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Abstract

In this work we study the extraction of objects from images together with a metric that
ranks them according to their perceptual significance. To obtain an initial segmentation we
use elements of mathematical morphology (level sets and level lines) and some properties
such as T-junctions, contrast and compactness. Then, to refine the initial partition we
apply regularization techniques and a standard merging algorithm. Finally, we compute
a perceptual metric using factors that influence our perception.
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1 Introduction

The extraction of semantic objects is one of the most important and challenging problems in
image analysis. There are several applications where this kind of processing is utterly needed.
A first application is compression where different objects are coded with different quality (this
is the case of the MPEG4 standard). In a second group we have applications that allow the
manipulation and interaction with the objects in the image. For instance, in the case of image
databases systems, the objects can be used to do queries in the database. We can establish
the need of objects in image analysis from another point of view. Human beings see objects
in the real world, neither pixels nor homogenous regions; therefore, systems that pretend to
be compatible with human perception must be based on objects. The key idea is to segment
regions and objects that may be part of semantic entities in the image.

The organization of our method, and the present paper, is as follows. First, we extract
the semantic structures in the image using elements of mathematical morphology. The basic
structures in this step are the level sets and the basic features used to obtain the ones with
semantic meaning are: T-junctions, compactness and contrast. This initial segmentation is then
refined using a first step of regularization followed by a standard merging algorithm. Finally,
using the final segmentation we compute the perceptual metric using elements that influence
our perception.

2 Extraction of semantic structures

The first step of the algorithm deals with the computation of a good perceptual partition
of the image domain. For that end, we use elements of mathematical morphology recently
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developed in [1, 2, 8, 4, 3]. Before going on to discuss the algorithm used in this work, we shall
first review some basic concepts and notation. (For details see [2, 8, 4, 3].) Given an image
I:Q(C IR?) — IR we define lower and upper level sets as':

Ly={zeQ:1(z) <A} U,={zeQ:1(z) > u} (1)

Level sets define a decomposition with two remarkable properties. Firstly, it is a complete
decomposition; all the image information is contained on its level sets, and we can reconstruct
the original image from (1) by: I(z) = sup{p : « € U,} = inf{\A : © € L,}. Second, the
decomposition is contrast invariant. Gestaltists argue that our perception is contrast invariant
so such decomposition seems to be a correct one if we do want to be compatible with this theory.
Level sets satisfy in addition the following very important property: the family of upper and
lower level sets are decreasing and increasing respectively: if o < 8 then L, C Lg and Ug C U,.
That means that level sets are included in each other. This relation can be represented as a
tree of lower and upper level sets [8].

If we consider connected components of the level sets and the level lines defined by their
borders, we can define the topographic map of an image as the family of all its level lines. Also,
we define each connected component of the level sets as a shape. Note that the level line of a
level set is the union of closed curves and the interior of each curve is a shape. Finally, following
[4] we call morphological edges the level lines that enclose regions with perceptive significance.

The topographic map of an image contains all its information, however, this information is
usually somehow redundant as not all the level lines are equally relevant. The basic idea is then
to filter the topographic map, the set of all level lines, to obtain a smaller set of morphological
edges. To characterize the filtering process we need to define a set of filtering criterions that
permit the extraction of only the morphological edges. We propose three criterions to define
the filtering process, a level line is a morphological edge if: contains T-junctions, has a compact
form, and it is “well-contrasted.” In the remainder of this section, we describe these three
elements in detail.

2.1 T-junctions

According to the Gestalt school of visual perception, T-junction singularities play a major role
in our perception. They are of crucial importance regarding the reconstruction of occlusions;
T-junctions appear at the borders of two objects that are occluding each other. As a matter
of daily experience, which was extensively analysed by Gestaltist’s, from these T-junctions our
visual perception reconstructs the occluded object while extending its border to join the T-
junctions. In [6] Kanizsa presents a lot of concluding examples and beautiful drawings that
support the use of T-junctions as effective perceptive features. Based on these observations,
Caselles, Morel and Coll in a series of papers [1, 2] developed a framework compatible with
Kanisza’s ideas for the case of digital images. Their main conjecture is that the topographic
map and the junctions are the “atoms” of visual perception. From these ideas, Froment [4, 3]
developed a segmentation algorithm that uses level lines joining T-junctions as basic elements.

To obtain the level lines that contain T-junctions we must first detect them. Intuitively, in
the case of a digital image, a T-junction occurs when two level lines meet. Specifically, we have
a T-junction when we can define three significant sets on the neighbourhood of an intersection
of two level lines: two sets belonging to the occluding objects, and one to the background.

