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RESUMEN

Sea M una variedad compacta y m un volumen en M . Denotamos
Diffrm(M) el conjunto de los difeomorfismos Cr-conservativos en M . Una fo-
liacion es minimal si toda hoja es densa en M . En esta tesis probaremos que
si M tiene dimensión tres, entonces genéricamente en Diff1

m(M3), la existencia
de una foliación invariante, minimal y expansora implica estabilidad Bernoulli.

También damos condiciones para garantizar la persistencia de una foliación
minimal expansora de una variedad M de cualquier dimensión.

Palabras claves:
Estabilidad Ergódica, Estabilidad Bernoulli, Foliación minimal, No-
uniformemente hiperbólico.

viii



ABSTRACT

Let M be a smooth compact manifold and let m be a smooth volume
measure. We denote by Diffrm(M) the set of Cr-conservative diffeomorphisms.
A foliation is minimal if every leaf is dense in M . In this work, we prove that
is M has dimension three, then generically in Diff1

m(M3), the existence of a
minimal expanding invariant foliation implies stable Bernoulliness.

We also find conditions under which a minimal expanding foliation persists
and is minimal for a manifold M of any dimension.

Keywords:
Stable ergodicity, Stable Bernoulliness, Minimal foliation, Non-uniformly
hyperbolic.
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Chapter 1

Introduction

1.1 Historical context and presentation of the

results

LetM be a smooth compact manifold and let m be a smooth volume measure.
A diffeomorphism f : M →M is ergodic if the Birkhoff’s limits

ϕ̃(x) = limn→∞
1

n

n−1∑
j=0

ϕ ◦ f j(x)

are constants for m-almost every x ∈ M for all ϕ : M → R continuous func-
tion.

In 1939 E. Hopf [Hop39] proved that the geodesic flow of a surface with
negative sectional curvature is ergodic with respect to the Liouville measure.
This result, which is now called the Hopf argument, was generalized by D.
Anosov [Ano69], who in the late sixties showed that conservative C2-Anosov
diffeomorphisms (and flows) are C1 stably ergodic. That is, given a C2 conser-
vative diffeomorphism there exists U a C1 neighborhood of it such that every
conservative C2 element in U is ergodic. Similarly for the case of flows. The
crucial tool for to do it was the absolute continuity of stable and unstable due
to D. Anosov and Ya. Sinai [AS67]. It is not known yet whether C1-Anosov
diffeomorphism are ergodic.
Until 1993, Anosov diffeomorphisms were the only known conservative exam-
ples of stably ergodic diffeomorphisms, but Grayson, Pugh and Shub showed

1



that the time-one map of the geodesic flow of a surface of negative curvature
is stably ergodic [GPS94].

In 1995, Pugh and Shub conjectured that partially hyperbolic diffeomor-
phism are generically stably ergodic, i.e., in a certain way, a little hyperbolicity
goes a long way toward guaranteeing stable ergodicity. The Pugh-Shub con-
jecture was proposed in the International Congress on Dynamical Systems,
held in Montevideo in 1995, in the memory of Ricardo Mañé [PS96]. This
conjecture has been very active and it continues to be.

The partially hyperbolic diffeomorphisms are those diffeomorphisms such
that the tangent bundle TM splits in three Df -invariant subbundles Eu ⊕
Ec ⊕ Es, where Eu is expanding (called the unstable bundle), Es is contract-
ing (stable bundle) and Ec is intermediate (central bundle). See [HHTU11] for
the precise definition.

The Pugh-Shub conjecture was proved by F. Rodríguez Hertz, J. Rodríguez
Hertz and R. Ures [RHRHU08] when the central subbundle is one dimensional
and also, for the C1 topology, when the central subbundle is two dimensional
by the same authors and A. Tahzibi [HHTU11].

In this context, it was natural to ask if the stable ergodicity implies partial
hyperbolicity. A. Tahzibi in his Ph.D. Thesis [Tah04] gave an example of a
stably ergodic diffeomorphims which is not partially hyperbolic. The map,
a diffeomorphism of T 4, was introduced before by Bonatti-Viana in [BV00].
Even though the map is not partially hyperbolic it has a dominated splitting,
this is: the tangent bundle over M splits into two subbundles TM = E ⊕ F
such that given any x ∈M , any unitary vectors vE ∈ E(x) and vF ∈ F (x):

‖ DfN(x)(vE) ‖≤ 1

2
‖ DfN(x)(vF ) ‖

for some N > 0 independent of x.

Recently the Pugh-Shub conjecture was proved in the C1-topology for
any dimension of central subbundle by A. Avila, S. Crovisier y A. Wilkin-
son [ACW17].
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The main objective in this work will be to show that “a little hyperbolicity
goes a long way toward guaranteeing stable ergodicity”. To state our main
results, let us recall some definitions.

A foliation W is minimal if every leaf W (x) of W is dense in M . An f -
invariant foliation W is contracting if ‖Df(x)|TW‖ < 1 for every x ∈ M . An
f -invariant foliation is expanding if it is contracting for f−1.

We say that a diffeomorphism f ∈ Diff1
m(M) is stably ergodic if there exists

a C1-neighborhood U(f) ⊂ Diff1
m(M) of f such that all g ∈ U(f) ∩ Diff2

m(M)

are ergodic. Note that our definition of stable ergodicity does not imply
that the diffeomorphism itself is ergodic in case it is only C1. However, if
f ∈ Diff2

m(M) then f will be both stably ergodic and ergodic.

A diffeomorphism f ∈ Diff1
m(M) is non-uniformly hyperbolic if all its Lya-

punov exponents are non-zero m-almost everywhere, that is if for m-almost
every x, and every unit vector v ∈ TxM

lim sup
n→∞

1

n
log ‖Dfn(x)v‖ 6= 0.

A diffeomorphism f ∈ Diff1
m(M) is stably non-uniformly hyperbolic if there

exists a neighborhood U of f in Diff1
m(M) such that all diffeomorphisms g in

U ∩Diff2
m(M) are non-uniformly hyperbolic. A diffeomorphism f in Diff1

m(M)

is Bernoulli if it is metrically isomorphic to a Bernoulli shift 1. The diffeomor-
phism f is stably Bernoulli if there exists a neighborhood U in Diff1

m(M) such
that all diffeomorphisms g in U ∩Diff2

m(M) are Bernoulli.
The next results are joint work with Jana Rodríguez Hertz (SUSTech). Let

M be a 3-dimensional manifold.

Theorem 1.1.1 [G. Núñez, J. Rodríguez Hertz] There exists a residual set
R in Diff1

m(M3) such that for f ∈ R, if there exists a minimal expanding or
contracting f -invariant foliation, then f is stably Bernoulli and stably non-
uniformly hyperbolic.

We remark that the foliation above does not have to be the most expanding
or contracting invariant foliation: it could be an intermediate foliation. Also,

1i.e. there exist measurable functions h : M → Σ and k : Σ→M such that h ◦ k = idΣ,
µΣ a.e.p., k ◦ h = idM , m a.e.p., m(h−1(B)) = µΣ(B), for all B ⊂ Σ measurable and
f ◦ h = h ◦ T m-a.e.p., where T is the shift transformation.
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that we do not require a priori that there be a dominated splitting, though a
fortiori it will be the case for the generic diffeomorphism.

In the conclusion of Theorem 1.1.1, f will be both stably ergodic and
ergodic. The same comment applies for stable non-uniform hyperbolicity. In
the Theorem above, f will be also non-uniformly hyperbolic.

An f -invariant foliation W is stably minimal if there exists a C1-
neighborhood U(f) of f in Diff1

m(M) such that

1. For each g ∈ U there exists a g-invariant foliation Wg such that the fiber
bundle g 7→ TWg varies continuously on U(f)

2. Wg is minimal for all g ∈ U(f) ∩Diff2
m(M)

Theorem 1.1.2 [G. Núñez, J. Rodríguez Hertz] There exists a residual set
R in Diff1

m(M3) such that for f ∈ R if there exists a minimal expanding or
contracting f -invariant foliation W , then either W is stably minimal or else
W is the strongest foliation of an Anosov diffeomorphism.

The proof is based in two main tools. One is the Pesin homoclinic classes
associated to a hyperbolic periodic point, introduced in [HHTU11] which we
define in detail in the chapter 2 - section 2.7, and the other is the genericity
result obtained by [Her12] in dimension 3 and by [ACW16] in any dimension,
which we also state below.
For any dimension we have the next theorem. It is not a generic theorem.

Theorem 1.1.3 [G. Núñez, J. Rodríguez Hertz] Let f ∈ Diff1
m(M) and W an

f -invariant expanding minimal foliation such that:

1. There exists a Df -invariant sub-bundle of TM , F such that the splitting
TM = F ⊕< TW is dominated.

2. there exists a hyperbolic periodic point pf with unstable index u = dimW .

