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1. INTRODUCTION

The discrete universal denoiser (DUDE), introduced in [1],
aims at recovering a signal with finite-valued components
corrupted by finite-valued, memoryless noise. The DUDE
is universal, in the sense of asymptotically achieving, with-
out access to any information on the statistics of the clean
signal, the same performance as the best denoiser that does
have access to such information. It is also practical, and
can be implemented in low complexity. In [2], the defini-
tion of the DUDE was extended to two-dimensionally in-
dexed data, and an implementation of the scheme for bi-
nary images was presented, which outperforms other known
schemes for denoising this type of data. Although the
asymptotic results of [1] apply to any finite alphabet, it was
observed in [2] that extending the results to continuous tone
images (or, in general, to other types of data over large al-
phabets) presented significant challenges.

In this extended summary, we describe how these chal-
lenges can be addressed. As in lossless image compression
(see, e.g., the survey [3]), a key component of the DUDE
framework is the determination of a probability distribution
for samples of the input (noisy) image, conditioned on their
contexts. Thus, we can leverage from tools developed and
tested in the context of lossless compression for determin-
ing such distributions, together with tools that are specific
to the assumptions of the denoising application. These tools
combine with the DUDE principles into a framework that
yields powerful and practical denoisers for continuous tone
images corrupted by a variety of noise processes.

Section 2 reviews the basic concepts, notations, and re-
sults from [1] and [2]. Section 3 discusses the mentioned
challenges in applying the DUDE framework to continuous
tone images, and the tools used to address these challenges.
In Section 4 we describe experiments performed with the re-
sulting denoisers, comparing whenever possible with other
denoisers from the literature. We show that denoisers based
on the DUDE framework approach and in some cases sur-
pass state-of-the art denoising performance also on contin-
uous tone images.
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2. BACKGROUND

Throughout we let A, of size |A|, denote the finite alpha-
bet where the components of the clean, as well as those of
the noisy image, take their values. The i-th component of
a vector u will be denoted by ui. We extend the notation
to images, by allowing i to run over pairs (ih, iv) ∈ N2,
where N denotes the set of positive integers. Let x =
{xi}i∈N2 denote the (conceptually infinite) clean image and
z = {zi}i∈N2 its noisy version. For m,n ∈ N, we denote
by xm×n the array (x(ih,iv)), 1 ≤ ih ≤ m, 1 ≤ iv ≤ n. We
denote by Vm×n the set of valid indices in a m× n image.

The DUDE algorithm defined in [2] is parameterized
by a stochastic channel transition probability matrix Π =
{Π(a, b)}a,b∈A, a loss matrix Λ = {Λ(a, b)}a,b∈A and a
neighborhood. An entry Π(a, b) of Π is interpreted as the
probability that the observed noisy symbol at a given lo-
cation is b when the underlying clean symbol is a. These
probabilities should model the actual degradation process or
channel giving rise to the noisy image. We assume that Π
is invertible (this assumption is relaxed in [1]; many chan-
nels used in practice satisfy the condition in principle, al-
though some present numerical problems, as discussed in
Section 3). An entry Λ(a, b) of Λ is interpreted as the loss
incurred by estimating the symbol a with the symbol b. The
loss matrix should reflect the fidelity criterion by which de-
noising performance is evaluated relative to the clean image.
Finally, a neighborhood is a subset of Z2 not containing the
origin (0, 0) (the center of the neighborhood). Examples of
neighborhoods used in practice include (2k +1)× (2k +1)
squares, or circles of radius k, centered at (0, 0), for k ≥ 0.
For a neighborhood S, we let S+i = {j+i : j ∈ S}, using
vector addition for 2D indices, and x(S + i) = (xj+i)j∈S .
Thus, x(S + i) is a |S|-dimensional vector with A-valued
components indexed by the elements of S + i. Such a vec-
tor x(S + i) for a generic index i will be referred to as the
context of the image sample xi at index i.

Given matrices Π and Λ, and a neighborhood S, a de-
noiser X̂m×n

S (the DUDE) is defined in [2] by means of the
computations described informally in Fig. 1 (details can be
found in [2]). All the statistics needed in Steps 1-2 of Fig. 1
are generated in one pass through the image, in which con-
ditional counts of symbols are collected for each observed
context. The computation in Step 2 is performed for each
observed context, while the computation associated with
Step 3 is performed in a second pass through the image.
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For each index i ∈ Vm×n:

1. Determine the empirical distribution of noisy symbols zj

whose context z(S + j) is indentical to z(S + i).

