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Abstract— In this article we study global
stability properties of the Kuramoto model
of sinusoidally coupled oscillators. We base
our analysis on previous results by the con-
trol community that analyze local properties
of the consensus point of different kinds
of Kuramoto models. We prove that for
the complete symmetric case, the consensus
point is almost globally stable, that is, the set
of trajectories that do not converge to it has
zero measure. We present a counter-example
of that when the completeness hypothesis
is removed. We also show that the general
non-symmetric case is more complex and
we analyze the particular case of oscillators
coupled in a ring structure, where we can
establish some global stability properties.

I. PRELIMINARIES

In the 1970s, Kuramoto proposes a
model to describe a population of weakly
coupled oscillators, following the works of
A. T. Winfree on collective synchroniza-
tion of biological systems [1],[2]. Each in-
dividual oscillator is described by its phase
and the coupling between two individuals
is a function of the phase difference. The
general Kuramoto model takes the follow-
ing form [3]:

θ̇i = ωi +
N

j=1

Γ ij (θj − θi ) , i = 1, . . . , N

where Γ ij are the interaction functions
that model the coupling and N is the total
number of oscillators. Since θ ∈ [0, 2π),
the corresponding state space is the
N -dimensional torus T N . This model has
turned to be suitable for describing many
different systems in biology, physics and
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engineering [2],[3],[4]. The key question
is whether or not the system behavior
reaches the consensus, i.e. the state where
all the agents are locked or synchronized.
Recently, this model has received the
attention of control theorists interested in
the coordination and consensus of multi-
agent systems (see [5] and references
there in).

In this paper we focus on the global
properties of the consensus of many
agents described by two different versions
of the Kuramoto model. We begin with
the classic symmetric sine model [2],[3]
in which the mutual interaction between
agents depends on the sine of the phase
difference between them. This model was
studied for an arbitrary interaction graph
in [5], and La Salle’s Invariance principle
was invoked to show convergence to the
equilibrium set. However, as we will
show in Section II, the characterization
of these equilibria in [5] is incomplete,
so the resulting almost global stability
claims are not valid in the general case.
Indeed, we characterize situations where
the system has other attractors in addition
to consensus. Nevertheless, in the classical
Kuramoto case of a complete graph,
we are able to show there are no other
attractors and hence obtain almost global
stability. We also show in Section III
how some of these results extend to
non-symmetric graphs, where the coupling
is unidirectional instead of symmetric. We
focus on the well-studied special case of
a ring of coupled oscillators [6], whose
local stability was studied extensively in
[7]. Finally we present some conclusions.



II. THE SYMMETRIC KURAMOTO

MODEL

A. Dynamics

The dynamics of a given agent depends
on the sine of the phase difference of
neighbors. As in [8], we can build a di-
rected graph with the agents as nodes and
the edges representing the relationships be-
tween agents. Along this paper, we assume
that the graph is connected. Let e be the
number of edges. We construct the inci-
dence matrix BN×e as follows:

B ij =






1 if edge j reaches node i
−1 if edge j leaves node i
0 otherwise

We will say that two agents are neighbors
if they are related by a link. For i =
1, . . . , N, the dynamic is given by

θ̇i = ωi +
K
N

.
j∈N i

sin(θj − θi ) (1)

where N i is the set of index of the neigh-
bors of agent i. When N i = {1, . . . , N } \
{i} for every i, we have the complete
or all to all case. In matrix notation, the
Dynamics can be written as

θ̇ = ωi −
K
N

· B sin B T θ (2)

Moreover, we will assume that all the
oscillators have the same natural frequency.
In this case, with a shift, the model can be
reduced to

θ̇i =
K
N

.
j∈N i

sin(θj − θi ) (3)

i = 1, . . . , N. We can further simplify the
notation by eliminating the factor K

N ; this
amounts to renormalizing time. In matrix
notation, we get

θ̇ = −B. sinBT θ (4)

Remarks:
• The dynamics depend only on the

phase difference of the oscillators.
• we will name by consensus or syn-

chronization the state where all the
phase differences are zero. In this
case, we say that the oscillators are
locked. Every consensus state is of the
form θ = c.1N , with c ∈ [0, 2π)(1N

denotes the column vector with all the

elements equal to one). We have a
curve of consensus points.

• if θ̄ is an equilibrium point, so is θ̄ +
c.1for every c ∈ [0, 2π). The stability
properties of θ̄ refer to this whole set
of equilibrium points.