IFor colour images we consider the luminance.



T-junction detection algorithm [2]: Let N'(x) be the neighbourhood of z where two level
lines join. We define:

xy, = argmin{I(y) : y € N ()}, Ao = I(z,)

£y, = argmax{I(y) : y € N(2)}, 1o = I(2,).

The set L,w\go is a connected component of Ly, , which contains z,,, and similarly we define Uk,
In order to say when these connected components are relevant, i.e. they define a T-junction,
we ask them to have a minimum area, also we define the minimum and maximum grey levels
in those sets:

A = argmin{\ > \g : Area(L)°) > A}

p1 = argmax{Ag < p < o : Area(Ugro) > A}.

Finally, x is a T-junction if the two sets are well-contrasted, yu; — A1 > 2G, and the background
set defined by the connected component of {y € Q : A\ + G < I(y) < p1 — G} containing at
least a pixel of N'(z) has area greater than A.

The first criterion of the filtering process keeps only the shapes that contain T-junctions.
Furthermore, the more T-junctions a shape has in its border the more important it is. The
number of T-junctions can be used as a metric to sort shapes. In Figure 2 we show the detected
T-junctions for Claire image.

2.2 Compactness

Once again, we base the use of this criterion on the Gestalt theory. According to this theory, in
our field of view we distinguish figure from ground. Figures are perceived as a coherent whole
in front of the background, which is perceived as less important. In addition, our perception
favours objects with simple and compact form to be perceived as foreground [7]. Then, com-
pactness is an important property when segregating the image into foreground and background.
To measure the compactness of a shape & we use, as is classical in the computer vision literature
[15], the isoperimetric ratio:

Isoperimetric Ratio(S) = Perimeter(S)?/Area(S)

This measure roughly says that between two shapes of equal area, the one of least perimeter
will be the more compact one; it penalizes shapes with complex oscillating borders.

This criterion is both, a filtering tool and a sorting metric. Meaning that, shapes with an
isoperimetric ratio above a given threshold are removed and, the smallest isoperimetric ratio
it has the more important it is. By no means we are saying that our perception always tends
to reach the “good form”. In other words, a stimulus could be important but not compact,
otherwise, we would only see simple forms. It is clear that this is not the case since we do
perceive complex objects. The point is that compact forms tend to: 1- attract our perception,
2- be part of semantic objects. This point was discussed by Kanizsa in [6], where he pointed
out the misunderstanding regarding the so called principle of “good form”.

2.3 Contrast

Typically, well-contrasted regions call our attention. Moreover, a well-contrasted shape is likely
to be part of the boundary of a real object in the image. Thus, the contrast seems to be another



important feature to define perceptive objects. To compute the contrast along the shape border
we use the magnitude of the gradient of the luminance. As we said, the level line defining a
shape may have part of it inside the object (Along this part, the magnitude of the gradient
will be smaller than the magnitude along the object border.) If we use, for example, the mean
of the gradient along the shape border we could end up with an unreliable estimation of the
contrast. To avoid these problems, we use the median of the gradient along the shape border
as a robust measure of contrast.

Contrast(S) = median {|VI(x)| : x € 05}

It is worth to note that the contrast is the least important factor among the three proposed.
The reason for that is twofold. First, the contrast is considered for compact shapes with T-
junctions, i.e. already morphological edges. Second, the removed shapes are typically the
low-contrasted shapes that do not play an important role in the perception of the image, soft
morphological edges, shapes in smooth areas, or just noisy shapes.

Summary of the algorithm:
1. Compute the lower and upper trees to find all the shapes in the image. The computation of
these trees is performed with an algorithm similar to the one proposed in [8].

2. Find all the T-junctions in the image using the algorithm discussed in (2.1).

3. Remove all the shapes, &, in both trees that:
a) Have less than T T-junctions over its border.
b) (Small shapes) Perimeter(S) < P.
¢) (Complex shapes) Isoperimetric Ratio(S) > IR.
d) (Bad-Cotrasted) Contrast(S) < C.

4. Sort the shapes, firstly according to the number of T-junctions and then increasingly with
the isoperimetric ratio. That is, if two shapes have equal number of T-junctions the more
compact one is selected as the more important.

5. Add the most important lower and upper shapes to the segmentation. If Tj(S) is the set of
T-junctions in the shape, remove them from the remaining shapes. (This step step avoids the
inclusion of several shapes that contain nearly the same T-junctions and accumulate close to
objects borders.)

