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ABSTRACT — The increased penetration of photovoltaic 

(PV) generation introduces new challenges for the stability of 

electricity grids. In this work, machine learning (ML) techniques 

were implemented to forecast PV power production up to 1-hour 

ahead with a 10-minute granularity. Three different input 

combinations were utilised: Model 1 (M1) using the AC power 

only, Model 2 (M2) using the elevation angle (α), azimuth angle 

(φ) and AC power and Model 3 (M3) using the AC power, α, φ 

and satellite observations (SAT) aiming to improve the 

forecasting performance. Historical PV operational data are used 

for the training and validation stages of intra-hour PV forecasting 

models for time t + 10 to 60 minutes ahead. The results obtained 

over the test set period (15% of the data, i.e. ≈ 110 days) have 

shown that M2 exhibits the best-performance with a normalised 

root mean square error (nRMSE) varying between 7.6% to 

14.2%, whereas the skill score (SS) ranged between 6.5% and 

30.9% for the 10- to 60-minute ahead respectively.  

I. INTRODUCTION 

Accurate PV production forecasting can mitigate power 

quality effects posed by large shares of distributed PV systems 

through active grid management. Therefore, it is an important 

feature that can assist utilities and plant operators for energy 

management and dispatch. More specifically, short-term PV 

production forecasting (intra-hour) is necessary for power 

ramp and voltage flicker prediction as well as control 

operations and real-time energy dispatch. On the other hand, 

mid-term PV production forecasting (intra-day and day-ahead) 

is used for matching the demand unit commitment and 

production monitoring in order to control voltage and 

frequency levels and reduce the back-up reserves. 

Parametric models for PV production forecasting have 

already been developed [1], [2], but their ability to forecast the 

power output of PV systems is not a straightforward process 

since information of the system characteristics and behaviour 

should be provided. Therefore, an important share of the 

research is devoted to the development of flexible prediction 

techniques using non-parametric models based on machine 

learning algorithms [3]–[6]. In order to train a PV power 

forecasting model, weather classification and machine learning 

techniques may be performed [7], [8]. Moreover, models that 

combine a physical model coupled to artificial neural networks 

(ANNs) have started emerging [5], [8]. Although a significant 

number of PV power forecasting tools have been developed, 

the challenge to provide a global and validated (against large 

scale data-sets) model for different PV plants remains 

unsolved. Additionally, to improve the accuracy of the PV 

power prediction, adaptive methods that can capture system 

information and behaviour without the need of datasheet and 

installation information must be employed. This is crucial 

because a large proportion of PV systems includes 

decentralized rooftop installations where knowledge of system 

information is not always available.  

Furthermore, system behaviour can be estimated by 

processing recent PV operational data-sets using the classical 

approach of the feedforward neural network (FFNN). This 

algorithm is widely used in other fields for prediction, 

modelling and classification purposes. The classical approach 

of the FFNN with given inputs, a hidden layer and an output 

layer of linear and non-linear activation functions can be 

viewed as a convenient way to predict PV power output. 

FFNN can be trained to develop relational weighted chains 

between internal nodes in order to overcome the limitations of 

traditional methods in solving complex problems, which can 

be modelled through a supervised learning technique based on 

historical data. Because of this chain of relationships, 

theoretically, multi-layered neural networks can be universal 

approximators and have a tremendous potential to perform any 

nonlinear mapping based on historical time-series [9]. In 

addition, ANNs are efficient for online (i.e. real-time) training 

due to their capability of reflecting the information of new 

instances on a model by changing the weight values only.  

In this work, a baseline approach is investigated for intra-

hour (i.e. up to 1-hour ahead) PV power forecasting by 

utilising ANNs. Two-year data from a 50 MW PV power plant 

located in Uruguay (Salto) were used for training and testing 

the forecasting model. A forecasting performance assessment 

was also conducted in order to obtain a baseline performance 

level for PV power forecasting in north-western Uruguay. It is 

important to mention that the night hours are filtered out from 

the data. 