• As was done by Kuramoto [2],
we associate the individual oscillator
phases to points running around the
circle of radius 1 in the plane. Then,
each oscillator can be described by a
unitary phasor Vi = ejθ i . At a con-
sensus point, all the phasors coincide.

Local stability of the consensus point was
studied in [5] using La Salle’s invariance
principle [9]. The function

U(θ) = e − 1Te cos(BT θ) (5)

(with 1e is the e-dimensional column vec-
tor of all ones) is non-negative, and such
that the system can be written in the gra-
dient form

θ̇ = −∇U;

In particular this implies that

U̇(θ) = − θ̇ 2,

hence the function is non-increasing along
trajectories. Since the state space is com-
pact, every trajectory has a non-empty ω-
limit set. La Salle’s result ensures that
every trajectory goes to the set W =

θ |U̇ (θ) = 0, i.e., goes to an equilib-
rium point. In order to establish almost
global stability of the consensus point, it
must be true that the consensus point is
the only attractor. The local analysis of all
the equilibrium points of (4) done in [5]
is incomplete, and therefore the conclusion
of almost global stability is in general not
true, as is shown in the next Example.

Example 2.1: Consider the case with
N = 6 in which the dynamics of the agents
are as follows:

θ̇i = [sin(θi−1 − θi ) + sin(θi+1 − θi )]

Here the configuration is circular; we iden-
tify Θ1 with Θ7. Consider the equilibrium
point showed in Fig. 1. The characteristic
polynomial of the linear approximation has
the roots 0 and -2 (simple), and −1

2 and



Fig. 1. Stable non-consensus equilibrium for Ku-
ramoto model with N = 6 (Example 2.1).

−3
2 (double). Therefore, this configuration

is locally attractive.
△

We thus see that guaranteeing asymptotic
consensus is more involved; in the follow-
ing subsections we provide some theory
that may help classify these other equi-
libria, and also show that in the complete
graph case, there is indeed almost global
stability of the consensus point.

B. Equilibrium points

To obtain the equilibrium points we
must annihilate the vector field. It is clear
that the consensus point θ = θ0.1 is an
equilibrium point, with arbitrary θ0 ∈ R
and being 1 the vector of all ones. But
there are other equilibrium points as well.

Lemma 2.1: At any equilibrium point θ̄
of (3), it must be true that the phasors

h∈N i

Vh , Vi

are parallel in the complex plane, for every
i.1.

Proof:
For every i = 1, . . . , N, consider the
number

αi =
h∈N i

Vh

Vi
=

h∈N i

ej( θ̄h −θ̄i ) =

=
j∈N i

cos(̄θh −θ̄i ) + j.
j∈N i

sin(̄θh − θ̄i )

Since θ̄ is an equilibrium point, αi is a real
number and h∈N i

Vh = αi .Vi .

1As noted below, this result extends to the non-
symmetric case.

Lemma 2.2: Let θ̄ be an equilibrium
point of (3) for the complete case. Then,
we have three different types of equilib-
rium points:

• synchronization: N
i=1 Vi = N.V1;

• partial consensus: non synchronized
state with all Vi parallel;

• balanced (non-parallel): N
i=1 Vi =

0.

Proof:
Let us denote by α the sum of all the pha-
sors. It is clear that for each i = 1, . . . , N,

α =
N

i=1

Vi = Vi .






1 +
N

k = 1
k = i

Vk

Vi






Note that

N

k = 1
k = i

Vk

Vi
=

k∈N i

Vk

Vi
= αi

with αi is a real number defined as in
Lemma 2.1. We can writeα = Vi . [1 + αi ],
i = 1, . . . , N. At a synchronization
point, all the Vi coincide and then

N
i=1 Vi = N.V 1 and αi = N − 1 for

i = 1, . . . , N.

At partial consensus point, all Vi are
parallel and we can take the reference
such that there are m agents with
Vi = −1, (1 ≤ 2m ≤ N ), and N − m
agents with Vi = 1 . The first group
contains the unsynchronized variables (an
unsynchronized variable θh agrees with
m−1variables and disagree with the other
N − m.). It this case N

i=1 Vi = N − 2m.

Finally, consider an equilibrium point
with Vi and Vk non parallel. Then

α = (1 + αi ).Vi = (1 + αk).Vk

It follows that

α =
N

i=1

Vi = 0 , αi = −1 ,i = 1, . . . , N



C. Stability analysis

We will analyze the stability of the equi-
librium points using Jacobian linearization.
Again, we begin with the case of a general
connected graph, and later focus on the
complete case.