3. there exists a C1-neighborhood U(f) ⊂ Diff1
m(M) such that for all g ∈

U(f)∩Diff2
m(M), m(Phc−(pg)) > 0, where pg is the analytic continuation

of the periodic point pf . 1

Then W is stably minimal and f is stably Bernoulli.

1Phc−(pg) is the set of x in M whose Pesin stable set W−(x) intersect W+(o(pg)) in a
transverse way.
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Also, we have a criterion that guaranteeing the minimality of a expanding or
contracting foliation. In this result we use the ideas and arguments showed in
[BDU02].

Theorem 1.1.4 (Minimality Criterion) Given a diffeomorphism f ∈
Diff1

m(M), an expanding f -invariant foliation W u, and a hyperbolic periodic
point p ∈M such that

1. the unstable index of p, u(p) equals dimW u

2. Phcu(p) = M

3. W u(p) = M

Then W u is a minimal foliation.

The main theorems 1.1.1 and 1.1.2 for high dimension are more delicate.
This is a work in progress with J. Rodríguez Hertz.
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Chapter 2

Preliminaries

2.1 Dominated Splitting

In this section, we will define the concept of dominated splitting and we will
show some elementary properties. The refer the reader to [BDV05], [CP15]
and [Sam14] for further information on the topic.
Let V and W be two normed vector spaces (over the same field) and let
T : V → W be a continuous linear map. We define the norm of T as

‖ T ‖= sup

{
‖ T (v) ‖
‖ v ‖

: v 6= 0

}
and the minimal norm or co-norm as:

m(T ) = inf

{
‖ T (v) ‖
‖ v ‖

: v 6= 0

}
Clearly, we have

m(T ) ‖ v ‖≤‖ T (v) ‖≤‖ T ‖‖ v ‖

and when T is invertible
m(T ) =‖ T−1 ‖−1

Also, if T : V1 → V2 and S : V2 → V3 are continuous linear maps (where V1, V2

and V3 are normed vector spaces over the same field) then

‖ S ◦ T ‖≤‖ S ‖‖ T ‖ and m(S ◦ T ) ≥ m(S)m(T ).

Let f : M → M be a diffeomorphism on a closed manifold M and Λ be
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any f -invariant set. A Df -invariant splitting TΛM = E ⊕ F of the tangent
bundle is dominated, and denote it by TΛM = E ⊕< F if there is N ≥ 1 such
that given any x ∈ Λ, any unitary vectors vE ∈ E(x) and vF ∈ F (x), we have:

‖ DfN(x)(vE) ‖≤ 1

2
‖ DfN(x)(vF ) ‖ (2.1)

More generally, a Df -invariant splitting TΛM = E1 ⊕ E2 ⊕ . . . ⊕ En of the
tangent bundle is dominated if for all k ∈ {1, . . . , n− 1} we have the splitting

(E1 ⊕ . . .⊕ Ek)⊕ (Ek+1 ⊕ . . .⊕ En)

is dominated. In this case we write E1 ⊕< . . .⊕< En.
If we have a dominated splitting E1⊕< . . .⊕<En always exists a unique finest
dominated splitting F1 ⊕< . . . ⊕< Fk over Λ (see [BDP03], Proposition 4.11)
characterized by the following property: given any dominated splitting E⊕<F
over Λ then there is some l ∈ {1, 2, . . . , k − 1} such that

E = F1 ⊕< . . .⊕< Fl, andF = Fl+1 ⊕< . . .⊕< Fk

Remark 2.1.1 The condition (2.1) clearly is equivalent to the condition:

‖ DfN(x)(vE) ‖
‖ vE ‖

≤ 1

2

‖ DfN(x)(vF ) ‖
‖ vF ‖

for every vE ∈ E(x)\ {0} and vF ∈ F (x)\ {0}.
Also, it is equivalent to the condition:

‖ DfN
∣∣
E(x)
‖≤ 1

2
m
(
DfN

∣∣
F (x)

)
The next proposition give us a equivalent definition for the dominated splitting.

Proposition 2.1.1 Let f : M →M be a diffeomorphism on a closed manifold
M and Λ be any f -invariant set. Then the splitting TΛM = E⊕F is dominated
if and only if there exist C > 0 and λ ∈ (0, 1) such that given any x ∈ Λ, any
unitary vectors vE ∈ E(x) and vF ∈ F (x), we have:

‖ Dfn(x)(vE) ‖≤ Cλn ‖ Dfn(x)(vF ) ‖, for all n ≥ 1

7



Proof. The converse implication follows immediately, because the existence
of the constants that satisfy ‖ Dfn(x)(vE) ‖≤ Cλn ‖ Dfn(x)(vF ) ‖ imply the
definition of dominated splitting. Let’s see the direct implication.
Write n = kN + r, with 0 ≤ r < N . Then,

‖ Dfn|E(x) ‖≤‖ Df
r|E(fkN (x)) ‖‖ Df

N
∣∣
E(x)
‖k

Writing Ar(x) =‖ Df r|E(fkN (x)) ‖ then, by the domination, we have:

‖ Dfn|E(x) ‖≤ Ar(x)

(
1

2

)k
m
(
DfN

∣∣
F (x)

)k
and then

‖ Dfn|E(x) ‖≤
Ar(x)

Br(x)

(
1

2

)k
m
(
Dfn|F (x)

)
where Br(x) = m

(
Df r|F (fkN (x))

)
.

Let C̃ = sup
{
Ar(x)
Br(x)

: x ∈ Λ, 0 ≤ r < N
}
, then

‖ Dfn|E(x) ‖≤ C̃

(
1

2

)k
m
(
Dfn|F (x)

)
Taking λ =

(
1
2

)1/N ∈ (0, 1) and C = C̃
λr
> 0, we have:

‖ Dfn|E(x) ‖≤ Cλnm
(
Dfn|F (x)

)
This complete the proof. �

Given U ⊂ M with a splitting TUM = Ẽ ⊕ F̃ into continuous subbundles
(not necessarily invariant) and α ∈ (0, 1) we can define a cone-field in U as:

CFα (x) = {v = vẼ + vF̃ ∈ TxM : ‖ vẼ ‖≤ α ‖ vF̃ ‖}

for each x ∈ U .
Also, we define for each x ∈ U the complementary cone:

CEα (x) = {v = vẼ + vF̃ ∈ TxM : ‖ vẼ ‖≥ α ‖ vF̃ ‖}

Clearly we have Fx ⊂ CFα (x) for every α ∈ (0, 1) and if α < β then CFα (x) ⊂
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CFβ (x). Also, we have something similar for CEα (x)

Remark 2.1.2 If the splitting TΛM = E⊕F is dominated then by the propo-
sition 2.1.1 there exist C > 0 and λ ∈ (0, 1) such that for every x ∈ Λ and
n ∈ N we have:

Dfn(x)(CFα (x)) ⊂ CFCαλn(fn(x))

Df−n(x)(CEα (x)) ⊂ CECαλn(f−n(x))

Deciding whether a given invariant set has a dominated splitting may seem
to be tricky, because it may not be clear how to find the subspaces in order
to verify the required properties. An alternate way, that can be checked with
limited accuracy and that is clearly robust under perturbation is the cone
criterion shown below. The interested reader could consult the complete proof
in [CP15] for instance.

Proposition 2.1.2 (The Alexeev cone criterion) Let f : M → M be a
diffeomorphism on a closed manifold M and Λ be any f -invariant set. Suppose
that there exist a cone-field CFα (x) in Λ and λ ∈ (0, 1) such that:

Df(x)(CFα (x)) ⊂ CFαλ(f(x))

Then Λ has dominated splitting.

