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Abstract— This paper provides an overview of local bifurcation theory and its application to power system
voltage collapse analysis. Two methods for finding turning points are described: a direct method and a continu-
ation method. A computational program based on the continuation power flow method in Matlab environment,
developed for ac systems including reactive power generation limits, transformer tap changer limits and an alter-
native speed up calculation process are also presented. The algorithm is tested on the uruguayan transmission
network and an example is given. Some ideas about our future work are included
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1 Introduction

Today most power systems operate close to their
transmission limits, so continuous increasing in
the load may drive the system to an unstable sit-
uation in which bus voltage magnitudes decrease
in a non-oscillatory and fast way, known as volt-
age collapse. This phenomenon has been reported
frequently since the 80’s and it has been captured
researchers attention in the early 90’s. Reliabil-
ity, optimality and contingency strategies are very
important facts in power networks operation. Es-
sentially, voltage collapse can be characterized as
the loss of stability related to the busbar voltages,
i.e., the operation point becomes unstable in some
sense. A complete overview of the voltage stabil-
ity issue can be found in (Caifiizares, 2001).

Bifurcation theory is widely accepted as the best
way of modelling voltage collapse in large power
systems. Based on the relationship between volt-
age collapse in power systems and saddle-node bi-
furcation of dynamical systems, an algorithm im-
plementing the continuation power flow method
is developed. This program finds the voltage col-
lapse point under a pre-defined load increase for a
system with reactive power generation limits and
on load tap changer automatic regulation. Good
results have been obtained with simulations on the
uruguayan electrical network.

Section 2 introduces the standard electrical power
system model and the saddle-node bifurcation. In
Sections 3 and 4 the direct method and the contin-
uation method for finding voltage collapse points
are explained. Section 5 describes the continua-
tion power flow algorithm and its main features.
Finally, an example and some conclusions and fu-

ture work directions are presented.

2 Voltage collapse and bifurcations

A suitable model for electrical power networks is
needed in order to understand the voltage stability
phenomenon and to deal with it and the relation-
ships with bifurcation theory.

2.1 Standard model

The standard model for power systems is a set of
ordinary nonlinear differential equations with an
algebraic constraint (DAE):
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where vector x € R" stands for state variables
describing generators angles and their velocities,
y € R™ represents voltages and angles at load
buses and A € R is a real parameter modelling
usually some slow varying load (Kundur, 1994).
Function f captures the dynamics of the genera-
tors and their relationships with the load, whose
accurate modelling is a very important fact. Func-
tion g represents the interconnection of the power
network and the appropriated active and reactive
power balance at the loads.

A standard hypothesis is that the Jacobian

Dyg(z,y,) (2)

is nonsingular for all (z,y, A) under consideration,
so system (1) can be locally reduced to

where h comes from the Implicit Function Theo-
rem (Khalil, 1996). When D,g is singular, the



situation is very complex and the very quasis-
tationary assumption of phasor dynamic model
loses its wvalidity beyond the singular points
(Venkatasubramanian et al., 1995).

2.2 Bifurcation analysis

It is accepted that saddle node bifurcation is
an accurate way of modelling voltage collapse in
power systems (Proceedings of the IEEE: Special
Issue on Nonlinear Phenomena in Power Sys-
tems, 1995). Characterization of this particular
kind of bifurcation in nonlinear dynamical systems
with scalar parameter and in absence of algebraic
constraints was given in (Sotomayor, 1973; Perko,
1990). Essentially, the system

&= f(z,A) 4)

undergoes a saddle node bifurcation at point
(24, As) if the following conditions are satisfied

0= f(@u, As) ()
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Equation (5) means that (z., A) is a fixed point;
equation (6) indicates the existence of a null eigen-
value of the Jacobian at (x.,A«) with associated
left and right (nonzero) eigenvectors w and v. Ex-
pressions (7) and (8) implie transversality condi-
tions and determine the generic aspect of saddle
node bifurcation implying that this kind of bifur-
cation will exist even under small perturbations
of the original system (i.e. it is a robust phe-
nomenon).

