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Keywords: Nonlinear systems, Poincaré-Bendixson, almost global stability,
planar systems.

1. INTRODUCTION

The almost global stability of dynamical systems
is a concept weaker than global asymptotical
stability but that can fit well in nonlinear con-
trol applications, specially when it is combined
with local asymptotical stability. The concept and
a sufficient condition for almost global stability
were stated in the year 2001 by Anders Rantzer
(Rantzer, 2001b) as a dual Lyapunov Method and
has opened a new research direction in the nonlin-
ear control field for both analysis and synthesis.
The main result in (Rantzer, 2001b) is based on
the existence of a density function, a kind of a dual
of a Lyapunov function, that allows us to measure
the growth of given sets along the flow.

In this work we explore the conditions that the ex-
istence of non-preserving measures impose to the
behavior of two dimensional vector fields, blending
the ideas of almost global attraction with the
classical result of Poincaré-Bendixson. We think
that this ideas can help to understand density
functions and almost global stability.

In Section 2 we recall the basic definitions of
almost global stability and density functions and
the results between both concepts. We briefly in-
troduce also the idea of monotone measure. After

that we state and prove the main result for planar
systems. Finally we present a counterexample in
dimension three and some conclusions.

2. PRELIMINARIES

In this Section we introduce the works of Anders
Rantzer reported in several papers appeared in
the last years. We said that the origin is an almost
global attractor (a.g.s.) if the complement of the
set of points that are attracted to the origin has
zero Lebesgue measure. For x0 ∈ Rn, let f t(x0)
denote the time t of the trajectory that starts at
x0. Then the system is a.g.s. if the set

{

x ∈ Rn | lim
t→+∞

f t(x) 6= 0

}

has zero Lebesgue measure. This concept of stabil-
ity is weaker than the classical global asymptotic
stability (g.a.s.) but can complement well the local
asymptotical stability (l.a.s.) property. The key
contribution of (Rantzer, 2001b) was the intro-
duction of a particular kind of functions that for
a.g.s. systems play a role similar to the Lyapunov
functions for asymptotically stable systems: the
density functions. Given a dynamical system ẋ =
f(x), a density function for this system is a scalar
function ρ : Rn \ {0} → [0, +∞), of class C1,
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integrable outside of a ball centered at the origin,
and such that the following divergence condition
is satisfied

∇.(ρf)(x) > 0 almost everywhere (a.e.) (1)

A density function gives us a system-related
way of measure sets in Rn. The main result in
(Rantzer, 2001b) says that the existence of a den-
sity function implies the almost global stability
of the origin. Some steps has been done in or-
der to prove that the condition is also necessary
(Monzon, 2003; Rantzer, 2002). Some works have
explored the analysis and synthesis of nonlinear
control systems (Parrilo, 2000; Ceragioli, 2001;
Rantzer, 2001a; Angeli, 2002; Angeli, 2003).

The existence of a density function implies the
existence of a Borel measure µ for the state space
that grows along the trajectories: i.e., for every
non-zero µ-measure set Z and every positive time
t,

µ
[

f t(Z)
]

> µ(Z)

The measure µ also satisfies that µ [Bc(0, ε)] < ∞
for every ε > 0. We refer to that as a monotone
measure bounded at infinity. The existence of
monotone measures is a necessary and a sufficient
condition for some kind of almost global stable
systems, as was studied in (Monzon, 2003b). In
the next sections we will assume the existence of a
measure with some particular properties. In some
cases, the existence of a monotone measure, or
the existence of a density function, put us in that
situation.

3. THE MAIN RESULT

We present here a result for two dimensional
spaces that combines non-preserving measures
with the Poincaré-Bendixson Theory. First of all
we recall the definition of the ω and α limit sets
for a given trajectory.

Definition 3.1. For x ∈ Rn, we define ω-limit of
x as the set

ω(x) =
{

y ∈ Rn | ∃{tn} with lim
n

tn = +∞,

lim
n→+∞

f tn(x) = y

}

The α-limit is defined in the same way with tn →
−∞.

♦

It can be proved that if the trajectory {f t(x)} is
bounded for t → ±∞, ω(x) (α(x)) is a non-empty,
compact, connected and invariant set (Khalil,

1996) and we can talk of the ω (α) -limit of the
whole trajectory through x.

Theorem 3.1. Consider the system

ẋ = f(x)

where f ∈ C1
(

R2,R2
)

. Assume that there is a
finite number of fixed points in any compact set
of R2. Suppose there exists a measure µ � m,
with m the Lebesgue measure, satisfying that
for every bounded and measurable set Y , with
0 < µ(Y ) < ∞, there exists t 6= 0 such that

µ
[

f t(Y )
]

6= µ(Y ) (2)

Then, almost global stability (a.g.s.) of the origin
implies local asymptotical stability (l.a.s.).

