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Abstract—In this work the equations that determine the short 
term optimal point of operation of a power system are obtained 
from two different perspectives.  The first one, optimizing the 
system from a global point of view.  The second one, takes into 
account the invididual agent’s behaviour which buys and sells 
electricity at each of the power systems’ busbars.  From the 
comparison of the equations obtained from each case, the prices 
of active and reactive energy that optimize the system from the 
global perspective and from the individual agents’ perspective at 
the same time, are deduced.  This leads to the definition of the 
system marginal price and the nodal factors.  An interpretation 
of these magnitudes is done and the current practices for nodal 
factor calculations is analysed, looking at possible 
inconviniencies and contradictions.  Finally, a particular case, 
considering the uruguayan power system is studied. 
 

Index Terms— Electricity Pricing, Optimization, Market 
Place, Nodal Factors, System Marginal Price. 

I.  INTRODUCTION 

T HE basic theory of real-time or spot market pricing of 
electricity was developed by Vickery [1] and Schweppe, 

et. al [2].  As set forth by Schweppe, et. al., the optimal price 
for electricity is differenciated in space and time and 
accounts for the variable costs of producing any electricity at 
the time it is used, any added requirements to compensate for 
whatever transmission losses accompany the supply and 
delivery of the electricity used, and any generation or 
transmission capacity limitations that might influence the 
availability of supply as a function of time.  
 Extensions to the basic theory of real-time pricing have 
been reported.  The basic theory of real-time pricing has been 
extended to consider system security by Caramanis, Bohn, 
and Schweppe [3], Alvarado et al. [4], and Kaye, et. al. [5].  
Use of real-time pricing to assist in load frequency control 
was addressed by Berger and Schweppe [6].  Real-time 
pricing of reactive power was the topic of Baughman and 
Siddiqi [7], while pricing of spinning reserve was discussed 
in Siddiqi and Baughman [8].  Also, extensions to the theory 
that includes constraints on power quality and  
environmental impact may be found in [9] and [10]. 
 In this work, howerver, all network aspects have been 

ignored, except for somewhat crude representation of  
transmission and generation operation limits. 

                                                           
 

 The approach used in this paper consists of looking for the 
optimal economic signals that generators and consumers 
must receive so that their behaviour, is consistent with the 
goal of a correct regulatory policy:  the maximization of 
global net social benefit.  This idea was presented by Pérez-
Arriaga et al. in [11].   

However, in this work, we go deeper in the interpretation 
of the system marginal price and we define the nodal factors.  
Nodal factors have been used in many regulation frameworks 
such as the argentine and chilean.  We will see how they may 
be  used for the economical dispatch and how nodal factor 
calculation may affect the optimal economic operation of the 
power system. 
 In Section II of this paper we will address the global 
optimization of a power system.  In Section  III we will 
consider the individual agents’ behaviour in a competitive 
power system.  In Section IV, by comparing the equations 
obtained in the previous cases, we will establish the prices for 
active and reactive energy that optimizes the system from the 
two perspectives (the global and the individual) at the same 
time.  Finally, in Section V we will address the interpretation 
of the system marginal price, we will define and discuss the 
calculation of the nodal factors and how they may be used for 
the system economic dispatch. 

II.  GLOBAL POWER SYSTEM OPTIMIZATION 
Let us consider the generic power system of Fig. 1 which 

is composed by ng generation busbars and ne demand 
busbars. 

 
 
 
 
 
 
 

 
 
We define: 

gg kk QG ,  respectively, as the active and reactive power 

injected by generator kg into busbar kg. 

Fig. 1.  Generation and demand busbars in the power 
system. 
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ee kk QD , respectively, as the active and reactive power 

consumed by demand ke  and extracted from busbar ke. 
 

In order to simplify the notation we asume that a busbar may 
only  be a generating busbar or a demand busbar.   
In addition, we also assume that all power injections and 
extractions are independent of each other. 
 
Let’s be the valued production function or total revenue 

ekB
determined by the use of the electricity at demand busbar ke. 
We can write: 
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Let’s be the total cost produced when 
gkC ( )

gg kk QG ,  is 

injected into busbar kg.  In the same way, we may write, 
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The maximization of the global net social benefit consists in 

the following problem:  to find  egkkkk kkQDQG
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The following constraints apply, 
1. The power system must operate in steady state, so that, 

 
Active power generation= Active power demand + Losses 

 
Let us consider the losses function, 
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Then the equality constraint may be written as, 
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2. The transmission network may present a set of p 
operating limits which may be expressed as inequality 
constraints involving magnitudes G, D and Q. 