So, voltage collapse can be seen as the disappear-
ance of the stable operation point as long as the
parameter reaches some critical value. The sys-
tem is then driven away from acceptable zones in
the state space. The point (2., As) is usually re-
ferred as turning point (Seydel, 1988).

For the case of DAE’s, a similar condition is in-
ferred in (Caiizares, 1991), leading to the related
expressions:
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There are standard methods for solving equations
(9-12), i.e. for finding turning points. Other types
of bifurcation, like pitchfork and transcritical, are
not generic in the sense that they are not expected
to occur in general. Hopf bifurcation, another
generic kind of bifurcation, is not considered here.

3 Direct method

This method was initially proposed by (Seydel,
1988) for finding saddle-node bifurcations on non-
linear systems without constraint manifolds. An
extended version of this method is applied in
(Caiiizares, 1991) to the complete set of power
equations, including algebraic constraints, to de-
tect voltage stability problems in ac power net-
works. The method for finding the bifurcation
point is to impose conditions for equilibrium with
constraints ensuring a zero eigenvalue at the point
of interest. Hence, the equations for z, y, v and A
take the following form:
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The nonzero condition for the eigenvector can be
guaranteed by requiring a particular component

of v, to be different from zero. This method also
gives the eigenvector at the bifurcation point.

4 Continuation method

Voltage profiles of power systems have been typ-
ically obtained by calculating a series of equilib-
rium points of equation (9) with successive power
flow simulations. These profiles correspond to
parts of the bifurcation diagram. By solving
F(z,)) = 0 for increasing values of A, one can
trace relevant parts of the bifurcation diagram;
however, since the system Jacobian becomes sin-
gular at the saddle-node bifurcation (z.,A.) and
no equilibrium points exist for A > A, one cannot
accurately compute A, using this technique.

The continuation method (Cailizares, 1991) over-
comes the difficulties of the successive power flow
solutions method, allowing the user to trace the
complete bifurcation diagram by automatically
changing the value of A. The strategy used in this
method is illustrated in figure 1. The curve of the
figure 1 represents a branch of the system equi-
libria as the parameter changes. The technique
consists of a three step approach to tracing the
equilibrium points as one parameter in the sys-
tem changes.

Agsuming that the system is initially at the state
(21, A1), the first step is known as the predictor
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Figure 1. Predictor-corrector diagram

step, since it generates an initial guess
(21 + Az1, M+ AN)

by calculating direction Az; using the tangent
vector to the curve at (21, A1). Since F(z1,A) =0
then

&K, M) =DF(a, M) &I, + 8)\|1

_ _ 8F
DF|1 d>\1__ﬁ|1 (13)
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where the parameter increment A)\l can be de-
fined as a function of a scaling ks, to vary the
speed at which the equilibrium branch is traced,
i.e.

k

The initial guess (z; + Azl, )\1 +AM)) is then used
in the corrector step to compute a new equi-
librium point (22, A2) on the bifurcation diagram.
The new equilibrium must be calculated by solv-
ing the following set of equations for z and A:

F(z,A)=0
{ AN (A= X

A\ = (15)

—AX) + AT —Az)=0

(16)
The first equation of (16) corresponds to the
steady-state system equation, which has a singu-
lar Jacobian D_F|, at the saddle-node bifurca-
tion point (z«,A«). The second scalar equation
consists in a hyperplane orthogonal to the tan-
gent vector [ATz;, A\ ]T, passing through (21 +
Azl, A+ A)\l)

z—=

By initially setting 2z to z1+Az; and A to A +AM\,
solving this set of equations usually takes one or
two iterations of the standard Newton-Raphson
Method (Caiizares, 1991). If the process fails

to converge, the steps Az;, A);, are halved un-
til convergence is attained. Another appropriated
surface can be used instead the proposed hyper-
plane (Kundur, 1994).