Proof:

The Poincaré-Bendixson Theorem (Khalil, 1996)
states that for a given point x ∈ R2 whose positive
orbit is bounded, ω(x) can be only

(1) a singular point
(2) a closed orbit
(3) singular points p1, p2, . . ., pn and regular

orbits γ such that α(γ) = pi, ω(γ) = pj ,
i, j = 1, . . . , n.
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Figure 1. Possible structures for a non empty ω-
limit set.

The same result follows for the α-limit set (Khalil,
1996). Typical ω-limit (α-limit) possible sets for a
point x are shown in figure 1. The hypothesis (2)
about µ implies that the only possible situation
for a non empty ω-limit (α-limit) set is a single
fixed point, case (d) in figure 1, since cases (a), (b)
and (c) contains an invariant non-zero Lebesgue
measure set. This will be an important fact.

We will prove the thesis by contradiction. Suppose
that the origin is not a locally asymptotically
stable fixed point. Then, there is an ε > 0, small
enough to ensure that x = 0 is the only singular
point inside the open ball B(0, ε), such that for
every non-zero n ∈ N we can find a xn ∈ R2 with

‖xn‖ <
1

n
, sup

t≥0

{

‖f t(xn)‖
}

> ε (3)

as in figure 2. Define zn as the first intersection of
the trajectory {f t(xn)} with the sphere S(0, ε).
Then we obtain a sequence {zn}n∈N of points
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Figure 2. Finding the sequence {xn}.
with norm equal to ε, whose trajectories to the
past come close to the origin. Since S(0, ε) is a
compact set, we can find a sub-sequence, which we
still call {zn}, converging to a point z ∈ S(0, ε).
We affirm that

α(z) = {0}
If it is not the case, there is a positive real a
such that the trajectory never goes inside the ball
B(0, a). Then, since x = 0 is the only singular
point in B(0, ε), the trajectory {f t(z)} leaves the
ball B(0, ε). The situation is shown in figure 3.

PSfrag replacements
0

zn

xn

ε

a

z

Figure 3. Case: α(z) 6= {0}.

Then every trajectory starting close enough to z
will accompany {f t(z)} to the past out of the ball
and there exists a non-zero natural N1 such that
for every n > N1, the trajectory {f t(zn)} leaves
the ball for some negative t. On the other hand,
there is a non-zero natural N2 such that for every
n > N2

inf
t≤0

{‖f t(zn‖} <
1

n

Then, for every n > max{N1, N2}, the negative
trajectory through z leaves B(0, ε) before it gets
close to the origin, but this can not occur since
zn was defined in a way such that the piece of
trajectory from xn to zn is totally in the inside of
the closed ball B(0, ε). Then α(z) = {0}.

Now consider a transversal section to the trajec-
tory through z. On this section, we can find a
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Figure 4. Non zero measure invariant sets.

point y0, arbitrarily close to z, whose ω-limit is the
origin, since this kind of trajectories form a dense
set due to the a.g.s assumption. Then, as in the
Poincaré-Bendixson Theorem, we can construct a
closed path with the negative trajectory through
z, a piece of the transversal section and the pos-
itive trajectory through y0. This path limits a
closed region of the plane, with a finite number
of fixed points inside it. The first situation we
can have is the one shown in figure 4-(a). On the
transversal section, we can find two points whose
ω-limit sets are the origin and their α-limit sets
are some singular point (could be other than the
origin). The trajectories through these points are
like the bold ones in figure 4-(a). The other case
is shown in 4-(b) and the result is the same of the
case (a). In both situations, the sets limited by the
bold trajectories are invariant and have non zero
Lebesgue measure. This is an absurd and then the
origin is a locally stable fixed point.

�

Observations:

First note that if the measure µ is monotone, then

the condition (2) is fulfilled.
The almost global stability assumption can be
relaxed. It is enough to ask that the set of tra-
jectories attracted by the origin is dense in the
plane; that is, given a point x ∈ R2 and δ > 0,
there is a point y ∈ R2 such that

‖x − y‖ < δ and lim
t→+∞

f t(y) = 0

We apply the previous result in order to character-
ize the behavior at infinity of an almost globally
stable system.
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Theorem 3.2. Consider the complete nonlinear
system ẋ = f(x) with f ∈ C1

(

R2,R2
)

. Assume
that the set f−1({0}) is finite in R2 and that there
is a monotone measure µ bounded at infinity. If
the set

A = {x ∈ R2 | lim
t→+∞

‖f−t(x)‖ = +∞}

is dense in R2 then the ∞ is a locally asymptoti-
cally stable point to the past.

Proof:

We have to show that given an arbitrary positive
number M , there is a positive number K, depend-
ing on M , such that

if ‖x‖ > K ⇒ ‖f−t(x)‖ > M ∀t ≥ 0

and that K can be chosen just that ‖f−t(x)‖ →
+∞.

