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ABSTRACT to maximize the disparity of its interior and exterior. But

. these techniques require the manual selection of several pa
Some of the most successful algorithms for the automated : . . . .
rameters, which make impractical the work with long image

segmentation of images use an Active Regions approaChSequences or with a very dissimilar set of sequences
where a curve is evolved so as to maximize the disparity Our contribution is the following: based on the ren.1ark—
of its interior and exterior. But these techniques require able Geodesic Active Reqions se?.mentation algorithm of
the manual selection of several parameters, which make im-Rousson etal. [7], we incgrease itsgrobustness (g estimat-
practical the work with long image sequences or with a very ing if the moviﬁ CL,Jrve has lost any obiect So as toylaunch a
dissimilar set of sequences. Unfortunately this is prégise reg-ginitialization gte y obje L

p) and make automatic the crucialicko

the case with 3D biological image sequences. In this work . X . _
we improve on previous Active Regions algorithms in two of the optimum weights for the different channels involved
(color, texture, etc).

aspects: by introducing a way to compute and update the hi . . foll .
optimum weights for the different channels involved (color This papers is organized as follows. .In sgctlon 2.we
texture, etc.) and by estimating if the moving curve has present the general framework. Our algorithm is described

lost any object so as to launch a re-initialization step. Our in section 3. Section 4 shows the experimental results. Fi-

method is shown to outperform previous approaches. Sev-"ally: in section 5 we give some conclusions.
eral examples of biological image sequences, quite long and
different among themselves, are presented. 2. GENERAL FRAMEWORK

1. INTRODUCTION Our starting point is the region-based active contour frame
work proposed by Rousson et al. [7]. For a single (color)
Segmentation, reconstruction and visualization of 3Dcstru  image : © — R3, with Q@ C R?, we compute a cor-
tures from series of 2D image slices is a widely used tech- respondingfeature imagel/ : Q@ — R™ whereN is the
nique in medical and biological research. These series havehumber of feature channels (like color, texture, opticakflo
tens to hundreds of slices, so the images may vary a lotetc).
along the same sequence. Also, different image acquisition  To solve the segmentation problem, we seek for a curve
techniques (e.g. electron, optical or confocal microsgopy I' which gives a partition of the spa€kin two (non neces-
and different biological data produce very dissimilar sarily connected) regior@; and(2,: the object of interest
sequences. Our goal (part of an ongoing effort started with and the background. This is accomplished by finding the
[1]) is to devise a general technique, independent of the ac-curve that divides the feature image in such a way that max-
quisition technique and the type of cellular tissue invdlve imizes the likelihood of each region probability distrikmrt
that, once the biologist has selected in the first frame of thewith respect to the observed previous frame. This process
sequence the structures in which he/she is interestedgis ab is repeated for each frame, taking as ground truth the seg-
to automatically follow these structures along the seqagnc mentation of the previous one. The algorithm takes as input
segmenting them as they evolve and also detecting and segthe sequence of images and an user provided ground truth
menting any new objects of the same kind that may appear.for the first image (a set of manually segmented objects of
Some of the most successful algorithms for the auto- interest).

mated segmentation of images use an Active Regions ap- Under the hypothesis that both regions aspriori
proach ([2, 3, 4, 5, 6, 7, 8], where a curve is evolved so as equiprobable, following [5] and using a level-set formula-



tion we arrive to the following Partial Differential Equati:

dp S )
U an—i—é((ﬁ)ZwJ logpz(x) Vol (1)

where¢(t) is an embedding function for the evolving
curve,p! is the Probability Density Function (PDF) of fea-
ture j in region: (usually computed with Gaussian estima-
tion or a Generalized Gaussian Density) and the Eu- Fig. 1. Blobs detected in the 9th frame of trean sequence.
clidean curvature. The parameters that need to be choseieft: no re-initialization. Center: initializing with evay
and updated for each frame are the, the weights for the  spaced circles. Right: our re-initialization (see text.)
different channels.

The desired curvE is obtained computing the zero level-

set of¢p whent — co. their position (so they are easy to track) but keep appearing
and disappearing along the sequence. For this sequence,
3. OUR CONTRIBUTION choosing as initial condition the curve(s) found in the prev
ous frame would imply that only the objects present in the
3.1. Weighting algorithm first frame of the sequence would be tracked, they would

_ _ gradually disappear and after just a few frames the segmen-
We propose a method for the automatic choice and updat-tation would yield an empty set, although there are always

ing of the weightsu;. For the first frame the user supplies many objects of interest in each one of the frames of this
a segmentation which is taken as ground truth. For eachsequence.

feature channej we compute the PDF if,, call it py, To solve this problem, we propose a method to detect if

and the PDF ir), call it p;. Then we measure théis-  the curvel is missing any object, and if it does we launch
tanced; betweenp] andpj, using a symmetrized version g re-initialization step. This mechanism is composed of two
of the Kullback Leibler divergence [9]. A big value fdg stages: decision and re-initialization.