Sometimes it is unnecessary to include in the segmentation all the shapes with T-junctions.
At the end of the day, no matter how complex and accurate the algorithm could be, the user
judgement is crucial to define the end of the process. Therefore, another possibility is to add new
shapes until the user stops the process. In this case the algorithm is semi-automatic, however,
the user interaction it is still minimal. In this case in the last step we add the most important
lower and upper shapes to the segmentation while the number of T-junctions is greater than
T. If Tj(S) is the set of T-junctions in the shape, remove them from the remaining shapes.

The last possibility is to include all shapes without removing the already included T-
junctions (We add all lower and upper shapes with more than 7" T-junctions to the segmenta-
tion). In [3] Froment proposed this as a multiscale image model. The weakness of this algorithm
is that too many level lines tend to accumulate close to the objects boundary. This makes the
algorithm not very suitable for further region-based processing; it is harder to obtain a simple
segmentation from it.



2.4 Parameter tuning

For the parameters A and G, which control the detection of the T-junctions, we found empiri-
cally the values A = 40 and G = 4 for images of dimensions 256x256, and A = 30 and G = 4 for
images of dimensions 176x144. We encountered little changes when moving these parameters
close to the previous ones. In some cases the T-junctions were nearly the same.

The parameter 7T is like a scale, the more T-junctions a shape has the more important it
is. For this reason, it can be used to obtain segmentations at different resolutions. Yet, we
set 1" greater than two as shapes with only one T-junction are possible be due to noise. Like
the number of T-junctions, the perimeter defines also a scale; shapes with small perimeter
constitute the fine scale. In our case we set empirically P = 20. Sometimes it can be useful to
set a maximum allowed perimeter too, in such a case it can be determined in the same way as
the isoperimetric ratio (see below.)

As for the parameter IR that controls the isoperimetric ratio of the shapes it is clearly
image dependent. Different images have different complexity and therefore different values of
IR. Usually for non-complex images, in terms of the shapes it contains, its value is in the range
100 — 200. This parameter is the most critical one: if IR is set to high then we could end up
adding noisy shapes to the segmentation and, if it is too small, we could loose some important
shapes. Likewise, the contrast threshold C, is also image dependent. For both we estimate
their values using the statistics of all the morphological edges. In what follows, we discuss the
procedure to estimate them. Let us now discuss a property of the level lines that is useful to
understand the proposed estimation of the algorithm parameters. Since edges in images are not
perfect, they do not form step functions but smooth transitions, several level lines accumulate
close to the object border. In this way, their contrast, perimeter and isoperimetric ratio are
similar, they will also have nearly the same T-junctions. Because of this simple property, we
have that the perimeter, isoperimetric ration, and contrast features form clusters. Each one of
these clusters containing shapes with similar features, which roughly characterizes objects in
the image.

The isoperimetric ratio threshold, I R, is derived from the statistics of the isoperimetric
ration. We use upper and lower shapes (connected components of level lines of U* and Ly)
to obtain the distributions of the isoperimetric ratio F,(S) and F;(S) respectively 2. The
conservative heuristic seeks a small value for /R which does not leave important shapes out.
We compute it as the maximum of the points where the distributions of lower and upper shapes
equal 0.8 (Probability(Isoperimetric Ratio(S) > IR) < 0.2.) That is, we set IR so to leave out
the shapes which isoperimetric ratio has a low probability to occur within the image.

IR = max {F,'(0.8), F,'(0.8)}

Take the distribution of the contrast, F.(Contrast(S)), for all shapes with more than one
T-junction and isoperimetric ration below IR (We apply the same methodology to upper and
lower shapes.) The first cluster in the distribution corresponds to the shapes with the smallest
contrast. If we consider just the contrast, these shapes are the ones of least relevance. Let Cy
and Cy be the points where the two first maximum of the contrast distribution occurs, and C7"
the first minimum after C;. We set C' to:

C = max {min {(C" + C5)/2, F,1(0.2)} , 10}

This is a very conservative strategy; indeed other values larger than this one produce also
good, coarser segmentations.

2t0 obtain the distribution we apply a standard kernel method.



3 Segmentation Regularization

We add coherence to the initial segmentation given by the partition induced by morphological
edges using the vector probability diffusion scheme (VPD) [13] by adding spatial coherence to
the posteriors probabilities of classes present in the image.