However, this method has difficulties when the
equilibrium point is close to the bifurcation point,
since the Jacobian of system equations (13) be-
comes ill-conditioned. To avoid this problem a
third step can be used. This step, known as pa-
rameterization, consists on interchanging, close
to the bifurcation, the parameter A with the com-
ponent z; of vector z that has the largest normal-
ized entry in the tangent vector, so that A becomes
part of the equation variables, whereas z; becomes
the new parameter p, i.e. for N =n +m,

Az1 AZQ AZN A\
z1 z9 ‘ A

The global method goes around the bifurcation

point, allowing the user to trace the unstable side

of the equilibrium branch. However, it is neces-

sary to find this turning point, in order to change

the sign of AX in equation (14).
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5 Implementation of the continuation
power flow

We have developed a program based on the con-
tinuation power flow method in a Matlab environ-
ment, with the following main features:

5.1 System modelling and data files

The input data are similar to those of conventional
load flow, with the following additional particular-
ities:
e The loads of the PQ busbars are modelled
with a voltage dependency of the type

P=Py+P.V* + P,V*
and a similar model for the reactive load.

e FEach PQ busbar has a binary flag, in order
to identify whether the busbar load will be
increased or not during the process.

e If the load in busbar j will be increased, a
constant AP; is assigned in the data file in
order to identify the load increase direction
of the system. The total active load in bus-
bar j will be increased according to the law

Pj = Poj + Plj-‘/jalj + P2j-‘/ja2j + )\APJ

where A is the load increase parameter. A
similar law is used for the reactive load.

e FEach PV generation busbar has a second bi-
nary flag, in order to identify whether the
machine in this busbar will share or not the
increase of load in the system during the
process.



5.2  Predictor and corrector steps

Beginning with an initial steady state of the sys-
tem, solved with a conventional Newton -Raphson
load flow, the program increases step by step
the load according to the predefined load in-
crease direction and solves for each step the new
steady state of the system applying the predictor-
corrector method.

Constant ks, in equation (15) is defined by trial
and error in order to get acceptable total calcula-
tion time. We have checked on several tests made
on the uruguayan transmission network that the
total calculation time is improved by using a rel-
ative small k., in order to get a system load in-
creases of the order of 0.2% to 0.5% of the total
system load when the z — p curve is solved still far
from the collapse point. If we use higher k,. val-
ues, we have found that, although the predictor
step advances faster towards the collapse point,
the corrector step takes much more time to be
solved.

5.8 Reactive generation limits

Each time a new steady state has been found at
the end of the corrector step, the algorithm checks
that the reactive generation of each machine lies
within the predefined range. If at least one ma-
chine has violated its reactive generation limit,
the new steady state is rejected and we have to
go back to the previous state at the beginning
of the last predictor step. The process predictor-
corrector is then repeated, but this time with a
reduced (halved) k.. This is repeated till we find
a state where all the reactive generation limits are
respected and at least one machine is generating
exactly its reactive limit (within a predefined tol-
erance). At this point, the reactive generation of
this machine is freezed in its limit, its voltage ref-
erence is released (the busbar type changes from
PV to PQ) and k,, is restored to its original value
in order not to loose computation speed in the
future predictor-corrector steps.

5.4 Tap changer limits

Similar with the reactive generation limits, each
time a new steady state has been found at the
end of a corrector step, the program checks that
the tap changer position of each regulating trans-
former lies within the predefined range, using a
method similar to the one described above. When
a steady state with all regulating transformers
with their tap changer positions within the accept-
able range and at least one transformer working on
a limit tap is obtained, the tap of this last trans-
former is freezed in its limit, its voltage reference
is released (the busbar voltage substitutes the tap

position as a state variable) and kg is reset to its
original value.