means that the channglprovides good discrimination, so The decision mechanism works as follows. As the evo-
w; should be big as well. We choose: lution reaches a minimum, we assume that we have a con-

siderable part of the object detected. Thus we can obtain a
~ 2) roughly accurate estimation of the object PDF in the inner
> i1 di region €2;). In the outer region, we have the background
and the missing part of the object. So we can model the dis-
tribution of 2, as a mixture modebs (z) = P,.p(x|6,) +
Py.p(z|0,) whereP; are theprior probabilities of each dis-
tribution and@; its parameters. We use the Expectation
Maximization algorithm to lear®; and@;. After the mix-
ture is trained, the distance betweer(x) andp(z|0;) Vi
As in many tracking algorithms, we take as initial estima- (computed as in 3.1) is measured and if it is lower than
tion for the curvel in the (n + 1)-th frame the final result ~ @ threshold ¢....), we say that they are the same object.
for T in the n-th frame. Assuming that the difference be- Once a match is found, we check if the area of the found
tween two consecutive frames is not too big, this choice of Object is bigger than a threshol&,(> a,.»), and if so, we
initial condition speeds up the convergence of equation 1. | Start the re-initialization process.
also minimizes the risk of falling into a local minima and For the re-initialization, we modify the front in such a
not adequately segment our object of interest, somethingway that we get two curves: the current curve and another
that would happen often if our starting condition were an one that will evolve outwards to find the lost objects. This
arbitrary curve (a set of circles covering the image, for in- is achieved simply by displacing therovisional curve T’
stance). outwards a few pixels, inverting the front, and intersegtin

The downside of this choice of initial condition is that, with the original curve. Figure 1 illustrates the importanc
if a new object of interest appears at frame 1 thatwas not ~ of such a mechanism.
there at frame, it will most probably not be detected. See An important property of the re-initialization algorithm
for instance the sequence in fig. 1, where the objects of in-is that it is devised in such a way that the segmentation pre-
terest are the small dark round shapes, which generally keepviously achieved cannot be hindered and the detected ob-

wj; =

For the second and following frames, the procedure is
the same, only that the PDF’s are computed for the segmen-
tation of the previous frame.

3.2. Reinitialization
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Fig. 2. 14th frame of thecrypt sequence. Left: fixed
weights. Right: using automatic weighting.
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jects cannot be lost. However this step has two major draw-
backs: evolving outwards we can add spurious objects to  °
the previously achieved segmentation and it increases the 10 2 » w® %

(time consuming) iterations for each frame treatment. For

these reasons it is important to use the decision mechanism Fig. 3. Evolution of the weights for thepidersequence.
in order to re-initialize only when it is needed.

for a few frames. Sometimes the decision algorithms fails,
and no re-initialization is performed, so we lose some ob-
jects. However, the overall number of lost objects reduces
dramatically using this mechanism, as the figure shows. In
The framework permits the combination of different fea- order to be sure that no object is lost, the re-initializatio
tures in the segmentation process, and the automatic weightcan be forced in all frames.
ing mechanism is responsible for the relative importance of Figure 4 shows the results on tepidersequence. The
each channel in the segmentation of a given sequence. Ipbjects are successfully tracked, despite the importgoito
these experiments we use ti€bCrcomponents for color  ogy changes taking place over the 50 frames sequence. How-
images or the intensity channel in the case of gray level im- ever if a similar color structure appears close to the bound-
ages. In order to produce texture feature channels, we pro-ary, the algorithm detects it as part of the object (e.g. #am
cess the intensity channel with the wavelet packet transfor 30 and 50).
(assuming that all texture information is contained in Yhe Figure 3 illustrates the evolution of the computed pa-
channel). _ . _ rametersw; for this sequence. Some features become more
. In these experiments we LI.SB six feature channgls: Inten-glevant (for the segmentation process) in different frame
sity Y, CbandCr for the color images, and the horizontal, ¢ompare for instance the weights at frames 10 and 30. In all
vertical and diagonal detail for the first level of waveletde he tested sequences the weighting mechanism outperforms
composition. the fixed-weights approach, even if we choose manually the
The values chosen for the parameters needed by the alghannels that contain relevant information. In additidwe, t
gorithm are fixed and the same for all the experiments: thecomputed weights are close to the manual choice. However,
weight of the regularization termy, the minimum size of  neijr variability over the sequence shows the importance of
the detected objeat,.;,, the maximum distance between sing an adaptive strategy rather than a fixed approach.
the PDFsd,;,q,, and the stopping condition for the curve  Figyre 2 shows the results on tieeypt sequence. Here,
evolution. the interesting structure is the homogeneous region which
Our algorithm was tested with four sequences of images forms a cavity that must be reconstructed in order to analyze
of real biological tissué.The seriesspider (560x460x50) jts shape. The images are built with a collage of several OM
andram (1000x800x19) are obtained from optical images and some mosaic artifacts can be seen. The struc-
microscopy (OM).Crypt (2200x1000x32) is a collage of  tyre is well segmented in general even if some regions are
OM images and the mosaic effect is quite apparent. The|ggst.
Echinococcusequence (512x768x50) is produced by con- Figure 5 shows the results on tehinococcusequence.

focal microscopy (CM).  Figure 1 shows some results oVer 1, o 5 very different sequence, obtained by Confocal Mi-
th.e ram sequence. The biological ma’genal correspgnds to croscopy and characterized by the absence of strong edges.
slices of seminiferal ceIIs_of rams. This sequence is COM- The structures marked by the biologist in the first frame are
posed by many small objects, which tend to appear onlyweII tracked along the sequence. After the 40th frame, the

ISome of this sequences are in color, a more detailed colsiorecan point density becomes too low and the algorithm quickly
be found at http://iie.fing.edu.uy/ juanc/publ/icip05.pd loses the structure of interest.

4. RESULTS

4.1. Implementation




Fig. 4. spider. frames 1,10,30,50

5. CONCLUSION AND FUTURE WORK

The Active Regions framework allows for a combination of
cues in the segmentation process. Critical issues areithe in

tialization criteria and the estimation of the relative gleis

of the features. We have added two novel mechanisms:
automatic re-initialization and feature weighting. Our ex
periments show that these mechanisms are essential when
dealing with long and variable sequences. We are currently[4
addressing the improvement of our technique regarding sev-
eral aspects: adding sonreertia to the computation of the
weights, taking more than one frame into account, refining

the results by running the sequerzackwards and intro-
ducing some sort adhapenformation into the procedure.
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