2. Determine a posterior distribution of clean symbols xj

whose corresponding noisy symbol is zi with context z(S+
i). This distribution is computed from the empirical distri-
bution in Step 1, using the inverse of the matrix Π.

3. Using the loss matrix Λ, produce a denoised value x̂i =

X̂m×n
S (zm×n)[i] such that the expectation of the loss

Λ(xi, x̂i) with respect to the conditional distribution deter-
mined in Step 2 is minimized.

Fig. 1. DUDE outline.

in which the noisy image is generated by a discrete mem-
oryless channel with transition probability matrix Π, is es-
tablished for the scheme of Fig. 1 by considering a sequence
of distinct neighborhoods {Sk}k≥0 and letting k grow at an
appropriate rate with respect to the dimensions m,n of the
image (see [1] and [2]).

3. CONTINUOUS-TONE IMAGE DENOISING

A crucial component of the DUDE is the determination of
a conditional distribution of noisy samples zi given their
context z(S + i) (Step 1 of Fig. 1), which is obtained by
collecting empirical counts of occurrences of symbols in
the observed contexts. Determining conditional distribu-
tions of samples given their context is also a key operation
in lossless data compression and, in the case of universal
compression, the number of conditioning contexts plays a
fundamental role in determinining the convergence of the
code length to the entropy. The code length includes, ei-
ther explicitly or implicitly, a model cost [4], which is pro-
portional to the number of free statistical parameters in the
model. The model cost reflects the price paid for learning
the statistics of the data: if there are many parameters to
learn, many data samples will be required to accumulate sig-
nificant statistics for each parameter (hence, the problem is
sometimes described as one of “sparse statistics”). Model
cost is particularly significant for context models over large
alphabets, as the size of the alphabet generally impacts both
the number of potential contexts and the number of parame-
ters per context. The other component of the code length, a
modeling component, is determined by the degree to which
elements of the model class capture the statistical properties
of the data. The theory and practice of universal lossless
data compression address a fundamental trade-off between
these two components of the code length: a richer model
class with a higher accuracy of models therein results in a
shorter modeling component of the code length at the ex-
pense of a greater model cost component.

In denoising, a similar trade-off exists between the rich-
ness of a model class for the underlying clean and noisy
signals and the ability to learn accurate models. The results
of [1] show a strong dependence of the convergence of the

DUDE performance to optimal performance on the size of
the context model. This convergence is determined largely
by the degree to which the law of large numbers has taken
hold on random subsequences of samples zi occurring in
a given context and having a given underlying clean sam-
ple value. Convergence requires that these subsequences
be relatively long, implying numerous occurrences of each
noisy context and underlying clean sample value. A large
neighborhood and a large sample alphabet clearly lead to-
ward shorter subsequences thereby increasing the “denois-
ing model cost.”

The results of [2] showed that the original DUDE
scheme of [1], with few modifications, was effective in de-
noising bi-tonal images. However, it is a practical fact that
even for the smallest useful neighborhoods one might con-
template, the size of a typical continuous tone image (now
or in the foreseeable future) is not sufficient for a context
model of the sort described in Section 2 to approach an
asymptotic regime where the optimality results of [1] are
meaningful. In most cases, there will be very few repeti-
tions of observed contexts in an image, and each context
will “capture” only a small number of samples.

To address this problem, we exploit prior knowledge
on the structure of image data to let contexts share their
information, and allow many different contexts to “con-
tribute” to the conditional distribution used at each image
location. In lossless image compression, this has often been
achieved by prediction, i.e., the assumption that groups of
conditional distributions depend on the conditioning con-
text only through a context dependent offset (the predicted
value), and context clustering, i.e., partitioning the space of
actual contexts into a much smaller number of conditioning
classes, which are generally disjoint. The two techniques
are used, for example, in [5] (see [7] for a theoretical anal-
ysis of the role of prediction in compression). However,
there is no compelling reason for the disjointness of the
classes, or for a given context not to contribute its infor-
mation to more than one conditioning class. An extreme
case of this paradigm is presented in [6], where every con-
text contributes, in an appropriately weighted form, to the
denoising of every location of an image. Thus, we address
the DUDE model cost problem for continuous tone images
by augmenting the baseline DUDE algorithm with two ad-
ditional tunable components: a prediction component and
a context clustering component. These components serve
to “blend” information from different contexts to determine
the required conditional distributions of the data.

