yPx∗

for all y ∈ ∆P . To see this, consider that for each y ∈ ∆P the following relations:

pi = |R|+|M |
|R| yi if 1 ≤ i ≤ kR,

qi−nR
k

= |R|+|M |
|M | yi if (kR + 1) ≤ i ≤ kR + kM

thus, p = (p1, ...pkR
) ∈ ∆R and q = (q1, ..., qkM

) ∈ ∆M .

yPx∗ =
|M ||R|

(|M |+ |R|)2
(
qBT p∗ + p∗Aq

) ≤ |M ||R|
(|M |+ |R|)2

(
q∗BT p∗ + p∗Aq∗

)
= x∗Px∗.

Proposition 4 If the profile (p∗, q∗) a strict Nash equilibrium for the asymmetric two population
game, then the corresponding x∗ is a strict Nash equilibrium for the symmetric version.

Proof. Let (p∗, q∗) be a strict Nash equilibrium for the asymmetric two population game and let
x∗ the corresponding profile for the symmetric version. Assume that there there exist y 6= x∗ ∈ ∆p,
such that yΠx∗ = x∗Πx∗ then, using proposition 2, there exist p 6= p∗ such that pAq∗ ≥ p∗Aq∗ or,
there exist q 6= q∗ such that p∗Bq ≥ p∗Bq, contradicting our assumption.

Proposition 5 If the profile (p∗, q∗) is an ESS for the asymmetric two-population game, then
the corresponding x∗ is an ESS for the symmetric version.

Proof. Let (p∗, q∗) be an ESS, then by proposition (1) is a strict Nash equilibrium. Now,
from proposition (4) the corresponding strategy x∗ is a strict Nash equilibrium for the symmetric
version, and then ESS.

Remark 1 It is straightforward to see that the reciprocal of this proposition does not hold.

Recall that, the symmetric version and the original asymmetric game are not fully equivalent,
but our main interest is to characterize the dynamical properties of the solutions for asymmetric
games. So, as long as the solutions of an asymmetric game are still solutions of the symmetric
version, we can use this version with this purpose.

6



5 The dynamics of the model

Our main point in this section is to analyze the evolutionary dynamics of two populations engaged
in an asymmetric environment when the inhabitants follow a rational behavior. The symmetric
version of the asymmetric game allows to characterize the main dynamical properties of the
asymmetric ESS, because these properties are well known in this case.

Consider the asymmetric two-population normal form game, G, represented by the list num-
bered (2). Let us denote the following:

1. Let nτ
i (t) be the number of individuals at time t belonging to the i−club in the population

τ .

2. Let pi(t) the share of individuals in the i−club from the population R and analogously qi(t)
the share of individuals in the i−club from the population M , at time t. Hence,

pi(t) =
nR

i

|R|

and

qi(t) =
nM

i

|M |
3. Hence, (p(t), q(t)) is the profile distribution (or population state) at time t from each pop-

ulation R and M respectively. Then, p(t) ∈ ∆R and analogously, q(t) ∈ ∆M .

The members of the i− th club from population τ , are called i−strategists in the population
τ ∈ {R,M}. Rational individuals choose strategies to maximize their expected payoffs. Certainly
this set of maximizing strategies depends on the strategies displayed by the other population. Let
z0 = (p0, q0) be the strategic profile at time t = 0 for the asymmetric two-population game G.
According to the rationality it follows that:

ṗi = ((eR
i − p)Aq)pi, i = 1, ..., kR

q̇i = ((eM
i − q)BT p))qi, i = 1, ..., kM ,

(6)

where eR
i is the i−canonical vector in <R and eM

i is the canonical i−th vector in the <M . System
(6) represents the clubs’ evolution for each population. For the system (6), a solution of the form:
ξ(t, z0) = (ξ1(t, z0), ξ2(t, z0)) represents the evolution of the population states with initial state
given by z0.

From the system (6) it is straightforward to see that in each time t the club of the i−strategists
in each population increases if and only if the expected payoff of the i−strategy is greater than
the average payoff, and reciprocally.

Note that, for each pair (p(t), q(t)) in G, there exists a corresponding mixed strategy x(t) in
the symmetric version Gs given by the equivalence (5).
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Then, the dynamical system (6) has a corresponding dynamical system, namely the replicator
dynamics, (see Taylor and Jonker, 1978) of the symmetric one-population game given by:

ẋi = ((ei − x)Px)xi =





((eM
i − q)BT p)qi if 1 ≤ i ≤ kR

((eR
i − p)Aq)pi if (kR + 1) ≤ i ≤ kR + kM

(7)

where ei is the i− th canonical vector in <kR+kM .
To study the relationship betweenNE , ESS and SS for the system (6) of the asymmetric game,

G, can be done by means of analyzing the dynamics corresponding to the symmetric version game,
Gs, from its replicator dynamics (7).

The following propositions are straightforward from the respective definitions:

Proposition 6 If a pair (p̄, q̄) is a stationary state for the system (6) then the corresponding x̄
is a stationary state for the dynamical system (7).

Proposition 7 Every strictly positive stationary state of the dynamical system (6) is a NE for
the corresponding asymmetric two-population game.

Proposition 8 Every NE of an asymmetric two-population game is a stationary state for its
corresponding dynamical system given by (6).

Hence, we can conclude that the set of NE of an asymmetric two-population game is a subset
of the set SS corresponding to the dynamical system (6).

Corollary 1 Every NE of a two-population game is a stationary state for the corresponding
dynamical system (7).