[ ].,10),,(_ piQDGRR i ∈∀≤  
3. Similar to the case of transmission, we establish 

operating constraints for the generators which consider 
the generators’ load curves and also constraints for the 
loads, 
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To sum up, the problem of optimal global dispatch of the 
power system may be expressed as follows, 

Max  ∑∑
==

−=
g

g

ggg

e

e

eee

n

k
kkk

n

k
kkk

glob QGCQDBB
11

),(),(

subject to, 

1)     (electric balance) 0),,(
11

=+− ∑∑
==

e

e

e

g

g

g

n

k
k

n

k
k DGQDGLoss

2)   (network constraints). [ piQDGRR i ,10),,(_ ∈∀≤ ]

3) 







≤∀≤

≤∀≤

eekkk

ggkkk

nkQDDR

nkQGGR

eee

ggg

0),(_

0),(_  

The Lagrangian of this problem is, 
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As a result, we have found that in 
power system operating point which
net social benefit, we must 
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unknown variables equals three times the number of 
generating and demand busbars, plus p (the number of 
physical constraints imposed by the electric network that 
links the busbars), plus one (the λ, from the Lagrangian, 
which characterizes the whole power system). 
On the other hand, we have obtained the same number of 
equations plus some inequations that must be satisfied. 
 
Equations (1.1) and (1.2) may be also expressed as, 

∑
=

=
∂

∂
+

∂
∂

+

+













−

∂
∂

+
∂

∂
=

∂
∂

p

k k

k
k

k

k
k

kk

k

k

g

g

g

g

gg

g

g

G

GR

G
RR

G
Loss

G

C

G
L

1
0

__

  1

ηµ

λ

 

∑
=

=
∂

∂
+

∂
∂

+

+










∂
∂

++
∂

∂
−=

∂
∂

p

k k

k
k

k

k
k

kk

k

k

e

e

e

e

ee

e

e

D
DR

D
RR

D
Loss

D
B

D
L

1
0

__

1

ξµ

λ

 

∑
=

=
∂

∂
+

∂
∂

+

+
∂
∂

+
∂

∂
=

∂
∂

p

k k

k
k

k

k
k

kk

k

k

g

g

g

g

gg

g

g

Q

GR

Q
RR

Q
Loss

Q

C

Q
L

1
0

__
ηµ

λ

 

∑
=

=
∂

∂
+

∂
∂

+

+
∂

∂
+

∂

∂
−=

∂
∂

p

k k

k
k

k

k
k

kk

k

k

e

e

e

e

ee

e

e

Q
DR

Q
RR

Q
Loss

Q
B

Q
L

1
0

__ ξµ

λ

 

∑ ∑
= =

=+−=
∂
∂ g

g

e

e

eg

n

k

n

k
kk DGLossL

1 1
0

λ
 

III.  OPTIMAL AGENTS’ BEHAVIOUR 
Let us study the behaviour of an individual agent that plays 

in a competitive electricity market.  This agent must find the 
values of  G (if generator) or (if demand), at 

busbar k
gg kk Q,

ee kk QD ,

g or ke in the power system. 
 
We define the following variables, 

ekpa , the price that a demand type agent will pay for one 

unit of active energy at busbar ke. 
ind
ke

B ,  the total revenue (or benefit) of the demand type agent  

corresponding to the use of the active energy at busbar ke. 
),(_

eee kk
ind
k QDDR ,  the electrical constraint imposed by the  

demand type agent’s equipment at busbar ke. 
gkpa , the price that a generating type agent will offer for  

one unit of active energy at busbar kg. 
ind
k g

C , the individual cost for the generating type agent to  

produce active energy at busbar kg. 

),(_
ggg kk

ind
k QDGR , the electrical constraint imposed by the  

generator at busbar kg. 
eg kk prpr , , similar definitions but for the reactive energy.  

 
 Each agent will try to maximize its net benefit.  We will 
establish the equations which dictate the agent’s behaviour. 
 