Proof.[Sketch of the proof] For each x ∈ Λ we define:

Ex =
⋂
n≥0

Df−n(fn(x))(CEα (fn(x)))

and
Fx =

⋂
n≥0

Dfn(f−n(x))(CFα (f−n(x)))

Here Ex and Fx are Df -invariant and TxM = Ex ⊕ Fx. For the domination,
given uE ∈ Ex and uF ∈ Fx two unitary vectors we have there exists a uniform
m ≥ 1 such that Dfm(x)(uE + uF ) belongs to a small cone around Ffm(x).
This implies that ‖ Dfm(x)(vE) ‖≤ 1

2
‖ Dfm(x)(vF ) ‖. �

Let us list some useful elementary properties of dominated splittings and
the respective proofs (from [BDV05], Appendix B)
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a) Uniqueness: The dominated splitting is unique if one fixes the dimen-
sions of the subbundles.
Proof. Assume that E ⊕< F and G ⊕< H are two dominated splitting
over Λ such that dim(E) = dim(G). We will show that E ⊂ G and then
E = G and F = H.
So, assume there exists x ∈ Λ such that E(x) * G(x) and consider some
unit vector u ∈ E(x)\G(x). Write u = uG + uH , with uG ∈ G(x) and
0 6= uH ∈ H(x). Then the positive iterates of u grow at the same rate as
those of uH . Write also uH = vE + vF , with vE ∈ E(x) and vF ∈ F (x).
If vF 6= 0 then the positive iterates of vF would grow at the same rate as
those of uH , that is, at the same rate as the iterates of u ∈ E(x), which
would contradict the domination E ⊕< F .
Therefore, vF = 0, then uH ∈ E(x) ∩ H(x). As we are assuming that
E(x) 6= G(x) then there is some unit vector w ∈ G(x)\E(x) which we
write w = wE + wF , with wF 6= 0.
Then the positive iterates of w ∈ G(x) grow at the same rate as those of
wF , and so the positive iterates of w ∈ G(x) grow exponentially faster
than the iterates of uH ∈ E(x). Since uH is also in H(x), this contradicts
the domination G⊕< H, and completes the proof. �

b) Continuity: The splitting E1 ⊕< . . . ⊕< En varies continuously with
x ∈ Λ.
Proof. Let E ⊕< F be an l-dominated splitting over Λ. Let (xn)n∈N ⊂
Λ be a sequence converging to some point x ∈ M . Without loss of
generality we can assume that the spaces E(xn) and F (xn) converge to
subespaces Ẽ(x) and F̃ (x), and the dimension of the spaces are equal,
i.e. dim(E(xn)) = dim(Ẽ(x)) and dim(F (xn)) = dim(F̃ (x)). We will
show that Ẽ(x) = E(x) and F̃ (x) = F (x).
For any k ∈ N, for any unit vectors u ∈ Ẽ(x) and v ∈ F̃ (x) we have:

‖ Dfkl(x)(u) ‖
‖ Dfkl(x)(v) ‖

= lim
n

‖ Dfkl(xn)(un) ‖
‖ Dfkl(xn)(vn) ‖

≤
(

1

2

)k
This characterizes the subespace Ẽ(x) uniquely (once its dimension is
fixed): the iterates of any unit vector u ∈ Ẽ(x) grow slower than those
of any unit vector w /∈ Ẽ(x). This proved that effectively Ẽ(x) = E(x).
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Analogously

‖ Df−kl(x)(v) ‖
‖ Df−kl(x)(u) ‖

= lim
n

‖ Df−kl(xn)(vn) ‖
‖ Df−kl(xn)(un) ‖

≤
(

1

2

)k
This characterizes the subespace F̃ (x) uniquely and then the splitting
dominated varies continuously with x ∈ Λ. �

c) Transversality: The angles between any two subbundles of a dominated
splitting are uniformly bounded from zero.
Proof. Suppose that TΛM = E ⊕< F . We will show that the angle
between E and F is uniformly bounded from zero.
For doing that it is enough to prove that there exists α > 0 such that
‖ vE − vF ‖≥ α > 0 for every pair of unit vectors vE ∈ E(x) and
vF ∈ F (x) independent of x ∈ Λ.
Suppose that there exists two sequences (un)n∈N ⊂ E(xn) and (vn)n∈N ⊂
F (xn) of unit vectors such that un − vn → 0. As the derivative of f is
bounded, for every l ∈ N there exists unl ∈ E(xnl) and vnl ∈ F (xnl) such
that

‖ Df l(xnl)(unl − vnl) ‖
‖ Df l(xnl)(vnl) ‖

<
1

2

This implies that for every l ∈ N there exists unl ∈ E(xnl) and vnl ∈
F (xnl) unitaries such that

1

2
<
‖ Df l(xnl)(unl) ‖
‖ Df l(xnl)(vnl) ‖

< 2

which contradicts the domination. �

d) Extension to the closure: The splitting E1 ⊕< . . . ⊕< En extends to
a dominated splitting over the closure Λ of Λ.
Proof. The splitting on Λ extends by continuity to the closure of Λ

using the argument showed in the part b) �

e) Persistence: Every dominated splitting persists under
C1-perturbations.
Proof. Consider a l-dominated splitting E ⊕< F on Λ. We can extend
it to a continuous splitting TM = E ⊕ F in a neighborhood U of Λ not

11



necessarily invariant. We consider the cone fields CFα on U defined by

CFα (x) = {v = vE + vF ∈ TxM :‖ vF ‖≥ α ‖ vE ‖} , x ∈ U

The dominate splitting TΛM = E ⊕< F implies that, for any x ∈ Λ,

Df l(C1(x)) ⊂ C2(f l(x))

Then, for any ε ∈ (0, 1) there is a neighborhood V ⊂ U of Λ and a
C1-neighborhood U of f such that for any g ∈ U and any x ∈ V we
have:

Dgl(C1(x)) ⊂ C2−ε(g
l(x))

This implies that the maximal invariant set
⋂
n∈Z g

n(V ) of g in V has
a dominated splitting with the same dimensions of the initial one, and
with almost the same strength. �

2.2 Hyperbolic and partially hyperbolic dif-

feomorphisms

A compact invariant set K ⊂M of a diffeomorphism f : M →M is hyperbolic
if the tangent bundle over K splits into two subbundles TKM = Es⊕Eu such
that:

(a) Es and Eu are Df -invariant, i.e. Df(x)(Es
x) = Es

f(x) and Df(x)(Eu
x) =

Eu
f(x)

(b) There exists C > 0 and λ ∈ (0, 1) such that for all vs ∈ Es(x), vu ∈ Eu(x)

and n ∈ N we have:

‖ Dfn(x)(vs) ‖≤ Cλn ‖ vs ‖ and ‖ Df−n(x)(vu) ‖≤ Cλn ‖ vu ‖

In this case we say that Df(x) is contracting on Es(x) and Df(x) is
expanding on Eu(x)

If K = M we say that f is a hyperbolic diffeomorphism or Anosov diffeomor-
phism.

12



We say that f is partially hyperbolic on an invariant set Λ ⊂ M if the
tangent bundle splits into three nontrivial invariant subbundles Es, Ec and
Eu and N ∈ N such that for every x ∈ Λ:

(a) DfN(x) is contracting on Es(x) and DfN(x) is expanding on Eu(x).

(b) The splitting TΛM = Es ⊕ Ec ⊕ Eu is dominated.

If f is partially hyperbolic in Λ we say that Λ is a partially hyperbolic set.

2.2.1 Hyperbolic points

Let p a periodic point of f : M → M and we denote by π(p) the period of p.
We say that p is a hyperbolic periodic point of f if p is a periodic point and
the derivate

Dpf
π(p) : TpM → TpM

has no eigenvalues of modulus 1. We denote by Per(f) the set of periodic point
and also PerH(f) the set of hyperbolic periodic point. Is clear that these sets
are f -invariant.
If p ∈ PerH(f) we have that there exist subespaces Es(p), Eu(p) in TpM

such that TpM = Es(p) ⊕ Eu(p) which are Df -invariant, i.e. Dpf(Es(p)) =

Es(f(p)) and Dpf(Eu(p)) = Eu(f(p)). Here Es(p) is the eigenspace associ-
ated to the eigenvalues of modulus smaller than 1 of Dpf

π(p) and Eu(p) is the
eigenspace associated to the eigenvalues of modulus bigger than 1.
We define the unstable index u(p) of a hyperbolic periodic point p as
dim(Eu(p)).
The next theorem show that hyperbolic periodic points remain hyperbolic un-
der small C1-perturbations.

Theorem 2.2.1 Let f : M → M be a C1-diffeomorphism and p a periodic
hyperbolic point of f . Then there exist U(f) a C1 neighborhood of f and Up
a neighborhood of p such that for every g ∈ U(f) there exists pg a periodic
hyperbolic point of g1 inside Up which has the same period of p. Moreover, pg
varies continuously in g.

1pg is called the analytic continuation of p
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2.3 Examples of diffeomorphisms with domi-

nated splitting

Here we will present some examples of diffeomorphism with dominated split-
ting.

1. Hyperbolic diffeomorphism: Let f : M → M be a diffeomorphism and
Λ ⊂M a hyperbolic set, then the splitting TΛM = Es⊕Eu is dominated.
In particular all Anosov diffeomorphism have a dominated splitting.

2. Hyperbolic periodic point: Let f : M → M be a diffeomorphism and
p ∈ PerH(f) then the splitting TO(p)M = Es ⊕ Eu is dominated.

3. Mañé derived from Anosov [Mañ78]: We start taking an linear Anosov
diffeomorphism f0 : T3 → T3 with one expanding and two contracting
directions and a fixed point p of f0. Deforming f0 by isotopy in a neigh-
borhood V = B(p, δ) of p we have that there exists a C1-open set U such
that satisfies the following:

(A) f has a expanding foliation Fuu and a center foliation F c. These
foliations are tangent to the subbundles Euu and Ec and TM =

Ec ⊕< Euu, where dim(Euu) = 1 and dim(Ec) = 2

(B) f has three hyperbolic fixed points inside V , contained in a same
central leaf: one fixed point with unstable index 2 and two fixed
points with unstable index 1 such that at least one has complex
contracting eigenvalues. We can do it passing the periodic point
through a Hopf bifurcation.