We say that a given region from the initial segmentation ,{ Ry, ..., R,}, is a valid class if its
area is bigger than a given threshold. Each class ¢; € C = {¢; : i = 1,...,m} is represented with
the mean of its members: p; 3. For every pixel z we have a probability vector p(z) € P = {p €

™ lplli = 1,p; > 0} where p;(z) equals the probability of pixel z to belong to the class ¢;:

M) = T = (ZHI) uju) )

To add spatial coherence into the classification process VPD diffuses the distance between
points in P with the following diffusion equations:

api:V.( Vpi ) i=1,..,m.
ot ie1 I Vpil|?

The important property of these diffusion equations is that they guarantee that p(t) € P for
all ¢ and is therefore not necessary to project them into the probability hyper-plane. This is
true for the numerical implementation as well. For further details and implementation see [13].

4 Region Merging Algorithm

The region merging algorithm works on the Region Adjacency Graph (RAG) [15]. The RAG
is a set of nodes, each one representing a region of the partition, and a set of links connecting
neighbouring nodes (regions). The RAG is a good data structure for region merging processes
because it easily codes the connectivity, and the distance between nodes.

To apply the merging algorithm we need to define the region model and the merging crite-
rion, which depends on a distance between regions.

At the begging of the process the model y; is define as the mean color, in the Lab represen-
tation, of the pixels in the region R;. When two regions are merged, the new model must be
computed. To make the model estimation robust, the new model equals the one of the bigger

region [5].
if Area(R;) < Area(Rs) [Rr,ur, = IR,
UR,URy = { if Area(R;) > Area(R3) pr,ur, = IR,
if Area(R;) = Area(R2) pr,ur, = (LR, + 1R, )/2

The merging criterion minimizes the cost of each merging. That is, en each step we minimize
the cost function (3) merging the pair of nodes with minimum cost.

C(R1,R;) = P(Ry)D(Ry, Ry U Ry) + P(Ry)D(Rs, Ry U Rs) (3)

D is the distance between regions: D(R;, R;) = ||ui — p;]/?, and P(R;) is the probability of
region R;: P(R;) = Area(R;)/Area(Q2). This cost function measures the error between the
given partition and the new model.

3For colour images we use the mean in the Lab space



5 Perceptual Metric

In this section, we present a perceptual metric to automatically determine the perceptual
importance of different regions in the image. This metric is based on Osberger’s works [10, 9]
and uses several features that influence human visual attention. For each region in the image
a set of features is computed and then combined to obtain the importance map. This map
classifies each region of the image with respect to its perceptual importance.

Firstly, to apply this idea we need a segmentation of the image. This point is crucial;
regions in the segmentation should represent semantic regions or part of them, otherwise, the
perceptual metric will not correlate with our perception. For this reason, we do not use the
initial segmentation to compute the importance map as it contains too many small regions.
Instead, we compute the perceptual metric using a coarser segmented image, the one obtained
after some steps of the merging algorithm. We will come back to this point later.

5.1 Factors which influence our attention

These factors can be classified into: low level and high level. Among low-level factors we have:
contrast, size, shape, and colour. High-level factors are of course more difficult to model. For
instance, the presence of people in the image is a strong factor; our attention is drawn to their
eyes, mouth, and hands. In our case, we use location and the distinction of foreground and
background as high-level factors.

Contrast: Region contrast is a very strong factor; regions with high contrast with their
neighbour regions attract our attention, and therefore they might belong to regions of perceptual
importance. The contrast of a region R; which has a set of neighbours {R;,, ..., R;,, } is computed
as:

Length(OR; N OR;;)
Perimeter(R;)

1 N
Contrast(R;) = N Z |l — aj =

where [;; are the mean luminances of the regions R;, and «; is a factor that weights the
contribution of each neighbouring region to the contrast measure. The idea is that, the more
contact between regions the more it should contribute to the contrast measure.

Osberger measures the contrast as the difference of the mean of a region and the mean
of the neighbour regions. This is not a robust measure since the mean of the neighbouring
regions is strongly affected by an “outlier” region. For example, take a region with mean 128
and two neighbours with means 255 and 0. In this case the mean of the neighbouring regions
equals the mean of the region and therefore according to Osberger metric the contrast will be
0. Obviously, this does not reflect what we perceive. With our definition of contrast (neglecting
the factors «;), the contrast is 128.

Size: It has been found that region size is an important factor. Large regions are more
likely to attract our attention than the small ones. The size measure is computed as:

Size(R;) = max {Area(R;)/Amaz, 1}

where A,z is set to the 1% of the total area and is used to prevent excessive weighting to very
large regions. Shape: It has been argued that long and thin regions are visual attractors [14],
but also that our perception tends to favour compact regions [7]. Osberger applies the first
idea an computes the shape factor as: Perimeter(R;)!:"®/Area(R;) trying to capture long and
thin regions. Conversely, we apply the second idea using the isoperimetric ratio of the region



which scores compact regions as more important. According to our experiments, this selection
performs better. Note that the isoperimetric ratio is nearly the inverse of Osberger’s measure.

