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ABSTRACT 

 
A method is presented for segmentation of anatomical 

structures that incorporates prior information about shape. 
The method iteratively applies steps which  find object’s 
border considering its properties independently from 
shape. The boundary is regularized taking in account the 
shape being extracted. Detection is not directly performed 
in the image but in a “shape space” referred to the shape 
in each step. The problem is reduced to work in this new 
coordinate system where the border is approximately  a 
horizontal line.  Shape information is introduced through  
a higher dimensional map similar to a distance map of a 
mean shape. Segmentation results are demonstrated on 
ultrasound imagery to measure meat quality of bovine and 
ovine livestock. 

 
1. INTRODUCTION 

 
Segmentation in noisy images is an important topic 

specially in ultrasound imaging where object  geometrical 
properties  are critical for the applications [5][6].  

Most of these problems consist in segmenting a closed 
shape in which different texture from the medium is 
observed or edges around the object define its boundaries  
[1][3][4][6]. 

In animal quality applications, the same basic 
problems are found. Animal profit can be predicted from 
measures taken with non-invasive techniques such as 
magnetic resonance imaging (MRI) or ultrasound. 
Ultrasound images allow the measurement of standard 
quality indicators as the Rib Eye Area [8][9]. Today these 
parameters are manually measured by experts on the 
ultrasound images to evaluate animal profit.  

Automatic, real time measure of such indicators has 
several advantages over manual tracing measures. One of 
them is the possibility to classify animals in acquisition 
time. Besides, taking more objective measures, makes 
possible to establish well defined standards. 

An important noise component is present in this kind 
of application images. Low image quality suggests the use 
of robust methods that consider additional information 
about the object being extracted.   

An iterative algorithm based on the evolution of a 
curve for object segmentation in noisy images is 

proposed. In each evolution step, the curve is moved to 
object’s border and its shape is adjusted. 

The first part of each evolution step consists in 
looking for object’s border and moving the curve towards 
it. The image is transformed into what we will call the 
“shape space”. In this new coordinate system, borders are 
referred to the curve in that step (the reference border 
curve), making the processing in that step independent of 
object’s shape. 

In the shape space, a new curve is found. The next 
curve in the evolution is build using the edges and the 
reference border curve. 

In the second part of each step, shape knowledge 
information is used. Curve pose, size and principal 
moments are calculated  to fit a shape model. Shape is 
corrected according to the model. 

Border detection and shape correction are iteratively 
applied until a stop condition is satisfied. 
 

2. SHAPE SPACE 
 

Border detection is obtained in a shape independent 
schema. This is achieved by transforming the image into a 
different coordinate system. This transformation is done 
referred to the Reference Border Curve (RBC) in each 
step. 
 
2.1. Shape space transform 
 

We will define a shape transform (ST) that maps R2 to 
R2 using a curve (the RBC). As a result, the plane is 
expressed in a new coordinate system, the shape space. 

Consider a point P that we want to transform referred 
to RBC C. Let O be an arbitrary point in the curve that 
will be mapped to the origin in the shape space. Let Q be 
the nearest point to P in the curve. The coordinates of the 
transformed P, are the distance between O and Q along 
the curve as the abscissa and the distance from P to Q as 
the ordinate. See figure 1. 

 
Formally, Q can be defined by 
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where d is the euclidean distance function. 
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Figure 1. Transformation of point P. Distances from P to 
the curve y, and from O to Q along the curve are shown.  

 
Assuming a constant speed parametrization C(t) of C, 

P coordinates in shape space are: 
 ST(P) = (x,y) where 
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normal in Q.  
It can be seen that in this space the RBC is mapped 

into the horizontal axis. Any curve parallel to the RBC 
will be also mapped into a horizontal line. A vertical 
coordinate is related to the distance to the RBC. Points in 
a normal to the curve are in a vertical line in shape space. 
 
2.2. RBC considerations 

 
Using the mapping, any problem can be seen in the 

new space as the detection of a horizontal border, with 
independence of shape. This is true if the RBC has 
exactly the shape of the searched object and is well posed. 
Under some constraints, the searched border curve has 
desired properties that enable its detection: 

•RBC curvature is small enough. If the RBC curvature 
is too high, the mapping loses desirable smooth 
properties.  

•RBC and the searched object shapes are similar. 
•The initial RBC does not need to be so close to the 

target as soon as it intersects the searched object.  
Using the shape space transform and working under these 
assumptions, border detection becomes independent of 
object’s shape as it is normalized to it. 

 
3. SEGMENTATION IN SHAPE SPACE 

 
Each edges detection problem has it particularities. It 

comes natural to mention some considerations about 

general edge detection techniques that are easily 
implemented in shape space. 

 

 
Figure 2. Point P in shape space. The same point as in 

figure 1, represented in the shape space. 
 