Let ẑ(·) denote a prediction function mapping contexts
z(S + i) to values in A. Let C(·) denote a clustering func-
tion mapping contexts into integer valued cluster indices.
The augmented DUDE framework then replaces the condi-
tional distribution computed in Step 1 of the procedure of
Fig. 1 with A(p̂(zi − ẑ(z(S + i))|C(z(S + i)))), where
p̂(e|C(z(S + i))) denotes the empirical distribution of the
prediction error zj − ẑ(z(S + j)) along the subsequence
of indices j for which C(z(S + j))) = C(z(S + i))), and



A(·) denotes a clamping operation that forces the support of
the final distribution to be contained in A. The underlying
assumption behind this modification is that the conditional
distribution of zi given z(S + i) depends on z(S + i) only
through C(z(S + i)) and the “DC shift” ẑ(z(S + i)). Thus,
a distribution is determined per cluster and predicted value.

Note that although our approach to reducing denoising
model cost is motivated by methods from lossless image
compression, we cannot directly apply the predictors and
clustering techniques underlying these methods since they
are restricted to be causal in nature and, more significantly,
have been designed to model clean images, while here we
allow non–causal contexts and seek to model noisy images.
Therefore, like the channel parameter Π, the prediction and
clustering components also need to be matched to the noise
corrupting process at hand.

As a common first step in context clustering and pre-
diction, the image can be initially denoised by a “rough”
denoiser (e.g., a median denoiser for salt and pepper noise,
or a Wiener filter for Gaussian noise, or simply the identity
function). Contexts are then built of the roughly denoised
symbols, but the conditional statistics collected still corre-
spond to the original noisy symbols. These statistics are
used to denoise the image according to the above modifi-
cation of the scheme of Fig. 1. The procedure can then be
repeated, using the DUDE-denoised image as the (roughly
denoised) starting point of the next iteration (but always
collecting statistics on original noisy symbols). The stop-
ping point of the iteration can be determined using various
heuristics, depending on the noise channel and the mode of
operation of the denoiser (e.g., by visual inspection in an
interactive environment). Notice that for nontrivial context
sizes, each iteration increases the total number of original
samples affecting the denoising of each location.

The specific clustering function C(·) we have consid-
ered is a composition of the iterative denoising procedure
just described with a possible “DC removal” implemented
as z(S + i) − ẑ(S + i), followed by a spatial transforma-
tion to exploit assumed spatial (e.g. rotational) symmetries
in the conditional distribution, followed finally by a stan-
dard (vector or scalar) quantization procedure. In general,
we allow both the clustering and prediction mappings to
themselves depend on the entire noisy image. The quan-
tization procedure playing a role in C(·) for instance may
be a vector quantizer designed using the Generalized Loyd
algorithm [9] operating on the entire set of contexts.
Matrix inversion. In a first sub-step of Step 2 of Fig. 1, the
inverse of the channel transition matrix Π is used to deter-
mine a posterior distribution of the clean symbol xi given
the noisy context z(S + i). Although Π is formally non-
singular for most channels of interest in image denoising,
it is very badly conditioned in some important cases, and,
most notably, in the Gaussian case. In practice, for these
channels, a numerical procedure can be used to solve for
the desired conditional distribution P̂x of xi, by minimizing
a function of the form ||P̂xΠ − P̂z||, subject to numerical

%S&P Lena∗ ([8]) Lena∗ (DUDE) Lena (DUDE)
30 35.6 36.8 38.3
50 32.3 32.9 34.1
70 29.3 29.6 30.7

Table 1. PSNRs (dB) for S&P denoising on Lena∗ and Lena by DUDE
and [8].

tolerances and stability, and the constraint that P̂x be a valid
distribution (written as a vector). Here, P̂z is a probability
vector derived from the empirical counts of noisy samples.