A first order approximation of the sys-
tem at an equilibrium point θ̄ takes the
form δ̇θ = A.δθ, with δθ = (θ −̄θ) and A
the symmetric matrix N × N with entries

aii = −
P

k∈N i
cos(̄θk − θ̄i ) = −αi

ahi =


cos(̄θh − θ̄i ) , h ∈ Ni

0 , h /∈ Ni

with αi defined as in Lemma 2.1.

Remarks: The matrix A is symmetric,
reflecting the bidirectional influence of the
agents2. It always has the eigenvector 1
with zero eigenvalue, due to the invariance
of field under translations parallel to 1
[10].

The following results can help classify
locally the equilibrium points.

Lemma 2.3: Let θ̄ be an equilibrium
point of (3), such that there is at least one
αi < 0. Then, θ̄ is unstable.

Proof:
As we mentioned at the beginning of this
Section, the numbers −αi appear at the
diagonal of the symmetric matrix A. Then,
A can not be negative definite nor semi-
definite and so θ̄ is unstable.

Lemma 2.4: Let θ̄ be an equilibrium
point of (3), such that cos(̄θk − θ̄i ) > 0
for every k ∈ Ni . Then, θ̄ is stable.

Proof:
We can apply Gershgorin’ s theorem to
the matrix A described above. Since the
diagonal elements are −αi , and the off-
diagonal terms in the row add up to αi ,
all eigenvalues lie in disks centered at −αi

and with radius αi . Therefore the eigenval-
ues of A lie in Re[λ] < 0or at λ = 0; if the
graph is connected, the latter eigenvalue is

2This hypothesis will be removed below.

simple, corresponding to perturbations in
the direction of consensus.

Remark: The above lemma covers the
example given in the previous section.
Indeed, for sparse graphs, there can be
equilibrium configurations where all neigh-
boring angles are less than π/2, and thus
provide attractors other than the consensus
point.

In the case of complete (full mesh) graph,
angles larger than π/2 are bound to occur.
Indeed, we are now ready to prove that the
consensus point is the only attractor for the
complete symmetric case.

Theorem 2.1: Let θ̄ be an equilibrium
point of (3) for the complete case. Then,
the consensus point the only asymptoti-
cally stable equilibrium.

Proof:
As we have seen in Lemma 2.2, for the
complete case we have three different types
of equilibrium points. Next we study their
local stability properties.

• Synchronization: at the consensus
point, the matrix A takes a very par-
ticular form:

A = −N.I + 1T 1

which is symmetric and circulant. It
is straightforward to show that its
characteristic polynomial is

p(λ) = λ.(λ + N )N−1

and A has 0 as a single eigenvalue and
−N as an eigenvalue with multiplicity
(N−1) (see, for example, [10]). Then,
the consensus point is a local attractor.

• Partial consensus: consider a par-
tial consensus point θ̄, with its cor-
responding m, 1 ≤ 2m ≤ N. All the
phase differences are 0 or ±π. The
numbers

αh = (m−1). cos(0)+(N −m). cos(π)

= m − 1 − N + m = −N + 2m − 1

are the same for every unsynchronized
variable and we denote it by αU . In
the same way, the number

αS = (N −m−1). cos(0)+m. cos(π)



= N − 2m − 1

corresponds to every synchronized
variable. Since αU is always negative,
by Lemma 2.3, θ̄ is unstable.

• Non-consensus: let θ̄ be a balanced
equilibrium point. Since by Lemma
2.2, α1 = −1, Lemma 2.3 implies
that θ̄ is unstable.

Corollary 1.1: For the complete case,
the synchronized or consensus state is al-
most globally stable.

Proof:
As we have mentioned in Subsection II-
A, following [5], we can apply La Salle’s
Invariance result using the function U in-
troduced in (5). From compactness of the
state space, all the trajectories must con-
verge to the largest invariant set contained
in θ |U̇ (θ) = 0, i.e., must go to an equi-
librium. From Theorem 2.1, the consensus
point is the only attractor. Then, the only
trajectories that are not attracted by the
consensus point are the stable manifolds of
the saddle equilibrium points, which are a
zero measure set.

Converse results for almost global stability
state the existence of a density function
for the system [11],[12],[13]. For the cases
N = 2 and 3, we were able to find a den-
sity function for the system, just inverting
the function U introduced in (5) for the
complete case:

ρ2(θ) = 1
1−cos(θ2−θ1)

ρ3(θ) = 1
3−

P 3
i=1 cos(θi+1 −θi )

(6)

We still haven’t found a density function
for higher dimensions.

