Analysis and improvements to MATE algorithm

Miguel Griot, Gabriel Tucci, Pablo Belzarena, Santiago Remersaro

IIE, Facultad de Ingenieria, UDELAR, Uruguay. email:[mgriot,belza,gtucci|@fing.edu.uy

Abstract

This paper describes an implementation, analysis
and improvements to MATE (MPLS Adaptive Traffic
Engineering) algorithm [6]. MATE is an on-line load
balancing algorithm. As MATE was originally thought
for constant average incoming traffic, the first improve-
ment is the usage of an adaptive update step size for
time varying traffic. The second one modifies the time
interval between updates to adequate itself to the traffic
characteristics and calculate the amount of measure-
ments in each interval to have a reliable statistic. The
original algorithm and the new version, which will be
called MATE-TV (MATE for Time-Varying traffic),
were implemented in a LINUX - MPLS network, using
the ‘mpls-linuz’ packet distributed by Source Forge [4].

I. Introduction

HE MPLS (MultiProtocol Label Switching) [1]

architecture allows to do Traffic Engineering
(MPLS-TE) in IP networks [2]. The main MPLS func-
tion that allows Traffic Engineering is Explicit Routing
which allows to create predefined paths (LSPs) for the
arriving packets from the edge routers.

Load Balancing is one of the main research areas in
MPLS-TE. It focuses on the idea of splitting the traffic
of an aggregated flow between various pre-established
LSPs based on some network optimality criterion. Di-
verse load balancing algorithms have been developed
in the last few years. Some authors have been working
on this topic, using an off-line approach in a MPLS
network [3], based on effective bandwidth models.

Other authors have been working on load balanc-
ing in a MPLS network using on-line tools. With this
approach, a load balancing algorithm named MPLS
Adaptive Traffic Engineering (M ATE), which ap-
pears as an important step in the research and devel-
opment of this topic, is proposed in [6]. An analysis of
MATE is made in this article, some weaknesses of it
are discussed and some improvements are proposed.

Firstly, the algorithm is designed for constant incom-
ing traffic, not guaranteeing its convergence for time-
varying traffic. Secondly, there is no criterion for deter-
mining the size of the time interval between the load

balancing updates, although it is specified that this
time interval must be bounded and an update must
be made every time the delays start to grow. This
paper proposes improvements to the original MATE
algorithm that solve both problems.

II. MATE overview

MATE models the network as a set of L unidirec-
tional links. The network is shared by a set of S
ingress-egress (IE) pairs. Each one of these IE pairs
has a set of P, LSPs available.

Each IE pair s has an incoming rate r; and routes
z5p amount of it on LSP p € P, so that

Zwspzrs for all seS
pEP;s

Let x5 := (z5p,p € P5) be the rate vector of s and
z := (Tgp,p € Py, s € S) the vector of all rates.

The flow on a link ! € L has a rate 2! that is the
sum of the source rates on all LSPs that go through
the link [. Hence,

d-Y Y w,

s lEp,pEPs

There is a cost Cj(z!) associated with each link, which
is assumed to continuous and convex.

MATE objective is to minimize the total cost func-
tion C(x) defined as C(z) := >, Ci(x') by optimally
routing the traffic on the LSPs available. MATE goal
is to find:

min C(z) = minz Ci(zh) (1)
1
subject to
Zpeps zsp=rs forallseS. @)
ZTsp >0 forall pe P, and se€S.

A vector z is called optimal if it is a minimizer to
the problem (1 - 2).

A standard technique to solve the constrained op-
timization problem (1 - 2) is the gradient projection
algorithm. Each iteration in each pair s takes the form:

.'Ifs(t + 1) = [-'L's(t) - 'chs(t)]+ (3)

where VCs(t) = (0C(z)/0zsp , p € Ps) and [2]" is
the projection of a vector z onto the feasible space.

In [6] it is proved that under certain conditions,
starting from any initial vector z(0), there exists a suf-
ficiently small stepsize v such that any accumulation
point of the sequence {z(t)} generated by the asyn-
chronous algorithm is optimal.

IIT. MATE algorithm implementation
A. Link cost selection

The link cost used in this work is the one shown as
an example in [6]; that is, its delay, modelling it as the
average delay of an M/M/1 queue. In that case the
cost of a link [is

1
) = Rie) = —— (4)
Then,
oC ! [) 20,0
s (@) =) Cla") =) R =Y R
P lep lep lep

since Rj(z') = R?(z'). Hence, it is not necessary to
measure z' in order to calculate R'(z!), we just need
to measure the delay in the link R; and then calculate
R}.