A.  Demand type agent 
The problem we have to solve is, 

ng equations 
Type 1.1A 
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The Karush-Kuhn-Tucker conditions are, 
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Type 1.1D Consequently, for each demand busbar we have a system of 

three equations with three unknown variables.  Then, it is 
possible to determine the values of that variables that 
maximizes the agents’ net benfit. 1  equations
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B.  Generator type agent 
For this agent, the optimization problem may be expressed as 
follows, 
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The Karush-Khun-Tucker conditions are, 
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Consequently, for each generator busbar we have a system of 
three equations with three unknown variables.  Then, it is 
possible to determine the values of the variables that 
maximizes the agents’ net benefit. 
 Equations (2.2) may also be written as, 
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IV.  COMPARISON BETWEEN II AND III 
Let us compare the magnitudes and equations obtained in 

Section II and III. 

A.  Magnitudes 
The magnitudes that appear in both cases are:  revenue, total 
cost and constraints.   
In the equations for the global system optimization, the 
magnitudes that appear are: .  We 
may observe that this magnitudes were defined for each 
busbar independently. 

egge kkkk DRGRCB _,_,,

On the other hand, in the equations for the individual 
optimization the magnitudes   
correspond to each busbar.  Then, 
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B.  Equations 
For the global system optimization we have ng equations 
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 On the other hand, for each of the ng generator busbars we 
have the equations 2.2.1A, 
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then, equations (1.1A) and (2.2.1A) result the same. 

Consequently, if we assign the price to the active energy 

of generator k
gkpa

g, then we will be optimizing the global system 
and the individual agents’ behaviour at the same time. 

(2.2.1) 

In the same way, if we apply the same procedure to the 
equations from the global optimization 1.1B, 1.1C and 1.1D, 
and from the individual optimizacion 2.1.1B, 2.1.1C and 
2.2.1D,  we may obtain the values of  
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The results are summarized below,  
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V.  INTERPRETATION OF RESULTS 

A.  System Marginal Price 
As seen in the previous Section the energy prices are 
basically composed by two terms.  The first one, is the 
product between λ and a real number.  The second one, 
depends on the operating constraints imposed by the 
network. 
As also observed before, λ is the (unique) lagrangian variable 
associated to the whole power system.  In addition, the 
dimensional units for λ are the same as for the prices.  
Therefore, λ must be a price and due to the first consideration 
must be regarded as the system price, as it is related to the 
whole power system. 
In addition, from 2.1.1B, 2.1.1D, 2.2.1A and 2.2.1C, results 
that the energy prices represent, either the generator marginal 
cost or the demand marginal benefit.  As a result we can say 
that  λ is a marginal price. 
In sum, we can consider λ as the System Marginal Price. 
 
This interpretation may be obtained in a more formal way. (1.1A) 
Let us consider the power system optimization problem 
without constraints.  The problem to solve is then, 
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In addition, for the maximum we have, 
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Then, substituting this expressions in 4.1.1, we have, 
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Moreover, 4.1.2 may be written as, 
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Then, comparing the last  two equations we have, 
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Consequently, λ represents the system benefit (cost) marginal 
change when there is a balance displacement.  
 

B.  Nodal Factors 
As seen before, the active energy marginal prices result 
(without regarding the constraints) from the product of λ by 
the factor, 
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Therefore, we define )1(

k
k P

Lossfn
∂

∂
+=  as the Nodal Factor 

corresponding to busbar k. 
 
We observe that the partial derivative of the power system 
losses with respect to the extracted power at busbar k must be 
evaluated at the values of the electrical variables that 
correspond to the steady state equilibrium point for a given 
optimal dispatch. 

(4.1.2) 

 

C.  Optimal  Dispatch 
Taking into account the previous results and definitions, we 
can say that if the power system is operated at the economic 
optimum from both the global persective and the individual 
agents’ perspective, then the energy  marginal cost at each 
busbar k is given by, 
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In particular, this must be valid for the marginal generator 
connected at busbar m.  Thus, (4.1.3) 
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Let us suppose, that there are not network constraints.  Then 
if we want that the power system moves in a process of  
continuous optimum economic states, the dispatch must be 
done ordering the generators in accordance to the ratio of the 
marginal cost to the nodal factor, from the smallest to the 
biggest. 
 