3.1. Edges in shape space 
 
It is difficult to detect continuous edges in noisy 

images. Some points would be surely detected as edges 
but the object border will be formed by not connected 
regions. In this kind of problems, more global and 
topological considerations about the searched borders 
have to be taken in account to improve the segmentation. 

We extract edges by some image processing. We will 
caracterize the border combining the properties of these 
edges. Once edges have been detected, a set of regions is 
obtained. Some of these regions are part of the desired 
border and some not.  Some border sections may have not 
been detected. 

Border position estimation is done in such a way that 
each region adds information to the global solution. 
Regions with characteristics (orientation, etc.) compatible 
with the desired border shape must win over the other 
regions. 

Some assumptions about the searched border have to 
be done, and based on them, the evolution is calculated: 

•It is not too far from the RBC – It is reasonable to 
assume that the RBC is sufficiently near to the 
solution so that it can converge to it.  

•Although noise is present, segmented border regions 
produced by the segmentation process are  in 
general bigger than noise regions. 

•Smooth borders are assumed. 
 

 
Figure 3. It is shown the horizontal width of a point in 

a region with label L(x,y)  
 

3.2. Finding border curve in shape space 
 
For each horizontal coordinate, the vertical position of 

the border in shape space is found.  



This vertical position is calculated as a weighted mean 
of each point in that vertical line. The weights considered 
are the size of the region in which that point is (based in 
the assumption that noise regions are in general smaller), 
a weight that penalizes distance to the horizontal axis so 
that a more stable solution is found. Finally, a measure of 
how horizontal the region in each point is. 

Let L be the label function, that gives the label of the 
region a point lies on, where label’s domain is considered 
as natural numbers. 

NRL →2:  
Let A be the area function that given the label of a 

region, gives its area. 
RNA →:     

where 0)( =LabelBackgroundA  
Let hw (horizontal width) be the length of the longest 

horizontal segment that contains the point P and is 
completely contained in the same region as P. This is a 
good measure of how horizontal the region is in the 
considered point. 
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Now the border curve (BC) can be expressed as: 
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where F1, F2 and F3 define the weight assigned to 
each term. 

This defines the border curve in shape space which is 
later smoothed to cut off spurious points generated by 
noise. In figure 4, segmented border regions are shown. 
The dashed line represents the smoothed border curve 
which is also shown with the reference curve in the 
original image space. 

Border curve in the image space is 
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The RBC for the next step is calculated as a weighted 

mean of the RBC and the border curve in the current 
shape space. This can be expressed as: 
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4. SHAPE MODEL 
 

We haven’t introduced yet any information about how 
the shape information is taken in account. In this work it 
is assumed that the object being detected has a “mean 
shape”, which can be extracted from the experts 
knowledge. Having a set of manually traced objects, 
shape can be extracted by different mechanisms. 

 

 
Figure 4. Segmented regions and the corresponding 

border curve (dashed line), in the original and shape space 
 

The model used to represent shape is similar to a 
signed distance map of what is considered the mean 
shape. At zero-level is the mean shape curve. Non zero  
levels represent almost homotetic curves to the mean 
shape. A signed distance map could have been used as the 
model. Particularly, the blurred aligned over-imposition 
of the manually traced shapes was used. This function is 
noted mean shape model (MSM). See figure 5 and 6. 

 
4.1. Correcting shape 
 

At each step, the shape model is used to correct shape. 
The MSM is adapted with an affine transformation to fit 
the curve to be corrected. Position is adjusted in order to 
move the MSM center of mass to the RBC center of mass. 
Scale is adjusted considering the ratio between RBC and 
MSM mass. Finally, rotation is calculated considering the 
principal inertia axes of RBC and MSM. 

RRMSM →2:  
Where mass center is calculated as: 
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Once the model is fitted, the zero level of the MSM is 
considered the curve with correct shape. This zero level 
curve is located in shape space. SeeFigure 6. Next step 
curve is built again as a weighted mean of the RBC and 
the zero level curve in shape space.  
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This corrects shape and allows small variations from 
the mean shape. In each step, competition between 
detected borders and shape correction leads to the 
solution. A similar approach can be seen in [6]. 



 

Figure 5. Mean shape and its model The dashed line is 
the zero level. 

 

 

Figure 6. Mean shape (dashed line) referred to the 
RBC in shape space. 

 
5. RESULTS 

 
The method has been applied on real ultrasound 

imagery. The problem consists in measuring the area of a 
slice of longissimus dorsi muscle (rib eye area) in cattle.  

The algorithm is fast enough to be applied in real time 
acquisition. The codified implementation performs about 
three steps per second which allows to have the result in 
less than a minute in a moder machine (PIII 1Ghz). It was 
tested in a set of 60 ultrasound images with good results.  
The achieved accuracy is comparable to expert traced 
measures, having a deviation of  up to 15% in 80 % of the 
images.   

Figure 7 shows some steps of the evolution process 
with the segmented shape space image. 
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