Shape(R;) = Area(R;)/Perimeter(R;)?

Foreground/Background: Typically, objects in the foreground attract our attention. To
determine if a region is part of the background we measure the number of pixels of the region
border that belong to the image border. In this way the foreground/background measure is
computed as:

FB(R;) = 1 — min {Length(0R; N 02)/(0.5 x Perimeter(2)), 1}

Location: Different experiments have shown that typically viewers focus at the centre of
the image. To compute this factor we measure the number of pixels of the region which are
within the 25% centre of the image: Centre(R;). Regions that are entirely in the centre of the
image will have the maximum weight.

Location(R;) = Centre(R;)/Area(R;)

5.2 Importance Map

After normalizing each of the factors presented above to the range [0, 1] the importance map is
computed as the sum of their squared values. This assigns higher scores to regions with high
scores in some factors. In Figures 3 and 1 we present examples of the importance map.

6 Algorithm

Here we describe the segmentation algorithm using the ideas presented in previous sections.

1. Given the initial partition we apply the VPD to add coherence to the initial segmentation.
This step will not only regularize the given segmentation but it could also produce new regions.
We find the valid classes, using an area threshold A,,q, and their means p;, and the probabilities
using equation (2). After the VPD we recompute the partition.

2. Apply the merging algorithm until we obtain the desired number of regions, Ry,. In this
step, the user interaction is important to stop the merging when the segmentation captures the
semantic objects in the image.

3. Compute the perceptual metric.

7 Results

In the first example, Figures 2 and 3, we present the result for Claire image. In Figure 2 we
present the detected Tjunctions and the semantic structures obtained with the algorithm of
section 2 (The set of parameters used was (G = 4,A = 30,/R = 105,P(min) = 20,P(maz) =
1500,Clomwer = 10,Cypper = 25, T = 2). As we can see the extracted level lines match the
semantic objects in the image. For an exhaustive analysis of this algorithm we refer the reader
to [12]. Then, we show the results after regularization. As we can see, we greatly reduce
the number of regions without loosing the principal structures. Mainly, we removed the small
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Figure 1: Results for Hall and Carphone (colour image). From left to right: original images,
segmented images obtained with our algorithm, and importance map.

regions. Finally, in the last row of Figure 2 we show the semantic objects after the merging
process. In Figure 3 we display the individual factors and the resulting importance map. As
we can see the results the metric correctly captures the most important objects. Although,
this may be a simple image, this kind of images is usually encountered in videoconference
applications. Therefore this metric can be used to tune the video encoding process and assign
more resources to the perceptually relevant parts of the image. For more details related with
the simplification and merging process we refer the reader to [11].

Finally, in Figure 1 we show the final segmentation results together with the importance
metric for Hall and Carphone images. Although these are more complex images, the algorithm
performs fairly well. In the case of coulour images, the inclusion of colour information improves
the results.

8 Conclusions

In this work we described algorithms for the extraction of semantic objects in images. This
was done using morphological tools: level sets and level lines as basic structures and T-junction
singularities together with contrast and compactness measures as features to detect the semantic
structures. We base all this on perceptual consideration linked with the Gestalt school of visual
perception. Then, we regularized the initial segmentation and performed a standard region-
merging algorithm to obtain the relevant semantic objects in the image.

The algorithms presented succeed on the extraction of semantic objects; however, depending
on the complexity of the image the results are of different quality. This can be observed in
images Claire and Carphone. The later is more complex and the results are not as good as for
former one. Furthermore, as we can see from Figures 1 and 3 the perceptual metric roughly
captures our subjective perception of the objects in the image.



Figure 2: From top to bottom. Original Claire image. Detected Tjunctions. Initial segmen-
tation with 1994 regions, after two iterations of VPD (area threshold is 100 pixels) with 766
regions, and the image with six regions matching the semantic objects. In the last three rows
we show the image where each region is represented by its mean and the boundaries.
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Figure 3: Perceptual metric results for Claire image. From top to bottom: contrast map, size
map, shape map, foreground/background map, location map and importance map. Bright
indicates an important region. In all cases, the results match our perception. The importance
map clearly ranks as the most important region the face followed by the rest of the regions
belonging to the woman body and at last the background. In all cases, the images have
histogram correction for better visualization.
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