IV. Improvements to MATE for time-
varying traffic

MATE is developed under the hypothesis that the
average incoming traffic rate to each pair s is constant
and known. Generally this is untrue. This fact changes
the control problem from a problem of convergence to
a fixed optimum point, to a variable optimum point
tracking. For that reason, some improvements have
to be done to the original algorithm so as it can work
independently of the incoming traffic characteristics.

Basically, we introduce two major changes that will
be shown in the next sections. But before introducing
these changes there is a first detail to modify. That is,
as we are working with variable incoming rates, we can
no longer work with rates but with percentages. Let
rs(t) be the incoming traffic of a certain pair s, and
¥sp(t) the percentage of the incoming traffic routed on
the LSP p, then the update equation using percentages
becomes:

g 20,1
t+1)= t)y-———=>» R . (5
balt +1) =) = T SR,)
A. Adaptive v
A.1 Divergence problem when using a fixed «

In [6] it is proved that, provided that the derivative
of the link cost function is Lipschitz with Lipschitz

constant L, the algorithm converges to an optimal or
a set of optimal points as long as:

¢
Y < Ymaz = I (6)
where ¢ depends on the network topology and asyn-
chronism degree.

Now, using 4 as our link cost function, the derivative
of this function is not Lipschitz in the interval [0, ¢;),
unlike what it is stated in [6], so if we cannot guaran-
tee that the average incoming traffic rate to each link
(x%) is strictly less than its capacity (c;), we cannot
guarantee MATE’s convergence. Moreover, although
it seems reasonable to make that assumption, it is not
sufficient; it can be shown that for any fixed value of
¥ = 7, we can find a value of z! .. < ¢; such that
Ymaz (Thap) < YF; thus, we cannot guarantee MATE’s
convergence, even under the assumption that z! < ¢
for every link .

Therefore, each pair should use an adaptive value
of v that somehow takes into account in each update
the traffic rates in the links belonging to its LSPs. In
particular, if in any link I, (critic link) z'c — ¢;, then
v should tend to zero.

If we analyze the problem intuitively, when the in-
coming traffic rate of a certain link [is almost equal in
media to its capacity, the delays increase so much that
the term

S By) = L3 Y Ri) (7)

% lep peP,

(where R, is the vector of delays in path p) of eq.(5)
can be of the order or even greater than the term 1.
This leads to the possibility of abrupt changes in the
percentages routed to each of the possible paths, which
leads to oscillations. For that reason, v should depend
on the incoming traffic rate and the delays measured,
which are the only known variables to the algorithm.

We propose the use of an adaptive value of «y calcu-
lated in each update, so that the average of the terms
Sp(7, R},) is always less than or equal to a given factor
p of the average of the terms ¢,. Hence, the variations
in the percentages are always less than p, avoiding this
way abrupt oscillations.

To achieve this goal, we propose the following adap-
tive calculation of v:
Defining Z = 33, 3" p, i (z') then

— s
V= PEgy (8)

where f(Z) satisfies that f(Z) > ZVZ, f(Z) ~ Z for

large Z, and % — 0 when Z — 0. In particular we

can use:)

12 =z+ m(l+mZ) ©)
which satisfies all the requirements. Let us explain
eq.(8) in more detail. For large delays, Z becomes
large, and f(Z) ~ Z, so eq.(8)becomes v = p72. Us-
ing that value of + it is easy to prove that the average
of the terms Sp(y,ﬁp) is equal to p/N (where N is
the number of possible paths), which is p times the
average of the percentages 1, meeting our goal. For
small delays, Z — 0, so % — 0. It is easy to see

that in that case S, (v, R,) tend to zero, which is ex-
actly what we want, taking into account that when
the delays are small we are near the optimum, so the
variations should be small.

The parameter m is an adjustment variable which is
calculated from the minimal expected delay in a link.
Because we are going to have a minimal delay in a link,
the value of Z is going to be greater than a Z,,;, which
is the value of Z when all the queues of all the routers
are empty. If, for example, we want that f(Zin) =
10Z,,;n so that near the optimal point the variations
in the percentages of the update are near %, then m
becomes: m ~ -

The value of Z,,;,, is a configurable parameter of the
algorithm, and it can be calculated as Zp;, = LRZ,,
where L is the number of links in all the paths, and
R,in is the minimum delay of a link.

Now, remembering eq.(5), the update equation be-
comes:

EleP Rl2 (ml)
Liep 2per, T (7))

Vp € P;

(10)
This equation has the great advantage that we do not
need to know the value of rg, so it is not necessary to
measure the rate of incoming packets.

¢p(t) = ¢p(t -1) - Pf(

A.2 Behavior of v as a function of the traffic.