 

 

 

 

 



 

II. METHODOLOGY 

A. Neural Networks 

The strength of ANN models relies on their ability to 

approximate non-linear functions through a supervised 

learning process. The training step is formulated in respect to 

minimising a loss function. The error term accounts for the 

discrepancy between the produced output of the network and 

the desired output. This is approximated using common 

statistical metrics such as the mean square error (MSE). In a 

multi-layer network, minimising the error in the training phase 

is achieved with the back-propagation (BP) algorithm, which 

is used to calculate the error contribution of each neuron after 

a batch of data is distributed back from the output through the 

network layers [10]. In addition, a regularisation term is used 

in the cost function to prevent overfitting, by controlling the 

effective complexity of the neural network. The regularisation 

of the designed networks in this study was performed by 

adding a penalty equal to the L2-norm of the weights, in order 

to reduce the value of the weights by the same factor [11]. 

 

B. Model selection and training 

This model was selected through a series of validation steps 

performed by varying the topology (hyperparameters, 

combinations of input parameters and sizes) and architectural 

design (optimal hidden layers, neurons, iterations and learning 

function) of the ANN model. Here, the ANN was trained and 

validated using the historical PV production data-set. 

Specifically, three models were tested with different input 

combinations, namely, Model 1 (M1) with the AC power as a 

sole input, Model 2 (M2) with the elevation angle (α), azimuth 

angle (φ) and AC power and Model 3 (M3) with the AC 

power, α, φ and satellite information (SAT) as inputs to the 

intra-hour PV power forecasting models. Different ANN 

models (weights) were trained to forecast the PV generation 

(output parameter) up to t + 10 to 60 minutes ahead while the 

input parameters were utilised at time t. Figure 1 demonstrates 

the training phase of the ANN model. 

 

 
 

Fig. 1. Training procedure of the intra-hour PV power forecasting 

model.  
 

The annual data-set was divided into three subsets: 70% for 

training, 15% for validation and 15% for testing. The training 

and validation sets were evaluated in a way to allow the 

implementation of the best-performing model. The weights of 

the neural network were obtained by varying the number of 

iterations in order to prevent overfitting. The validation set 

was used to evaluate the performance of the models. 

C. Performance Metrics 

The forecasting performance accuracy is assessed by 

utilising statistical metrics such as the the root mean square 

error (RMSE) that describes the standard deviation of the 

prediction errors, the normalised RMSE (nRMSE). 

Additionally, the mean bias error (MBE) was utilised to 

measure the bias between the forecasted and observed data and 

the skill score (SS) that measures the superiority over a 

reference model (for this study the persistence model (PM) 

was used as the reference model). The metrics used are 

demonstrated as follows: 
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where yi,observed and yi,forecasted, is the observed and forecasted 

AC power respectively, Pnominal is the nominal capacity of the 

PV system  (i.e. 50 MW)  and RMSEforecast and RMSEreference 

are the root mean square errors of the predicted and reference 

models (predictions of the PM). 

IV. RESULTS 

The development of the PV generation forecasting was done 

using a five-neuron for M1 and M2 and six-neurons for M3 

ANN topology, which is a good trade-off between accuracy 

and simplicity, as demonstrated in previous studies [11]. The 

network interface diagrams (NID) for the three models are 

demonstrated in Fig. 2. 

 

 
Fig. 2. Network interface diagrams (NID) of: (a) M1, (b) M2 and (c) 

M3. 



 

Table I and II summarise the forecasting accuracy of the 

models at different intra-hour forecasting horizons over the 

period of the test set. The best-performing input combination 

was exhibited by M2 with an nRMSE varying between 7.6% 

to 14.2% and an SS of 6.5% to 30.9%. Additionally, the SS 

results of M2 demonstrated interesting improvements from 10 

to 60 minutes when compared with the persistence model 

(PM). 

 

TABLE I 
STATISTICAL ANALYSIS OF THE RESULTS (NRMSE). 