4. RESULTS

Denoisers based on the augmented DUDE framework and
incorporating the tools described in Section 3 were imple-
mented and tested on a variety of channels and continuous
tone images. We present a sample of the results, compar-
ing, whenever possible, to other schemes in the literature.
All images tested were gray-scale, with intensity values be-
tween amin = 0 (black) and amax = 255 (white).
Salt and pepper noise. The salt and pepper (S&P) chan-
nel corrupts each image sample with probability δ, inde-
pendently of other samples. When a sample is corrupted, it
is switched to maximum or minimum intensity with equal
probability. The S&P channel resembles an erasure channel,
in that any value strictly between amin and amax is known to
be uncorrupted. Samples valued amin or amax, on the other
hand, may be clean or noisy. The S&P channel is not addi-
tive, and its transition matrix is well conditioned and easily
inverted (except when δ approaches one).

The DUDE implementation for S&P uses a context
model, nicknamed Napkin, based on a fixed neighborhood
comprised of the L1 ball of radius 2 about the origin. Con-
texts are quantized using quantized gradients, activity lev-
els, and texture information (as in JPEG-LS and CALIC;
see, e.g., [3]), and are used for both prediction and (after
further context quantization) statistical modeling. The de-
noiser was iterated as described in Section 3.

Table 1 compares the augmented DUDE framework
with an algorithm recently proposed in [8]. The results
reported in [8] appear to be for a non–standard grayscale
version of the Lena image (denoted Lena∗ hereafter) which
we obtained from the first author’s website and to which
we applied the augmented DUDE framework to gener-
ate the PSNR figures in column 3 of Table 1. For ref-
erence, in column 4 we give the PSNRs of the DUDE
framework on a more widely used grayscale version of
Lena (http://www.dsp.ece.rice.edu/∼wakin/images/).
We see from Table 1 that the DUDE framework attains fa-
vorable performance relative to the algorithm of [8], which
is based on a total variation–like minimization approach,
and is shown in [8] to, in turn, outperform a variety of pre-
viously proposed S&P denoisers.
Gaussian noise. The tuning of the prediction and cluster-
ing components of the augmented DUDE framework to the
Gaussian noise setting is still a work in progress. Prelim-



Fig. 2. Denoising on the Gaussian channel (σ = 15); left: noisy image
(PSNR=24.7dB), right: DUDE-denoised (PSNR=31.7dB).

inary results are promising. We experimented with a pre-
diction unit based on the Napkin model used above for S&P
noise, and a context quantizer based on a Generalized Lloyd
optimized vector quantizer. Fig. 2 shows a portion of the
standard 720×576 ‘boats’ image, corrupted by Gaussian
noise with σ = 15, and its denoised version. In terms of
PSNR, the augmented DUDE framework outperforms the
early generations of wavelet based denoisers, but falls short
of the state of the art wavelet based denoiser in [10].
“Real life” denoising. Although well characterized chan-
nels are useful in the design and analysis of denoising
schemes, real-life noisy images seldom abide by the abstract
models. In a practical setting, the channel structure and pa-
rameters can be regarded as “knobs” of a denoising system,
which can be tuned to achieve the best performance. The
latter is often characterized by visual inspection. In such
a setting, flexibility and robustness of a scheme against a
mismatch in channel parameters or other assumptions is a
very desirable property. Preliminary experiments indicate
that the augmented DUDE framework is indeed quite ro-
bust. The upper left of Fig. 3 shows a segment of a scan of
an antique book page, showing “bleeding” from the reverse
side of the page. The resulting image was denoised with an
augmented DUDE denoiser tuned for Gaussian noise with
σ = 20 (lower right) and two other denoisers designed for
Gaussian noise: the adaptive Wiener filter implemented as
the wiener2 function in Matlab Ver. 6.1 (lower left) and the
BLS–GSM wavelet based denoiser of [10] (upper right), as
embodied by the Matlab implementation made available by
the authors. The parameters of the Wiener filter and BLS–
GSM denoiser were hand optimized to yield the best subjec-
tive results. For the images shown, wiener2 was run with a
15x15 neighborhood and noise power 1000, while the BLS–
GSM denoiser was run with a noise standard deviation of
100 and all other parameters set to those yielding the best
results in [10] (as specified in the Matlab implementation’s
denoi demo.m file).
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