(C) There exists σ > 1 such that | det(Df−1|Ec)| ≥ σ.

Bonatti - Viana [BV00] proved that for every f ∈ U as before the foliation
Fuu is minimal, the largest Lyapunov exponent λc+(x) of f along the
bundle Ec is negative for Lebesgue almost every point in any segment
contained in a leaf of Fuu. Also, they proved that these diffeomorphism
are stably ergodic.

4. Bonatti-Viana example in T4 [BV00]: As before, we start with a linear
Anosov diffeomorphism f0 : T4 → T4 induced by a linear map of R4 with
eigenvalues

0 < λ1 ≤ λ2 <
1

3
< 1 < 3 < λ3 ≤ λ4

and dominated splitting TT4 = (Ess ⊕ Es) ⊕< (Eu ⊕ Euu). Up to rem-
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placing it by some iterate, we can suppose that f0 has at least two fixed
points p1 and p2.
Let V = B(p1, δ) ∪ B(p2, δ) be a union of balls centered at p1, p2 and
radius δ > 0 sufficiently small. Deforming the Anosov diffeomorphism
inside V passing through a pitchfork bifurcation along Ess⊕Es and then
another deformation to obtain one fixed point with complex contracting
eigenvalues.
We obtain a new diffeomorphism with dominated splitting TT4 =

Ecs ⊕< (Eu ⊕ Euu), where dim(Ecs) = 2.
After that, we do the same for p2, but in the unstable direction. Finally
we obtain a C1-open set U of diffeomorphism with dominated splitting
TT4 = Ecs ⊕< Ecu, where dim(Ecs) = dim(Ecu) = 2 without invariant
hyperbolic subbundles.
Bonatti-Viana [BV00] proved that each f is a robustly transitive diffeo-
morphism and Tahzibi [Tah04] proved the stable ergodicity.

2.4 Lyapunov exponents

Let f : M → M be a C1-diffeomorphism of a compact Riemannian manifold
of dimension d. Given v ∈ TxM , the Lyapunov exponent of v is:

λ(x, v) = lim sup
n→∞

1

n
log ‖ Dfn(x)(v) ‖ .

let Eλ(x) be the subspace of TxM consisting of all v such that the Lyapunov
exponent de v is λ. We have the well-known Oseledets’ Theorem.

Theorem 2.4.1 (Oseledets [Ose68]) There is an f -invariant Borel set D
of total probability (in the sense that µ(D) = 1 for all f -invariant probability
measures µ), and for each ε > 0 exists a Borel function Cε : D → (1,+∞)

such that ∀x ∈ D, v ∈ TxM y n ∈ Z:

1. There exist a splitting (called the Oseledets’ splitting) of the tangent bun-
dle

TxM = E1(x)⊕ . . .⊕ Ek(x)

and numbers λ1(x) < . . . < λk(x)(x) such that for each vector in the
subspace Ei(x) its associated Lyapunov exponent is λi(x).
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2. 1
Cε(x)

e(λ−ε)n ‖ v ‖≤‖ Dfn(x)v ‖≤ Cε(x)e(λ+ε)n ‖ v ‖, ∀v ∈ Eλ(x).

3. Cε(f(x)) ≤ eεCε(x).

4. ∠(Eλ(x), Eγ(x)) ≥ 1
Cε(x)

, ∀λ 6= γ.

The set D is called the set of regular points. We have that Df(x)Eλ(x) =

Eλ(f(x)) and if an f -invariant measure µ is ergodic, then the Lyapunov expo-
nents and dimEλ(x) are constant µ-almost everywhere.
For all x ∈ D, we have

TxM =
⊕
λ<0

Eλ(x)⊕ E0(x)
⊕
λ>0

Eλ(x)

where E0(x) is the subspace generated by the vectors having zero Lyapunov
exponents.
Let Diffrm(M) be the set of Cr-conservative diffeomorphisms (i.e. preserving a
smooth volume form m) endowed with the Cr topology. Diffrm(M) is a Baire
space for any integer r ≥ 0 (see [PdM78]). In a Baire space, a set is residual if
it contains a countable intersection of dense open sets. We establish a conven-
tion: the phrases “generically f satisfy...” and “every generic diffeomorphism
f satisfies...” should be read as “there exists a residual subset R ⊂ Diff1

m(M)

such that every f ∈ R satisfies...”
Let λ1(x) ≤ λ2(x) ≤ . . . ≤ λd(x) be the Lyapunov exponents with multiplici-
ties, then if f ∈ Diff1

m(M) we have λ1(x) + λ2(x) + . . .+ λd(x) = 0.

For fixed ε > 0 and given L > 0, we define the Pesin blocks by

Dε,L = {x ∈ D : Cε(x) ≤ L}

Note that Pesin blocks are not necessarily invariant, although f(Dε,L) ⊆ Dε,eεL.
Also, for each ε > 0, we have

D =
∞⋃
L=1

Dε,L

Since, the Lebesgue measure is regular, without loss of generality we can asume
that the Pesin blocks are compact.
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A diffeomorphism f ∈ Diff1
m(M) is non-uniformly hyperbolic if all Lya-

punov exponents are non-zero m-almost everywhere, that is if for m-almost
every x, and every unit vector v ∈ TxM

lim sup
n→∞

1

n
log ‖Dfn(x)v‖ 6= 0

A diffeomorphism f ∈ Diff1
m(M) is stably non-uniformly hyperbolic if there

exists a neighborhood U of f in Diff1
m(M) such that all diffeomorphisms g in

U ∩Diff2
m(M) are non-uniformly hyperbolic.

2.5 Hausdorff Topology

Given (M,d) a compact metric space, given two non-empty compact sets
A,B ⊂M we define the Hausdorff distance:

dH(A,B) = inf {ε ≥ 0 : A ⊂ Bε(B), B ⊂ Bε(A)}

where Bε(A) =
⋃
a∈ABε(a).

By convention, the Hausdorff distance from the empty set to any non-empty
set is equal to diameter of M .
The set K = {K ⊂M : K is compact and non-empty} is a compact metric
space with the Hausdorff distance (see [KH95]).

2.6 Dominated splitting and periodic points

The main result in this section says that if a diffeomorphism f has a global
dominated splitting TM = E ⊕< F and every periodic point p of f has unsta-
ble index equal to dim(F ) and this happens for every g in a neighborhood of
f then f is an Anosov diffeomorphism. To prove the result above we use two
results borrowed from [BDPR00] and originally due to Ricardo Mañé [Mañ82].
This result is true in the volume-preserving case.

The next proposition is extracted from [BDPR00] which is a reformulation
of [[Mañ82], Proposition II.1].
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Proposition 2.6.1 Let f ∈ Diff1(M) and let Λ be a compact f -invariant set
having a dominated splitting TΛM = E ⊕< F . If there exists a neighborhood
U of Λ and U(f) ⊂ Diff1(M) a neighborhood of f such that every g ∈ U(f) ∩
Diff1(M) has not hyperbolic points of unstable index different of dim(F ). Then
there exists V ⊂ Diff1(M) a neighborhood of f and constants K > 0, m ∈ N
and λ ∈ (0, 1) such that for every periodic point x of g whose orbit is contained
in U we have:

(a) If x has period n ≥ m then

k−1∏
i=0

‖ Dgm(gmi(x))|Eg(gmi(x)) ‖≤ Kλk

where k is the entire part of n
m
.

(b) Moreover,

lim sup
r→+∞

1

r

r−1∑
i=0

log ‖ Dgm(gmi(x))|Eg(gmi(x)) ‖< 0

The next theorem is the clasical Mañé’s Ergodic Closing Lemma which we
enunciate here by completeness. We remark that it is valid in the volume-
preserving case.

Theorem 2.6.2 ([Mañ82], Theorem A) Given f ∈ Diff1(M) there exists
a f -invariant set Σ(f), named set of well closable points of f , such that:

(a) The set Σ(f) has total measure.

(b) For every x ∈ Σ(f) and ε > 0 there is a diffeomorphism g, which is
ε-close to f with the C1-topology, such that x is a periodic point for g
and the distance d(f i(x), gi(x)) < ε for all i ∈ [0, π(x, g)], where π(x, g)

is the period of x respect to g.