Proof. By propositions (8) and (6) the corollary follows.

6 Evolutionarily stable strategies and Liapunov’s stability

Hofbauer and Sigmund (1988) pointed out a proof that for non-homogeneous asymmetric two
population games, interior points cannot be asymptotically stable steady states of the replicator
dynamics. On the other hand, we know that the concepts of strict Nash equilibrium and ESS are
equivalents in symmetric games. We shall prove using the symmetric version of an asymmetric
game, that every ESS is an asymptotically stable steady state of the replicator dynamics.

Let us give a proper analysis from our model. We denote by AS the set of asymptotically
stable steady states.

From the definition of ESS (Definition 1) in the case of an asymmetric two-population game
and from the propositions (3), (6) and (8), and using the well known relations between ESS, NE
and SS for the symmetric cases (see Weibull (1995)), the following relationship holds for every
asymmetric two-population game:

ESS ⊆ AS, (8)
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and
NE ⊆ SS. (9)

Proposition 9 For an asymmetric two-population game it follows that if (p∗, q∗) is an asymp-
totically stable steady state corresponding to the dynamical system (6), then it is a NE.

Proof. If (p∗, q∗) ∈ AS for the dynamical system (6) then it is stationary state. If p∗ >> 0
and q∗ >> 0 then from Proposition (7) it follows that (p∗, q∗) is a NE for the asymmetric game.
Now we consider the case where some strategy is absent in p∗ or in q∗. Without lost of generality
assume that p∗j = 0. This means that actually there are not individuals in the nR

j club. Suppose
now that (p∗, q∗) is not a NE . Then there exists some pure strategy j 6∈ supp(p∗) such that
ER(eR

j /q∗) = eR
j Aq∗ > p∗Aq∗ = ER(p∗/q∗). Assume that a perturbation affects the distribution

p∗ and that in the population R some j−strategist appear. So, the post-entry population in time
t is pε(t) = (1− ε(t))p∗ + ε(t)eR

j . Substituting in the j − th differential equation in the system (6)
we obtain:

ṗεj = ε̇ = [(eR
j − pε)Aq∗]ε. (10)

Let us now define F (ε) = (eR
j −pε)Aq∗. Note that F (0) = (eR

j −p∗)Aq∗ and F ′(0) = (p∗− eR
j )Aq∗.

So, the Taylor polynomial is F (ε) = F (0) + F ′(0)ε + 0(ε2). Now considering (in equation (10)),
the first order approximation it follows that:

ε̇ = [(eR
j − p∗)Aq∗]ε. (11)

So, in the population R the members in the nR
j club increase, contradicting our claim that (p∗, q∗)

is an asymptotically stable steady state with nR
j = 0.

We turn now to the connection between ESS and the replicator dynamics in an asymmetric
game. We will use the following proposition, see Taylor and Jonker 1978:

Proposition 10 For symmetric homogeneous population game every ESS is an asymptotically
stable steady state of the replicator dynamics.

The following corollary holds:

Corollary 2 For the asymmetric two-population game we obtain the following chain of inclusions:

ESS ⊆ AS ⊆ NE ⊆ SS.

Proof. Let (p∗, q∗) be an ESS for an asymmetric game and let x∗ be the corresponding strategic
profile in its symmetric version. So, by Proposition 1, it follows that (p∗, q∗) is a strict Nash
equilibrium. By Proposition 4, it follows that the symmetric strategic profile of every strict Nash
equilibrium of an asymmetric game is an strict NE . Then x∗ is an strict Nash equilibrium for
the symmetric version, and then x∗ is a ESS. Now, by Proposition 10, it follows that x∗ is an
asymptotically stable steady state of the replicator dynamics. Then, (p∗q∗) is an asymptotically
stable steady state for the asymmetric version, so being a NE .
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Bomze, I. (1986) shows that every asymptotically stable steady state in the homogeneous
population replicator dynamic corresponds to a Nash equilibrium that is trembling hand. However,
from our model using the symmetric version (Definition 2) of a non-homogeneous asymmetric
n−population the following proposition follows:

Proposition 11 Every ESS of a non-homogeneous asymmetric n−population game is trembling
hand and isolate.

Proof. Let (p∗, q∗) be an ESS for an asymmetric game and let x∗ be the corresponding strategic
profile in its symmetric version. By Corollary 2 it follows that every ESS is asymptotically stable
for the symmetric version. So, x∗ is asymptotically stable steady state for the symmetric version.
Now, taking account the above result due to Bomze (1986), it follows that x∗ is trembling hand
and isolate equilibrium, and so (p∗, q∗) verifies this property in the original asymmetric game.

7 Concluding remarks

In this paper, we extended the definition of evolutionarily stable strategies (ESS) of symmetric
games to asymmetric two-population games. We made this by taking as the strategy space for
the symmetrized game the union of strategies from the two-population asymmetric game and
assigning zero payoff to all strategy combinations that belong to the same player position in the
asymmetric game. With this symmetrized game, we show again some well-known relationships
between static and dynamic stability notions.

Hence, evolutionary dynamics in a two-population asymmetric game can be analyzed using
the well known properties of the replicator dynamic corresponding to the symmetric version of
this game. This fact, may have interest for economic theory, or social analysis, where asymmetric
games are useful to analyze the behavior of two populations engaged in non-cooperative games
such as, buyers and suppliers, firms and workers or residents and migrants populations interacting
in a given country or economy. The reference of the symmetric version from an asymmetric
two-population games allow us to generalize the results given in the existing literature.
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