Now we are going to study the behavior of v when
the traffic in a link /. is near its capacity.
When z' — ¢, Ry, (z'°) - +o0, s0 Z ~ R} (z!) =
R? and f(Z) ~ Z ~ R? obtaining that
Ts T's
=P 2 ppy — 0
Y=p 7(2) p R2

c

meeting our objective. In the same way, v tends to 0
when we have N critical links.

B. Adaptive interval between updates

When the traffic is not constant the time interval
between updates must be adapted to the character-
istics of the incoming traffic, which should be quasi-

stationary between the updates, in order to stay under
the hypothesis of the MATE algorithm.

We propose a procedure that accomplishes that re-
quirement,trying at the same time to minimize the rate
of measures, in order to affect as less as possible the
network with delay measuring packets.

Suppose we take k measures of the delays Y3,...,Yy
during the interval dt. These measures are going to be
modelled as random variables with the same distribu-
tion F and E(Y;) = p.

We would like to use a value of k such that:

P(‘%—u‘>§) <e (11)

where Sy := Y1 +...4+Y%, and € and £ are appropriately
chosen values.

To obtain k¥ we use the Chernof Theorem [7].
Then, in order to satisfy eq.(11), k¥ must satisfy:

—In(e)
G(6)

where G is the Fenchel-Legendre or the Cramér Trans-
form [7] applied to the random variable X =Y — p.
Thus, the probability that the average of the k mea-
sures fall outside the interval I,¢ := [p — & p+ €], is
smaller than e. On the other hand, we take the reliable
interval I,,, = (4 — v, p + v) where v > £.
The value of y is estimated in the i-th interval by:

k>

(12)

i = 0 4+ (1~)i (13)
where a € [0,1] and it is configurable.

Our criterion in the selection of the interval between
updates is the following:

We take a finite set of possible intervals of duration
dt] < dty < ...<dtyn.

Suppose we are at the beginning of the i+ 1-th inter-
val between updates and we have calculated p; and the
duration of this interval dt,,. We calculate k& so that
k > —In(e)/G(€). Then we take k measures of the
delays Y1,Y5,...,Y) and calculate their average S /k.

Our criterion of adjustment differentiates between
four different cases.

e In case % > p; + v we diminish the interval to
dtmax{l,m—l}-

o In case % < w; — v, although we can affirm that
the statistic changed, it did it for the benefit of the
algorithm. So we maintain the same interval dt,,.

S
e In case ‘Th — W

< £ we are in the stationary situ-
ation and so we use the immediately greater interval
At min{N,m+1}-

e In case & < ‘S—; — ui‘ < v, we are in the reliable

interval and so we maintain the interval dt,,.

B.1 How do we calculate G without knowing the
distribution function F'?

To estimate G, we define X; = Y;—p for all i € [1,k].
Now, we compute

P(t) =Iln [E(etz)] =In l% (etXl + ...+ etX’“)] .

G(§) = sup{&t —(t) : t € J} (14)
It can be shown that if X, < € < Xjnge then G(§)
is finite.

If the hypothesis of the Chernof Theorem holds,
which means that the random variables {Y;}¥_, (mea-
surements of the delay in the links) are independent
and identically distributed with known distribution
function, this criterion of varying the time between up-
dates works properly. Nevertheless, it is necessary to
discuss the veracity of this hypothesis. It is accurate
to assume that the random variables are independent
because the traffic in a link comes from many indepen-
dent sources and the time interval between measure-
ments is long enough.

The second hypothesis, that the Y; are identically
distributed, will hold if the time interval between up-
dates is short enough for the system to be quasi-
stationary. However, it is possible that the time inter-
val between updates becomes longer than it should for
the delay in the link to be quasi-stationary in which
case the hypothesis of the Y; being identically dis-
tributed does not hold. It is clear that the longer the
interval the more possible that this problem arises.

To solve this problem, we change the computation
of the amount of measures to be made as follows:

If the length of the interval is dt,, then k, measure-
ments will be made, where:

1 /dt, ko | dt,
e (o)) - o]

Then we take all the possible sets of kg consecutive
measurements and if the mean delay of any of these
sets is bigger than u; + v, the time interval will be
shortened. Moreover, the verification of the kg consec-
utive measurements is done in the moment that they
are obtained. If we fall outside the reliable interval,
the percentages for the load sharing are updated im-
mediately and the next time interval is shortened.