Theorem 2.6.3 Let f ∈ Diff1
m(M) and let Λ be a compact f -invariant set

having a dominated splitting TΛM = E ⊕< F . If there exists a neighborhood
U(f) ⊂ Diff1(M) of f such that every g ∈ U(f)∩Diff1

m(M) has not hyperbolic
points of unstable index different of dim(F ). Then Λ is a hyperbolic set.
In particular, if Λ = M then f is an Anosov diffeomorphims.
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Proof. By compactness of Λ, to get the hyperbolicity it is enough to see
that

lim inf
n→+∞

‖ Dfn(x)|E(x) ‖= 0 (2.2)

lim inf
n→+∞

‖ Df−n(x)|F (x) ‖= 0 (2.3)

for all x ∈ Λ. We will prove 2.2 because 2.3 is similar if we apply the same
methods to f−1 instead of f .
Suppose by contradiction that 2.2 does not hold for every x ∈ Λ, then we can
find x0 ∈ Λ, κ > 0 and n0 ∈ N such that

‖ Dfn(x0)|E(x0) ‖> κ > 0

for every n ≥ n0.
We take m as in the proposition 2.6.1 and we consider a sequence of probabil-
ities measures {µn} defined by:

µn :=
1

n

n−1∑
i=0

δfmi(x0)

where δz is the Dirac measure at the point z. Taking a subsequence of {µn},
we can assume that {µn} is converges to a probability measure µ with the
weak topology, this is

∫
ϕdµ = lim

n→+∞

∫
ϕdµn = lim

n→+∞

1

n

n−1∑
i=0

ϕ(fmi(x0))

for every ϕ : M → R continuous. Here the function

x 7−→ log ‖ Dfm(x)|E(x) ‖

is continuous, then

∫
log ‖ Dfm(x)|E(x) ‖ dµ = lim

n→+∞

1

n

n−1∑
i=0

log ‖ Dfm(fmi(x0))|E(fmi(x0)) ‖

and by the election of x0∫
log ‖ Dfm(x)|E(x) ‖ dµ ≥ lim

n→+∞

1

n
log ‖ Dfnm(x0))|E(x0) ‖≥ lim

n→+∞

log(κ)

n
= 0
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then ∫
log ‖ Dfm(x)|E(x) ‖ dµ ≥ 0 (2.4)

On the other hand, by Birkhoff’s Theorem

∫
log ‖ Dfm(x)|E(x) ‖ dµ =

∫
lim

n→+∞

1

n

n−1∑
i=0

log ‖ Dfm(fmi(x))|E(fmi(x)) ‖ dµ

(2.5)
By Mañé’s Ergodic Closing Lemma 2.6.2 we have Λ ∩ Σ(f) is an f -invariant
total probability subset of Λ.
By the equations 2.4 and 2.5 we get a point p ∈ Λ ∩ Σ(f) such that

lim
n→+∞

1

n

n−1∑
i=0

log ‖ Dfm(fmi(p))|E(fmi(p)) ‖≥ 0

By item (b) of Proposition 2.6.1, the point p is not periodic for f . By Mañé’s
Ergodic closing Lemma given ε > 0 there exists g ∈ Diff1

m(M) arbitrarily
C1-close to f such that p is a periodic point of g with period πg(p) and the
distance d(f i(p), gi(p)) < ε, for every i = 0, 1, . . . , πg(p).
Observe that since p is not periodic for f we have if gn → g then πgn(p) goes
to infinity.
Since the fibers Eg(y) varies continuosly with (y, g), then the function:

(y, g) 7−→ log ‖ Dgm(y)|Eg(y) ‖

is continuous.
By item (b) of Proposition 2.6.1, let λ0 < 1 and n0 ∈ N such that λ < λ0 < 1

and for every n ≤ n0 we have:

1

n

n−1∑
i=0

log ‖ Dfm(fmi(p)) ‖≤ 1

2
log(λ0)

We can also assume that Kλn < λn0 , for all n ≥ n0. So if g is close enough to
f twe have

| log ‖ Dgm(gi(p)) ‖ − log ‖ Dfm(f i(p)) ‖ | < 1

2
| log(λ0)|

for every i ∈ [0, πg(p)].
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Moreover, we can assume that the entire part kg of πg(p)

m
is greater than n0.

Thus,

1

kg

n−1∑
i=0

log ‖ Dgm(gi(p)) ‖≥ 1

2
log(λ0) ≥ 1

2
log(λk0) >

1

2
log(Kλk)

contradicting item (a) of Proposition 2.6.1. �

2.7 The Pesin Homoclinic class

For x ∈M , we define the Pesin stable set of x as:

W−(x) = {y ∈M : lim sup
n→∞

1

n
log d(fn(x), fn(y)) < 0}

and analogously the Pesin unstable set:

W+(x) = {y ∈M : lim sup
n→∞

1

n
log d(f−n(x), f−n(y)) < 0}

Stable and unstable Pesin sets of points in the set of regular points D are
immersed manifolds (see [Pes77]).
Given a hyperbolic periodic point p ∈M , we define the stable Pesin homoclinic
class 1 of p by

Phc−(p) = {x ∈M : W−(x) t W+(o(p)) 6= ∅}

where W u(o(p)) is the union of the unstable manifolds of fk(p), for all
k = 0, . . . , per(p)−1. Phc−(p) is invariant and saturated by W−-leaves. Anal-
ogously, we define

Phc+(p) = {x ∈M : W+(x) t W−(o(p)) 6= ∅}

If there exists an expanding foliation W u, we will denote

Phcu(p) = {x ∈M : W u(x) t W−(o(p)) 6= ∅}

Analogously we define Phcs(p) if a contracting foliation W s is given. The fo-

1This set was defined in [HHTU11] and it is called ergodic homoclinic class.
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liation will be clear from the context, if it is not, we will denote these sets by
PhcW (p), where W is given.
Observe that if there exists an expanding foliation W u then Phcu(p) ⊂
Phc+(p).
A useful tool to work with a transversal intersection between stable and un-
stable manifolds is the λ-lemma of Palis [Pal69].

Theorem 2.7.1 (λ-Lemma) Let f : M →M be a C1-diffeomorphism and p
a fixed hyperbolic point of f . Let Du a compact disk in W+(p) and let D be a
manifold of equal dimension of W+(p) such that D t W−(p) 6= φ.
Then ∀ε > 0, there exists n0 ∈ N such that for every n ≥ n0 there exists
Dn ⊂ D such that fn(Dn) and Du are ε C1-closed.

The importance of Pesin homoclinic classes comes from the next criterion
of ergodicity:

Theorem 2.7.2 (Theorem A, [HHTU11]) Let f : M → M be a C2-
diffeomorphism over a closed connected Riemannian manifold M , let m be
a smooth invariant measure and p ∈ PerH(f). If m(Phc+(p)) > 0 and
m(Phc−(p)) > 0, then

1. Phc+(p) $ Phc−(p) $ Phc(p), where Phc(p) = Phc+(p) ∩ Phc−(p).

2. m|Phc(p) is ergodic.

3. Phc(p) ⊂ Nuh(f), where Nuh(f) is the set of x in M such that all
Lyapunov exponents of x are different from zero.

We have an ergodic analogous to Smale’s spectral decomposition theorem
combinating Pesin’s ergodic component theorem [Pes77], the ergodicity crite-
rion statement above and the next theorem:

Theorem 2.7.3 (Katok’s closing lemma, [Kat80]) Let M be a compact
Riemannian manifold of finite dimension and let f : M → M be a C2-
diffeomorphism. Then for every k = 0, . . . , dimM , and for all ε, L > 0,
there exists r > 0 such that if:

1. x, fn(x) ∈ Dkε,L, for some n > 0, where
Dkε,L = Dε,L ∩ {x ∈ D/ dimEu(x) = k}

2. d(x, fn(x)) < r
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Then there exists p ∈ PerH(f) such that x ∈ Phc(p).

Theorem 2.7.4 Let M be a closed connected Riemannian manifold, let f :

M → M be a C2-diffeomorphism and let m be a smooth measure hyperbolic
over an f -invariant set V . Then:

(a) We have:
V $

⋃
n∈N

Λn

where Λn are disjoint measurable invariant sets such that f |Λn is ergodic.

(b) For each Λn, there exists kn ∈ N and measurable sets with positive mea-
sure Λn

1 , Λn
2 , . . . , Λn

kn
which are pairwise disjoints such that f(Λn

j ) = Λn
j+1

for every j = 1, 2, . . . , kn − 1, f(Λn
kn

) = Λn
1 and fkn is Bernoulli.