5.5 Parameterization

Before beginning a new predictor-corrector step
from a valid steady state, the algorithm selects
as the new parameter the PQ busbar voltage or
load parameter which has had the largest relative
absolute increase during the previous predictor-
corrector step, as was explained in Section 4. For
simplicity, the new parameter is sought between
the busbar voltages only (Cadizares, 1991).

5.6 Collapse point detection

The algorithm assumes that the system will finally
collapse when finding a saddle-node bifurcation,
i.e. the system Jacobian will have a null eigen-
value at the collapse point. The collapse state is
then found by detecting a change of sign of the
determinant of the system Jacobian between two
consecutive calculated states.

5.7 Collapse point evaluation

The program calculates the eigenvectors associ-
ated with the null eigenvalue of the system Jaco-
bian at the collapse point. The greater absolute
entries in the right eigenvector identify the bus-
bars most involved in the collapse (Dobson, 1992b)
and according to this criterion, the P-V and Q-V
curves of these worst busbars are displayed and
information about the total system load at the
collapse point is given.

5.8 Alternative calculation

In order to speed up the calculation process, it
is possible to select in the program an alterna-
tive method which uses conventional load flows
with predefined load increases to calculate the
first points in the z — p curve. Then, automatical
switching to the continuation power flow method
is performed when a conventional load flow fails
to converge after few iterations.

6 An application example

The algorithm has been tested on the uruguayan
transmission network, which has around 100
nodes. Different load increase directions are as-
sumed. In order to test full capability of the soft-
ware, we have tested several load voltage depen-
dency models, although none of them has been yet
validated by field tests in the network.

The P-V and Q-V curves obtained for two of the
most stressed busbars of the network during one
of the simulated cases are shown in figures 2 and
3.
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Figure 2. P-V and P-Q curves for busbar MONTF315 of
Montevideo.
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Figure 3. P-V and P-Q curves for busbar MONTJ150 of
Montevideo.

The busbar voltage jump in the MONT F315 bus-
bar is due to a regulating transformer connected
to this busbar hitting a tap changer limit. The
corresponding decrease in the active power load is
due to the particular voltage dependency of the
load model assumed to this busbar.

7 Conclusions and future work

The basic theory of voltage collapse as part of the
bifurcation theory of non linear systems and one of
the most widely used methods for finding the col-
lapse state in electric power systems (the continu-
ation power flow) have been reviewed. A software
tool based on the continuation power flow method
has been developed, taking into account the main
factors which influence the voltage state of power
systems when submitted to a continuous increase
of load, i.e. limits of reactive power generation, on
load tap changer automatic regulation and volt-
age dependency of the loads. The software has
been tested in the uruguayan transmission net-
work with satisfactory results, confirming that the

selected method is particularly useful for tracking
the voltage evolution when the power system is
subjected to discrete changes as a consequence of
state variables (reactive power of generators, tap
position of on load tap changers) hitting limits.

Our future work in this field will be concentrated
in two main directions. One of these is the find-
ing of the closest bifurcation: as far as is not al-
ways possible to preview a suitable load increase
direction in the system, the method should be ex-
tended in order to be able to find the closest (in
some sense) collapse state when all the load in-
crease directions in the space of active and reactive
loads are equally probable. In this way, the power
system could be planned or operated in a con-
servative manner taking into account this worst
load increase scenario. The method described in
(Dobson, 1992a) for finding a closest bifurcation
in a multidimensional parameter space is being
implemented and will be tested in the near fu-
ture on the uruguayan network. The other di-
rection is the calculation of mitigation measures:
having the ability of calculating the voltage col-
lapse state is only the first step towards the im-
plementation of planning or operating procedures
which take into account the voltage collapse phe-
nomenon in power systems. The next step is to
develop calculation methods in order to be able to
propose mitigation measures (reactive power rein-
forcements in selected busbars, load shedding, ma-
chines control voltage adjustment and regulating
transformers) against the collapse in an optimal
way (Cafizares, 1998). A research work in this
direction will be developed in the near future.
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