This solves the problem mentioned before diminish-
ing the frequency of measurements when the time in-
terval is lengthened, meeting our objective.

kr = ko

V. Experimental methodology.

An experiment was designed to evaluate the perfor-
mance of MATE-TV. The objective is to verify that

the algorithm converges given an important change in
the network incoming traffic, to analyze the evolution
of the quantity of measures and the interval length be-
tween updates, and to observe the convergence speed.
The experiment consisted of two stages and was per-
formed in the network topology of figure 1.

EGRESS LER

19.2 kbps
9.6 kbps

19.2 kbps

ress LER

Fig. 1. Experimental topology

A. Stage 1

In this stage there is an incoming traffic in ingress
LER 1 and none in ingress LER 2. The incoming traffic
has a Poisson distribution with mean 11.5 kbps.The
starting percentages assigned to the LSPs of LER 1
are: (LSP 1.1 : 33% ; LSP 1.2 : 67%).

Given that the link capacities of the path LSP 1.2
are twice the capacities of LSP 1.1 the final percentages
should be: (LSP 1.1 : 10% ; LSP 1.2 : 90%).

This stage has the purpose of enlarging the inter-
val between updates; despite the fact that there is a
slight change in the percentages the delay variation is
so small that the interval should increase.

B. Stage 2

In the second stage an incoming traffic to the LER
2 is added with Poisson distribution with mean 23.4
kbps. This overloads the link shared by the paths LSP
1.2 and LSP 2.1, so the MATE-TV running on LER 1
should reduce the interval between updates and start
routing more traffic on the LSP 1.1. This stage mea-
sures the reaction time of MATE-TV facing a change
in the network traffic and the correct convergence to
the new optimum point. Once the optimum is reached
the interval between updates should increase again.

VI. Results

The following graphics show the results of this exper-
iment. It can be observed that in stage 1 the percent-
ages tended to the predicted values without reaching
them since the delay were small and so were the up-
date steps. On the other hand, in this stage the time
between updates increased up to 180 seconds.

In stage 2, when the traffic started entering in LER
2 the delays in LSP 1.2 increased abruptly, so the in-
terval between updates was accordingly reduced and
the percentages changed to route more traffic on LSP
1.2, reducing the delays. Once reached the optimum
point, the interval size started to increase again.

Traffic in the network pairs
35

30 LER 1
— LER2

0
S
T

s

Poisson Traffic [x,28] (x)

ok

0 ,
0 200 400 600 800 1000 1200 1400 1600
Time in seconds (t)

Fig. 2. Incoming traffic by ingress LERs

Interval between updates, dt

|

Value of dt

.)
0 200 400 600 800 1000 1200 1400 1600
Time in seconds (t)

Fig. 3. Evolution of the interval between updates

VII. Conclusions

We have introduced two alterations to the original
MATE algorithm in order to remove the assumption
of constant average incoming traffic.

o The first improvement is the use of an update step-
size which adapts to the traffic characteristics. This al-
lows to guarantee the convergence under time-varying

Load percentaje in each LSP

— LsP 1.1
LSP 1.2

0.8 4

Percentages

.
0 200 400 600 800 1000 1200 1400 1600
Time in seconds (1)

Fig. 4. Percentages forwarded by LSP 1.1 and LSP 1.2

LSPs mean delay value in seconds
1.2 T T T T T T

— LSP1.1
LSP1.2

1k 4

Mean delay in each LSP
=4 o
> @

T T
L L

o
=
T

L

.
0 200 400 600 800 1000 1200 1400 1600
Time in seconds (1)

Fig. 5. Mean RTT by LSP 1.1 and LSP 1.2

traffic and also improves the convergence speed when
the traffic is constant, as explained in IV-A.

e The second improvement is to automatically calcu-
late how many measures to take between the different
updates to obtain a reliable estimation of the delays.
Besides, the interval between updates is updated, ba-
sically taking long intervals in quasi-stationary condi-
tions and shorter intervals when the traffic is changing.

References

[1] E.Rosen and A. Viswanathan, Multiprotocol Label Switching
Architecture, RFC 3031, IETF, January 2001

[2] D. Awduche and J. Malcolm Regquirements for Traffic En-
gineering Over MPLS, RFC2702, IETF, 1999

[3] R.Casellas and J.L.Rougier and D.Kofman Packet Based
Load Sharing Schemes in MPLS Networks, ECUMN’2002,
Colmar, April 2002

[4] http://sourceforge.net/projects/mpls-linux/

[5] Amir Dembo and Ofer Zeitouni, Large Deviations Tech-
niques and Applications Jones and Barlett Publishers, 1993.

[6] TEEE INFOCOM 2001 pag. 1300, MATE: MPLS Adaptative
Traffic Engineering

[7] James A. Bucklew, Large Deviation Techniques in Decision,
Simulation, and Estimation.