(c) There exists a hyperbolic periodic point pn such that Λn = Phc(pn)

Proof. We will show the items (a) and (c). The item (b) is given by the
Pesin’s ergodic component theorem [Pes77].
Let ε, L > 0 be and k = 0, 1, . . . , dimM such that m

(
Dkε,L

)
> 0 and let x be a

density point of Dkε,L. Take r > 0 given by the Katok’s closing lemma, due to
x is a density point of Dkε,L we have m

(
Dkε,L ∩Br/2(x)

)
> 0, then by Poincaré’s

recurrence theorem there exists n > 0 such that fn(x) ∈ Dkε,L ∩ Br/2(x), then
by Katok’s closing lemma there exists p ∈ PerH(f) such that x ∈ Λ(p). In
conclusion we have proved that:

Dkε,L
◦
⊂ Λ(p), for some p ∈ PerH(f)

Fixing ε > 0 we have:

M
◦
=
⋃
L,k

Dkε,L, con L ∈ N, k = 0, . . . , dimM

and then there exists a sequence of hyperbolic periodic points such that

M
◦
= Λ1 ∪ . . .Λn ∪ . . . , with Λi = Λ(pi), pi ∈ PerH(f)

Here Dkε,L ⊂ Λ(pi) for some pi ∈ PerH(f) and m
(
Dkε,L

)
> 0 then

m (Λ(pi)) > 0. By the criterion of ergodicity 2.7.2 f |Λi is ergodic and clearly
the sets Λi are measurables and f -invariant. Moreover these sets are disjoint,
because if p and q are hyperbolic periodic points such that Λ(p) ∩ Λ(q) 6= φ
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then there exists a point z homoclinically related with p and q, using the λ-
Lemma we have Λ(p) = Λ(q).

�

Corollary 2.7.5 In the hypothesis of 2.7.2 if m(Phc(p)) = 1 then f is
Bernoulli.

Proof. If m(Phc(p)) = 1 we have:

M $ Λ1
1 ∪ Λ1

2 ∪ . . . ∪ Λ1
k

where the sets Λ1
j are measurable and pairwise disjoints. As f(Λ1

j) = Λ1
j+1 for

every j = 1, 2, . . . , k − 1 and f(Λ1
k) = Λ1

1 we have that m(Λ1
j) = 1

k
> 0, for all

j = 1, 2, . . . , k.
Here fk is ergodic and each Λ1

j is fk-invariant then k = 1. This implies that f
is Bernoulli. �

Proposition 2.7.6 Phc+(p) satisfy the following:

a) Phc+(p) is an u-saturated open set.

b) If f ∈ Diff1
m(M) is ergodic then m(Phc+(p)) = 1.

Proof. By transversality, if W+(x) t W−(p) 6= φ then exists an open neigh-
borhood U of x in M such that for every y ∈ U we have W+(y) t W−(p) 6= φ,
so Phcu(p) is an open set.
Here f is ergodic, m(Phc+(p)) > 0 (because it is a nonempty open set) and
Phc+(p) is f -invariant so m(Phc+(p)) = 1. �

We denote by:
Λ(f) = M\Phc+(p) (2.6)

So we have the next corollary:

Corollary 2.7.7 The set Λ(f) is a compact, f -invariant, u-saturated subset
of M . Also, if f ∈ Diff1

m(M) is ergodic then m(Λ(f)) = 0

I will present two theorems for volume-preserving maps.
The first is the volume-preserving version of the Kupka-Smale Theorem, see
[Rob70]:
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Theorem 2.7.8 Assume dimM ≥ 3, r ∈ Z+. Then generically in Diffrm(M),
every periodic orbit is hyperbolic, and for every pair of periodic points p and
q, the manifolds W+(p) and W−(q) are transverse.

The next is a connecting property due to Arnaud [Arn01] and Bonatti-Crovisier
[BC04].

Theorem 2.7.9 Assume dimM ≥ 3. Then generically in Diff1
m(M), if p

and q are periodic points with dimW+(p) ≥ dimW+(q), then W+(O(p)) ∩
W−(O(q)) is dense in M .

Remark 2.7.1 [Remark 4.4, [HHTU11]] If W+(p) t W−(q) 6= φ then
Phc+(p) ⊂ Phc+(q) and Phc−(q) ⊂ Phc−(q)

Remark 2.7.2 Generically in Diff1
m(M) if p and q have the same unsta-

ble index, then by theorem 2.7.9 the manifolds W+(o(p)) and W−(o(q)) have
nonempty intersection which is transverse by theorem 2.7.8 and by 2.7.1 we
have Phc+(p) = Phc+(q). This implies that Λ(g) is not depending of the hy-
perbolic periodic point.

2.8 Blenders

In this section, we will present the concept of Blenders given in [HHTU10]. We
warn the reader that there are other definitions of blenders (see for instance
[BDV05], chapter 6). Also, in [BDV05] there is a discussion on different ways
of defining these objects.
A diffeomorphism f : M → M has a heterodimensional cycle associated with
two hyperbolic periodic points p and q of f if their unstable indices are different,
the stable manifold W−(p) of p meets the unstable manifold W+(q) of q, and
the unstable manifold W+(p) of p meets the stable manifold W−(q) of q.
We say that p and q are a co-index one heterodimensional cycle when the
indices of p and q differ in one.
Let p be a partially hyperbolic periodic point for f such that the derivate Df
is expanding on Ec and dimEc = 1. A small open set Blcu(p), near p but not
necessarily containing p, is a cu-blender near p if:

1. Every (u+ 1)-strip well placed in Blcu(p) transversely intersects W−(p).
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2. This property is C1 -robust. Moreover, the open set associated with the
periodic point contains a uniformly sized ball.

A (u + 1)-strip is any (u + 1)-disc containing a u-disc Duu, so that Duu

is centred at a point in Blcu(p). The radius of Duu is much bigger than the
radius of Blcu(p) and Duu is almost tangent to Eu, i.e. the vectors tangent to
Duu are C1-close to Eu.
A (u+ 1)-strip is well placed in Blcu(p) if it is almost tangent to Ec ⊕ Eu.

For cs-blenders we can define similarly considering a partially hyperbolic
point such that Ec is one dimensional and Df is contracting on Ec.

Given p′ a partially hyperbolic periodic point of f such that Df is expand-
ing on Ec, with dimEc = 1. A small open set B is called cu-blender associated
with p′ if B = Blcu(p), where p is a partially hyperbolic periodic point homo-
clinically related to p′ and Blcu(p) is a cu-blender near p.

The next theorem allows obtaining conservative diffeomorphisms admitting
blenders near conservative diffeomorphisms with a pair of hyperbolic periodic
points with co-index one.

Theorem 2.8.1 (Theorem 1.1 - [HHTU10]) Let f ∈ Diffrm(M) be such
that f has two hyperbolic periodic points q and p of unstable indices (u+1) and
u respectly. Then there are Cr diffeomorphisms arbitrarily C1-close to f which
preserve m and admits a cu-blender associated with the analytic continuation
of q. Moreover p and q form a co-index one heterodimensional cycle.

Figure 2.1: cu-blender asociated to q
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The next remark says that W+(p) has one more dimension than it should.
This property is C1-robust.

Remark 2.8.1 In the context of the previous theorem we have

W+(q) ⊂ W+(p)

Proof. Given x ∈ W+(q) and let Ux be a neighborhood of x. Then by λ-
lemma, for n big enough fn(Ux) intersects the cu-blender and then it contains
a C1-open set of (u + 1)-strip well placed. As p and q form a co-index one
heterodimensional cycle we have W+(p) ∩ fn(Ux) 6= φ and by the invariance
of the unstable manifold W+(p)∩Ux 6= φ. This proved W+(q) ⊂ W+(p). �
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Chapter 3

Stably Bernoulli
diffeomorphisms

This chapter is the central objective of the thesis. We will present some result
to be able to show the main theorems 1.1.1 and 1.1.2.

3.1 Proof of Theorem 1.1.3 and the minimal-

ity criterion 1.1.4

Before to do the proof of the theorem 1.1.3 and the minimality criterion 1.1.4
let’s see the next result about the semi-continuity of the map f 7−→ Λ(f),
where Λ(f) is the set defined in 2.6.

Lemma 3.1.1 With the Hausdorff topology, the function f 7−→ Λ(f) is upper-
semicontinuous, that is: if fn

C1

→ f then lim supn→∞ Λ(fn) ⊂ Λ(f).

Proof. Suppose that {Λ(fn)} is a sequence nonincreasing of non-empty
compact sets, then we have:

K = lim sup
n→∞

Λ(fn) = ∩∞n=1Λ(fn)

Here K 6= φ by the finite intersection property, on the other hand if x ∈ K

then x ∈ Λ(fn), ∀n ∈ N. We can take n sufficiently large such that fn
is sufficiently close to f with the C1-topology, then if x ∈ Λ(fn) we have
x /∈ Phc+

fn
(pn), where pn is the analytic continuation of p. So from here we
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can deduce that x /∈ Phc+
f (p) ⇒ x ∈ Λ(f), then K ⊂ Λ(f).