Instead of that, we will compactify the plane us-
ing the stereographic projection in order to work
on the compact Riemann sphere. Doing this, we
obtain a dynamical system on the sphere with
an a.g.s. equilibrium point at the south pole S
(corresponding to the origin of the plane) and
an equilibrium point at the north pole N (cor-
responding to the infinity of the plane). We know
that N attracts a dense set of trajectories to the
past and that we can define a Borel measure µ
over the sphere in a way that given any non
zero Lebesgue measure neighborhood Y of N with
S /∈ Ȳ , it verifies 0 < µ(Y ) < ∞ and for every
t > 0,

µ
[

f t(Y )
]

> µ(Y )

Then we consider the reversed system over the
sphere

ẋ = −f(x)

and we obtain that N attracts a dense set of
trajectories. We can reconstruct the proof of The-
orem 3.1, denying the Thesis and getting the ex-
istence of the bold trajectories of figure 4. If the
set A enclosed by this curves has finite measure µ
we get an absurd, just as in the previous proof.
So, the question we must answer is if S ∈ Ā.
But if it was the case, S would be the α-limit of
the bold trajectories and then S could not attract
almost all the trajectories of the original system.
In order to see this, consider again the closed
path constructed with the negative trajectory of
z, the positive trajectory of y0 and a piece of the
transversal section through z. We draw again the
picture in figure 5.

Then all the trajectories started outside this
closed path must enter it to reach S and these can
be done only through the piece of transversal sec-
tion, which can be made arbitrarily small because
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Figure 5. Situation on Theorem 3.2.

of the dense assumption on the set of trajectories
attracted by the north pole N to the past.

�

The counter-reciprocal version of the previous
Theorem is very interesting.

Corollary 3.2.1. Consider the nonlinear system
ẋ = f(x) with f ∈ C1

(

R2,R2
)

. Assume that
the set f−1({0}) is finite in R2 and that there is a
monotone Borel measure µ bounded at infinity. If
there is at least one trajectory that goes to infinity
to the future, then the set of trajectories that go
to infinity to the past is not dense in R2.

Example 3.1. (Rantzer, 2001b) Consider planar
the system

[

ẋ1

ẋ2

]

=

[

−2x1 + x2
1 − x2

2

−6x2 + 2x1x2

]

It has four equilibria at (0, 0), (2, 0) and (3,±
√

3).
We note that the axis {x2 = 0} is an invariant set.
Then, if we consider the initial condition (x10, 0)
with x10 > 2, we find out that the trajectory
goes to infinity. Besides that, the system admits a
density function

ρ(x1, x2) =
[

x2
1 + x2

2

]−2

∇. [ρf ] (x1, x2) = 16.x2
2.

[

x2
1 + x2

2

]−4

Observe that the local stability of the origin and
the existence of the monotone Borel measure
prevent the existence of limit cycles. Then, we can
conclude that there exist trajectories that do not
go to infinity to the past and then they must go
to another equilibrium point.

4

Of course the previous result of Example 3.1
could have been obtained through other ways. For
example we can classify the equilibrium points
and realize that the only divergent trajectory is
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the one we have found. Moreover, the trajectories
that are not attracted by the origin are this one
and the stable manifold of (2, 0), as can be seen
in figure 6.
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Figure 6. System of Example 3.1.

The main result of this section is deeply grounded
on the topological consequences of the dimension
2. The following example shows that in dimension
3 we can have a measure satisfying (2) but the
origin can be a.g.s. and not locally stable.

Example 3.2. Consider the following dynamical
system defined on R3:







ẋ = x2 − y2

ẏ = 2xy
ż = −z

On the z direction we have the decoupled dynamic

z(t) = e−t.z0

and at the plane z = 0 the dynamic has the
phase portrait depicted in figure 7. As can be
proved analytically, the trajectories on z = 0 are
circumferences with the center on the line x = 0.
So the origin (0, 0, 0) is an almost globally stable
equilibrium point but not locally stable.

We will see that the Lebesgue measure λ veri-
fies (2). Consider a bounded nonzero measure set
C ⊂ R3. It can be covered by a bounded rectangle
A × B, with A ⊂ R2 and B ⊂ R bounded Borel
sets. It is clear that if we denote by F the field on
R3, we have

λ
[

F t(A × B)
]

= m
[

f t(A)
]

.e−t|B|
where |B| stands for the length of the interval B
and m denotes the Lebesgue measure on R2. The
numbers m [f t(A)] are bounded since almost all
the trajectories converge to the (0, 0) in the plane
z = 0. Then there is a time t big enough such that

λ
[

F t(A × B)
]

< λ[A × B]

and λ verifies (2).

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Figure 7. System of Example 3.2 on z = 0 (we
have taken ρ0 = 4).

4

4. CONCLUSIONS

We have presented a result for planar systems that
states a relationship between the new concepts
of almost global stability and density functions
and the classical Theorem of Poincaré- Bendixson.
We have also shown a counter-example in R3 in
order to emphasize that the result is based on the
topological structure of two dimensional systems.
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