Forecasts 

(Minutes) 

nRMSE (%) 

M1 M2 M3 

10 8.1 7.6 7.5 

20 11.4 10.2 10.9 

30 13.7 11.6 13.1 

40 15.8 12.6 13.6 

50 17.7 13.4 13.9 

60 19.6 14.2 15.4 

 

TABLE II 
STATISTICAL ANALYSIS OF THE RESULTS (SKILL SCORE). 

Forecasts 

(Minutes) 

SS (%) 

M1 M2 M3 

10 1.0 6.5 7.6 

20 1.6 12.1 5.2 

30 2.2 17.4 6.1 

40 3.0 22.5 16.2 

50 3.9 27.3 24.3 

60 5.0 30.9 25.1 

 

Furthermore, Table III summarises the results of the MBE, 

demonstrating an MBE ranging from -0.1 to -0.4 for M2, 

which was the model with the lowest average MBE. However, 

all three models exhibited low MBE for 10 to 60 minutes 

forecasting, indicating no biases between the forecasted and 

the observed data. 

 

TABLE III 
STATISTICAL ANALYSIS OF THE RESULTS (MBE). 

Forecasts 

(Minutes) 

MBE (%) 

M1 M2 M3 

10 -0.1 -0.1 -0.4 

20 -0.2 -0.1 -0.9 

30 -0.3 -0.2 -1.2 

40 -0.4 -0.3 -1.0 

50 -0.5 -0.4 -1.2 

60 -0.6 -0.4 -1.1 

 

In addition, based on the results of Table I, II and III, the 

best-performing model was M2. Fig. 3 demonstrates a 

histogram of the error distribution of 10, 30 and 60 minutes 

forecasts. As could be observed, the major amount of error is 

at the range of zero. However, moving from 10 to 60 minutes 

forecasts the error distribution is scattered through largest 

numbers.  

 

 
Fig. 3. Error histogram of: (a) 10 minutes, (b) 30 minutes and (c) 60 

minutes forecasts. The histogram demonstrated a scattered variation 

moving from 10 to 60 minute forecasting. 

 

Additionally, Fig. 4 demonstrates the actual against the 

forecasted AC power for the 10 to 60 minutes forecasts for the 

M2 model (as the best-performing model) (Fig. 4a to Fig 4c 

respectively). All three forecasts captured the systems 

behaviour. For days with high irradiance, the M2 model could 

accurately forecast AC power. However, when there are 

fluctuations, the model still requires some improvements. 

 

 
Fig. 4. Observed against forecasted AC power for: (a) 10 minutes, (b) 

30 minutes and (c) 60 minutes forecasts. The night hours are filtered 

out. 



 

V. CONCLUSIONS  

In this study, an ANN was developed in order to implement 

a non-parametric intra-hour PV power generation forecasting 

model. Two input combinations were tested and trained with a 

random sample 70:15:15% of train, validation and test set 

approach. The models were adjusted and validated against real 

AC power measurements at a 50 MW PV power plant in Salto, 

Uruguay.  

The results showed that the best-performing input 

combinations were exhibited by M2 (taking into account the a, 

φ and AC power) with an nRMSE varying between 7.6% to 

14.2% and an SS of 6.5% to 30.9% compared to M1 and M3. 

Additionally, the SS results of M2 demonstrated 

improvements from 10 to 60 minutes when compared with the 

persistence model (PM). In addition, the MBE results for all 

three models demonstrated that no biases exists between the 

forecasted and the observed data.  

The plot of error histogram of M2 (best-performing model) 

for 10, 30 and 60 minute forecasts demonstrated that the major  

amount of error is in the range of 0. However moving from 10 

to 60 minutes ahead forecasts the error distribution is scattered 

to largest numbers. 

Finally, when the AC power plot of the observed against the 

forecasted data is demonstrated for M2 (for 10, 30 and 60 

minutes forecasting), the model was accurately recorded the 

system’s behaviour for clear sky days. However, when 

fluctuations appeared to the irradiance, the model still requires 

some improvements. 
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