If the sets {Λ(fn)} are not nonincreasing, we define

An = ∪∞i=nΛ(fi)

then {An} is a family nonincreasing of non-empty compact sets and

K = lim sup
n→∞

Λ(fn) = lim sup
n→∞

An = ∩∞n=1An

If x ∈ K then x ∈ An = ∪∞i=nΛ(fi), ∀n ∈ N, therefore we can to find a
sequence {xn} such that xn ∈ Λ(fn), ∀n ∈ N and xn → x, this imply that
x ∈ Λf . �

Corollary 3.1.2 If Λ(f) = φ then ∃ U(f) such that Λ(g) = φ, ∀g ∈ U(f).

Proof. Suppose that for every εn = 1
n
there exists gn ∈ Un(f) = B(f, εn) such

that Λ(gn) 6= φ. Then we have the sequence gn
C1

→ f and then by last lemma
lim supn→∞ Λ(gn) is a non-empty compact set incluid in Λ(f), this is absurd
because Λ(f) = φ. �

Proof.[Proof of minimality Criterion 1.1.4]

Step 1 The leaf of each point in x not only intersects W−(o(p)), but W−(p)

itself, that is:

Phcu(p) = {x ∈M : W u(x) t W−(p) 6= φ} = M

Let x ∈ Phcu(p) then there exists k0 ∈ Z such that W u(x) t W−(fk0(p)) 6= φ.
Consider l ∈ N the period of p, then by λ-lemma ∀ε > 0, ∃n ∈ N such that
the unstable manifolds W u(f ln(x)) and W u(fk0(p)) are ε − C1 closed. Here
the unstable manifold of p is dense, then W u(p) t W−(fk(p)) 6= φ,∀k ∈ Z. In
particular W u(fk0(p)) t W−(p) 6= φ, so taking ε > 0 small enough we have
W u(f ln(x)) t W−(p) 6= φ and then W u(x) t W−(p) 6= φ as desired.

Step 2 There exists L > 0 such that W u(x) t W−
L (p) 6= φ for every x ∈M .

Here we call W−
L (p) the set of points that can be joined to p inside W−(p) by

an arc of length less than L, for each L > 0. Indeed, let

Λn := {x ∈M : W u(x) ∩W−
n (p) = φ}, n ∈ N
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Clearly Λn is a compact, u-saturated set. Suppose that Λn 6= φ, ∀n ∈ N then
{Λn} is a sequence nonincreasing of non-empty compact sets satisfying the fi-
nite intersection property and then the intersection is a non-empty compact
set.
Moreover, Λ :=

⋂
n∈N Λn 6= φ is a compact, u-saturated set. For all x ∈ Λ we

have W u(x) ∩W−(p) = φ, which is absurd, because W u(x) t W−(p) 6= φ, for
all x ∈M . Therefore there exists L > 0 such that W u(x) t W−

L (p) 6= φ.

Step 3 For each ε > 0 for each x ∈M W u(x) t W−
ε (p) 6= φ

Given ε > 0 and x ∈ M iterating W−
ε (p) kl-times for the past, we have

f−kl(W−
ε (p)) ⊃ W−

L (p). Due to W u(f−kl(x)) t W−
L (p) 6= φ then W u(x) t

W−
ε (p) 6= φ. We have proved that W u(x) t W−

ε (p) 6= φ, ∀ε > 0 and ∀x ∈M .

Step 4 For every ε > 0 and every x ∈M , W u(x) is ε-dense.
Let L′ > 0 be such that W u

L′(p) is ε
2
-dense and let δ > 0 be such that if

d(x, y) < δ then dH(W u
L′(x),W u

L′(y)) < ε
2
, where dH is the Hausdorff distance.

Now W u(x) t W−
δ (p) 6= φ, ∀x ∈ M , then there exists y ∈ W u(x) ∩W−

δ (p)

such that dH(W u
L′(y),W u

L′(p)) < ε
2
, so W u(x) ⊃ W u

L′(p) is ε-dense.

Since this holds for all ε > 0, W u is minimal. �

Now, We will show Theorem 1.1.3
Proof.[Proof of Theorem 1.1.3]

Step 1 f is stably ergodic.
As before, for all g ∈ U(f) we define:

Λ(g) := M\Phc+(pg)

Here Λ(g) is a compact invariant set and by lemma 3.1.1 the map g 7→ Λ(g)

varies upper-semicontinuously. By hypothesis, W u is an f -invariant expanding
minimal foliation, thus Λ(f) = φ. This implies by the upper-semicontinuity
that Λ(g) = φ in a C1-neighborhood, which we still call U(f).
Due to Λ(g) = φ then Phc+(pg) = M . By hypothesis m(Phc−(pg)) > 0. Then,
by [HHTU11] m(Phc+(pg) ∩ Phc−(pg)) = 1 and g is ergodic. This proves f is
stably ergodic.
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Step 2 If g ∈ U(f) ∩Diff2
m(M) then W u

g (pg) is dense.

Let ωg(x) be the ω-limit set of x ∈ M . It is well known that ωg(x) is
a g-invariant closed set. By Poincaré’s recurrence theorem, x ∈ ωg(x) for
m-a.e.x ∈ M , then Og(x) ⊂ ωg(x), but by ergodicity Og(x) = M for m-
a.e.x ∈M . Then ωg(x) = M for m-a.e.x ∈M .
By hypothesis m(Phc−(pg)) > 0 then there exists x ∈ Phc−(pg) such that
ωg(x) = M and therefore W−(x) t W u(Og(pg)) 6= φ. Let y ∈ W−(x) t

W u(Og(pg)), it’s easy to see that ωg(y) = ωg(x) = M and then W u(Og(pg)) =

M = O(W u(pg)).
Now, W u is minimal then for all fk(pf ) ∈ Of (pf ) we have W−(fk(pf )) t

W u(pf ) 6= φ then there exists U(f) (we maintain the name) such that ∀g ∈
U(f) : W−(gk(pg)) t W u(pg) 6= φ.
Let’s see that W u(gk(pg)) ⊂ W u(pg), ∀k ∈ Z
Let l ∈ N be the period of pg and we consider gl : M → M . Let Du

k ⊂
W u(gk(pg)) a compact disk containing gk(pg) and D = W u(pg). Then by
λ-lemma ∀ε > 0, ∃n0 such that ∀n ≥ n0 there exists Dn ⊂ D such that
dC1(gln(Dn), Du

k) < ε. Let z ∈ W u(gk(pg)) then ∃m ∈ N such that z′ =

g−lm(z) ∈ Du
k . But, by the above, there exists a sequence (zn) ⊂ W u(pg) such

that gln(zn) converges to z′. Therefore z ∈ W u(pg) and then W u(gk(pg)) ⊂
W u(pg), ∀k ∈ Z.
This implies M = O(W u(pg)) ⊂ W u(pg), i.e. we obtain W u

g (pg) is dense.

The previous step and the theorem 1.1.4 implies the minimality of Wg as we
wanted to show. By Alexeev cone criterion for Eu

f and the integrability of the
unstable bundle we have there exists a C1-neighborhood U(f) of f in Diff1

m(M)

such that the map g 7→ TWg is continuous on U(f). This show that W u is
stably minimal.
�

Remark 3.1.1 If there is U ⊂ Diff1
m(M) such that the map g 7→ Wg is con-

tinuous, where Wg is a foliation, then {g ∈ U : Wg is minimal} is a Gδ-set.

Proof. Given ε > 0 and L > 0, the set OL,ε = {g ∈ U : W g
L(x) is ε− dense} is

an open set, then G = ∩n≥1 ∩m≥1 Om,1/n is a Gδ-set and if g ∈ G we have Wg

is minimal. �

The following result is a weak version of the theorem 1.1.3.
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Theorem 3.1.3 Let f ∈ Diff1
m(M), Wf an f -invariant expanding foliation

such that:

1. There exists F an invariant bundle such that the splitting TM = F ⊕<
TWf is dominated.

2. there exists a hyperbolic periodic point pf with unstable index u = dimWf

such that Phcu(pf ) = M .

Then there exists U(f) ⊂ Diff1
m(M) such that:

(I) There exists R ⊂ U(f) a residual set such that for all g ∈ R Wg is
minimal.

(II) If dim(M) = 3, there exists R ⊂ U(f) a residual set such that all g ∈ R
is stably Bernoulli and non-uniformly hyperbolic.

(III) If dim(M) = 3, there exists R ⊂ U(f) a residual set such that for all
g ∈ R we have Wg is stably minimal.

To start the proof of the last theorem I will cite four key results. The
following is a result of Jana Rodriguez Hertz.

Theorem 3.1.4 (Theorem 1.1, [Her12]) Let M be a closed connected
manifold of dimension 3, then there exists R ⊂ Diff1

m(M) a residual set such
that every f ∈ R satisfies one of the following alternatives:

• All Lyapunov exponents of f vanish almost everywhere, or

• f is ergodic and nonuniformly hyperbolic.

the second is a result due to Bochi-Viana [BV05]

Theorem 3.1.5 (Theorem 1, [BV05]) There exists a residual set R ⊂
Diff1

m(M) such that, for each f ∈ R and m-almost every x ∈ M , the Os-
eledets’ splitting of f is either trivial or dominated at x.

the third is a result about of the continuity of the ergodic decomposition
due to Ávila-Bochi [AB12].