III. AN EXAMPLE OF NON -SYMMETRIC

GRAPHS

Previous results do not directly extend
to the general case of non-symmetric
graphs (i.e., where k ∈ Ni does not imply
that i ∈ Nk).

In this regard, we mention the following:

• The Jacobian linearization is not sym-
metric, which implies that this is no
longer a gradient system. In particular,
one can no longer give a La Salle-type
theorem saying that the only attractors
are equilibrium points. As shown in
[7] for the ring example, there can
be other periodic orbits in the system,
where the phase differences converge
but not the angles themselves.

• The characterization of other stable
equilibria as in Lemma 2.4 is still
valid.

A. Dynamics

We focus on the study of the dynamics
of N oscillators coupled in a ring structure,
in a way that the system is described by the
equations

θ̇i = K. sin (θi+1 − θi ) (7)

i = 1, . . . , N ,N + 1 = 1[6]. Besides the
consensus point, we are also interested in
the solution where all the oscillators are
locked, in the sense that the phase dif-
ferences between them remain constant in
time; these are the phase-locking solutions
[7] (these are equilibrium points or limit-
cycles). So a particular phase-locking so-
lution is characterized by a unique number
α, 0 ≤ α < 2π, such that

θ̇i = sin(α) , i = 1, . . . , N

It follows that α or π − α represents the
distance between two consecutive oscilla-
tors. So

θi (t) = sin(α).t + θi0 , i = 1, . . . , N

represents a limit cycle in the N -Torus
(or an equilibrium point if α is 0 or π).
Observe that the orbit of a phase-locking
solution with non zero sin(α) is invariant
under translations with associated vector
c.1.

It is useful to re-write equations (7)
in terms of the sequential phase difference

Φi = θi+1 − θi

The new description of the system is

Φ̇i = K. [sin (Φi+1 ) − sin (Φi )] (8)

i = 1, . . . , N , N + 1 = 1 . In this
context, the phase-locking solutions are the



equilibrium points of (8) and for a given
phase-locking solution, the phase differ-
ence between consecutive oscillators can
take only one of two possible values: an
angle α or its complement π − α; when
α = π/2, there is only one value. It is clear
that N

i=1 Φi = 2kπ, for some k ∈ Z.

B. Stability analysis

A complete local analysis of the stability
of equilibrium points and phase-locking
solutions of (7) was done in [7], using Ja-
cobian linearization techniques combined
with Gershsgorin Theorem of localization
of the eigenvalues of a given matrix. It
follows that for the cases N = 2 and 3, the
consensus point is the only attractor, but
for higher dimensions, there are asymptot-
ically stable limit cycles. So, we may try
to establish almost global stability of the
consensus point only in low dimensions.
We use a function U similar to function
V introduced in (5). In this case, we have
that U(Φ) = N − N

i=1 cos (Φi ), where
Φ is the vector of all the cyclic phase
differences. Using (8) we have that

U̇(Φ) =
N

i=1

sin (Φi ) .Φ̇i =

−
N

i=1

sin2 (Φi ) − sin (Φi+1 ) . sin (Φi )

Re-arranging terms we obtain

U̇(Φ) = −
N

i=1

[sin (Φi+1 ) − sin (Φi )]
2

Then U̇ ≤ 0 in the torus and every tra-
jectory goes to the set where U̇ vanishes.
But

C = U̇ = 0 = {sin (Φi+1 ) = sin (Φi )}

which contains the phase-locking solutions
as its only invariants. So, we can affirm
that almost all the trajectories in the torus
converge to one of the stable phase-locking
solutions. For the cases N = 2 and N = 3,
we conclude the almost global stability of
the consensus point. We remark that the
functions we have introduced in (6) are
also density functions for (8) for N = 2
and 3.

IV. CONCLUSIONS

In this work, we have presented some
global considerations for the Kuramoto
model with sinusoidal influence functions.
We first deduced some results for the gen-
eral symmetric case. For the symmetric
case with complete associated graph, we
proved the almost global attraction of the
synchronized state. We also analyzed the
non-symmetric case of coupled oscillators
in a ring structure, where we have shown
the almost global stability of the stable
phase-locking solutions. For low dimen-
sions, this implies the almost global sta-
bility of the consensus point.
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