D.  Nodal Factor Calculation 
As we have seen, nodal factors are defined as the partial 

derivatives of the total system losses with respect to the 
extracted power at the considered node.   
As total system losses depend on all variables 

, then nodal factors will necessarily depend 
on the same variables.  Consequently, nodal factors depend 
on the particular load-generation state. 
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It is not difficult to find examples where a given busbar 
changes from being exporting power to be importing power 
when there is a change in the load-generation pattern.  In this 
case, the nodal factor of that particular busbar will change 
from having a value less than one, to have a value greater 
than one.  This has economic implications as we have seen 
that the active energy price in a busbar results from the 



        

product of the system marginal price and the nodal factor.   If 
we assume that the system marginal price remains 
unchanged, a change in the busbar nodal factor will produce 
a change in the active energy price at that busbar. 
However, in some regulations such as the argentine, the 
dynamic characteristic of nodal factors is averaged through 
seasonal nodal factors [12] that take into account just an 
averaged seasonal load-generation pattern.  This may lead to 
considerable errors in the determination of marginal prices, 
particularly in a system with dispersed hydro-thermic 
generation, where the power flux may reverse in some 
transmission lines from one generation-load pattern to 
another. 
 
 The other important simplification that may be observed in 
some regulation practices is related to the calculation of 
nodal factors.  Normally, nodal factors are determined from 
solving a power flow.   
To calculate the nodal factor of a given busbar, a small power 
variation is assumed at the busbar, calculating then the 
change in power system losses.   The additional power to 
satisfy the new condition from the initial state is provided by 
the slack busbar.  This busbar is choosen to be the “market 
busbar” which is established to be unchanged.  Although the 
economic conceptual convenience of having a market place, 
where the energy is traded, the calculation of nodal factors 
considering that busbar may lead to inaccurate results.   
As it results from the optimal economic dispatch 
methodology, the generator which must balance the power 
changes is the marginal generator.  This means that the 
“market busbar” is necessarily changing as the marginal 
generator changes.  If we assume an unchanged system slack 
busbar for nodal factor calculation, there will appear 
inaccuracies because of not taking the real active and  
reactive network power fluxes. 
 In order to show this situation we will present a simple 
example taken from the uruguayan system.   
Let us consider the small part of the uruguayan system shown 
in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
In the figure it is shown substation Artigas 150 kV 

(SEA150), the busbar corresponding to Salto Grande 
Uruguay (SGU) and the busbar Montevideo B 500 kV 
(MvdeoB500).  In addition, the transmission network 
between those busbars is represented. 
We would like to calculate the nodal factor of busbar 
SEA150.   If we take SGU as the slack busbar, then when we 
simulate an increment in the power consumed by SEA150, 
that increment will be provided by SGU.  The power flux 
through the transmission line to MvdeoB500 will remain 
unchanged, the total system losses will increase (because of 
the increase in power flux in the transmission line from SGU 
to SEA150) and the nodal factor for busbar SEA150 will be 
greater than one. 
On the other hand, if we take MvdeoB500 as the slack 
busbar, then an increment in the power demanded by 
SEA150 will be provided by MvdeoB500.  Thus, the power 
flux through the transmission line to MvdeoB500 will 
decrease and the total system losses will also decrease (the 
increment of power flux in the transmission line from SGU to 
SEA150 is less than the decrease of power flux in the 
transmission line from SGU to MvdeoB500).  As a result, the 
Nodal Factor will be less than one. 
 

VI.  CONCLUSIONS 
 
In this work we have determined the regulated prices for a 
wholesale electricity market that optimize at the same time 
the global power system and the individual agents’ 
behaviour.   
Moreover, we have defined the system marginal price and the 
nodal factors making an in deep interpretation of both 
magnitudes.  
In addition, we have discussed the influence of nodal factor 
calculation on the optimization of the power system, 
analysing a simple example taken from the ururguayan 
system.  It results that inaccuracies may occur if averaging 
nodal factors, particularly for systems with high transmission 
losses. 

SEA150 

Demand 
In further publications, we will present the detailed 
simulation of various power systems comparing the results 
for the following cases: 

S 

Hydro 
generator 

• Dispatch and pricing with exact nodal factor calculation. GU 
• Dispatch and pricing with seasonal nodal factor 
calculation. 
• Dispatch and pricing neglecting losses (unity nodal 500/150 kV 
factors).  
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