Theorem 3.1.6 ([AB12]) There exists a residual set R ⊂ Diff1
m(M) such

that for f ∈ R if there exists p ∈ PerH(f) with m(Phc(p)) > 0, then there
exists a C1-neighborhood U(f) ⊂ Diff1

m(M) such that m(Phc(pg)) > 0 for all
g ∈ U(f) ∩Diff2

m(M).
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and the last one is a result due to Abdenur-Bonatti-Crovisier [ABC11].

Theorem 3.1.7 ([ABC11]) Given a generic f ∈ Diff1
m(M) and µ a f -

invariant ergodic measure. Then there exist a sequence of measures {µn},
each supported on a periodic orbit, such that:

(a) µn converges to µ in the weak-star topology.

(b) suppµn converges to suppµ in the Hausdorff topology.

(c) the Lyapunov exponents of f with respect to µn converge to the Lyapunov
exponents with respect to µ.

Proof.[Proof of Theorem 3.1.3]

(I) By Alexeev cone criterion for Eu
f and the integrability of the unstable

bundle we have there exists a C1-neighborhood U(f) of f in Diff1
m(M)

such that the map g 7→ TWg is continuous on U(f) and Wg is a g-
invariant expanding foliation.
By hypothesis Phcu(pf ) = M , then by the corollary 3.1.2 Phcu(pg) = M

in a C1-neighborhood, which we still call U(f). By Bonatti-Crovisier
(see [BC04], Theorem 1.3) there exists a residual set R ⊂ U(f) such
that W u(p) = M , for all g ∈ R.
The previous argument, together with the Theorem 1.1.4 imply the min-
imality of Wg.

(II) By Theorem 3.1.4 [Her12] there exists a residual set R ⊂ U(f) such that
all g ∈ R is ergodic, non-uniformly hyperbolic and g has a dominated
splitting TM = E−g ⊕ E+

g . By the ergodic decomposition theorem there
exists a hyperbolic periodic point qg of g with unstable index u(qg) =

dimE+
g that satisfy Phc+(qg)

◦
= Phc−(qg)

◦
= M . Here TWg ⊂ E+

g then
u(pg) ≤ u(qg). The proof is divided into two cases.

Case 1 The periodic points pg and qg have the same unstable index.
Generically the periodic points with the same index are homoclinically
related, then Phcu(qg) = Phcu(pg) and Phc−(qg) = Phc−(pg) (see, for
instance [HHTU11]).
By 3.1.6 [AB12] generically the ergodic decomposition is continuous, then
m(Phc−(qg)) > 0 in a neighborhood of g. Theorem 1.1.3 imply g is stably
ergodic and non-uniformly hyperbolic. This proved (II) in this case.
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Case 2 The unstable indices are not equal, i.e. u(pg) < u(qg)

If u(pg) < u(qg) then dimW u
g (x) = u(pg) < u(qg) = dimE+

g . By hy-
pothesis the splitting TM = F ⊕< TWf , so we have a dominated split-
ting TM = Fg ⊕< TWg in a neighborhood of f . By other side TM =

E−g ⊕< E+
g , then we have a dominated splitting TM = Eg

1 ⊕< E
g
2 ⊕< E

g
3 ,

where the extremal sub-bundle are one-dimensional and then Eg
1 and

Eg
3 are hyperbolic. This show that g is partially hyperbolic and by

[RHRHU08] g is generically stably ergodic. This complete the proof of
(II).

(III) We consider the residual set given by the previous item. As before, we
will divide the proof in two cases.

Case 1 The periodic points pg and qg have the same unstable index.
By the same argument given in the first case in (II) we have Wg is stably
minimal.

Case 2 The unstable indices are not equal, i.e. u(pg) = 1 < 2 = u(qg)

By item (I) generically g has a one-dimensional expanding foliation Wg

and Phc(pg) = M .
If u(pg) + 1 = u(qg) then by theorem 2.8.1 of [HHTU10] we obtain
an arbitrarily small C1-perturbation of g, which admit a cu-blender as-
sociated with the analytic continuation of q (we mantein the names).
This situation is C1-robust, and by 2.8.1 there exists a C1-neighborhood
U(g) ⊂ Diff1

m(M) such that:

W+(qh) ⊂ W+(ph) (3.1)

where ph and qh are the analytic continuation of the points pg and qg

respectly.
By the minimality criterion 1.1.4, as W+(qh) is dense in Phc(qh) we
have Wg is stably minimal. This complete the proof of (III).

�

3.2 Proof of Main Theorems

In this section we will to show the main theorems 1.1.1 and 1.1.2. As be-
fore, there exists R ⊂ Diff1

m(M) a residual set such that for all f ∈ R, we
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have that f is ergodic, non-uniformly hyperbolic and there exists a hyper-
bolic periodic point qf such that TM = E−f ⊕ E+

f , u(qf ) = dim(E+
f ) and

Phc(qf ) = M . Suppose that f has a minimal expanding f - invariant foliation
Wf , then TWf ⊂ E+

f . Again, we will divide the proof in two cases:

Case 1 If TWf = E+
f then by theorem 1.1.3 we have Wf is stably minimal

and f is stably Bernoulli.

Case 2 If TWf ( E+
f then dim(TWf ) = 1 < 2 = dim(E+

f ). We will divide
this case in two subcases:

(i) Suppose that there exists pf a hyperbolic periodic point of f with unstable
index u(pf ) equal to one.
By Theorem 3.1.5 [BV05] generically for m-almost every x ∈ M the
Oseledets splitting of f is either trivial or dominated at x. As f is ergodic
for m-almost every x ∈ M we have that the orbit of x is dense in the
manifold M . This implies that the Oseledets splitting is dominated in
the manifold M .
Let λ1 < 0 < λ2 ≤ λ3 the Lyapunov exponents of f . We claim that
generically

λ2 < λ3

Indeed, if λ2 = λ3 then the Oseledets splitting (global) has the form TM =

F1⊕<F2, where dim(F1) = 1 and dim(F2) = 2. This splitting is the finest
dominated splitting (because the exponents are equal) then by Theorem
3.1.7 [ABC11] generically there exists a sequence {pn} of periodic points
such that the Lebesgue measure is approximate by periodic measures {µn}
(each supported on the periodic orbit O(pn)) and the Lyapunov exponents
of f with respect to µn converge to the exponents with respect to Lebesgue.
Let Vn1 ,Vn2 ,Vn3 be the eigenvalues of Dpnf

π(pn), where π(pn) is the period
of pn. Then Dpnf

π(pn)(vnj ) = Vnj vnj and |Vnj | = eλjπ(pn).
Then, if n is large enough we have Vn2 is close enough to Vn3 , then making
a small C1-perturbation of f (conservative) we can suppose that f has a
hyperbolic periodic point with complex eigenvalues. This situation is not
possible, because in this case f does not admit a f -invariant expanding
foliation one dimensional, then λ2 < λ3 as we wanted to show.
Thus generically the Oseledets splitting has the form E1⊕<E2⊕<E3 and
TWf = E2 or TWf = E3. Here the extremal sub-bundle E1 and E3 are
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one-dimensional then f is partially hyperbolic and then by [RHRHU08]
f is stably Bernoulli.

• If TWf = E2, as the be an Anosov diffeomorphism is a open condi-
tion and the dominated splitting persist under C1 perturbation, then
by [Ham13] Wf is stably minimal.

• If TWf = E3 , then as before the situation u(pf ) + 1 = u(qf )

implies that generically (by theorem 2.8.1 - [HHTU10]) f admit
a cu-blender associated with pf , then there exists a C1-neighborhood
U(f) ⊂ Diff1

m(M) such that:

W+(qg) ⊂ W+(pg)

where pg and qg are the analytic continuation of the points pf and
qf respectly. By the minimality criterion 1.1.4, as W+(qg) is dense
in Phc(qg) we have Wf is stably minimal.

(ii) If all hyperbolic periodic points have the same index then we have two
possibilities:

• There exists a C1-neighborhood U(f) such that every g ∈ U(f) has
not hyperbolic periodic points of different index (and then these
points has the same index of the periodic points of f). Then by
Theorem 2.6.3 f is an Anosov diffeomorphism. This implies that f
is stably Bernoulli.
Here Wf is the strongest foliation of an Anosov diffeomorphism or
TWf is the intermedial subbundle of an Anosov diffeomorphism. In
this last case by [Ham13] we have Wf is stably minimal.

• In another case, making a C1-perturbation of f , we can suppose that
f has hyperbolic periodic points of different indices. This case we
have already discussed previously.

This completes the proof of the theorems 1.1.1 and 1.1.2.
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