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ABSTRACT

Some of the most successful algorithms for the automated
segmentation of images use an Active Regions approach,
where a curve is evolved so as to maximize the disparity
of its interior and exterior. But these techniques require
the manual selection of several parameters, which make im-
practical the work with long image sequences or with a very
dissimilar set of sequences. Unfortunately this is precisely
the case with 3D biological image sequences. In this work
we improve on previous Active Regions algorithms in two
aspects: by introducing a way to compute and update the
optimum weights for the different channels involved (color,
texture, etc.) and by estimating if the moving curve has
lost any object so as to launch a re-initialization step. Our
method is shown to outperform previous approaches. Sev-
eral examples of biological image sequences, quite long and
different among themselves, are presented.

1. INTRODUCTION

Segmentation, reconstruction and visualization of 3D struc-
tures from series of 2D image slices is a widely used tech-
nique in medical and biological research. These series have
tens to hundreds of slices, so the images may vary a lot
along the same sequence. Also, different image acquisition
techniques (e.g. electron, optical or confocal microscopy)
and different biological data produce very dissimilar
sequences. Our goal (part of an ongoing effort started with
[1]) is to devise a general technique, independent of the ac-
quisition technique and the type of cellular tissue involved
that, once the biologist has selected in the first frame of the
sequence the structures in which he/she is interested, is able
to automatically follow these structures along the sequence,
segmenting them as they evolve and also detecting and seg-
menting any new objects of the same kind that may appear.

Some of the most successful algorithms for the auto-
mated segmentation of images use an Active Regions ap-
proach ([2, 3, 4, 5, 6, 7, 8], where a curve is evolved so as

to maximize the disparity of its interior and exterior. But
these techniques require the manual selection of several pa-
rameters, which make impractical the work with long image
sequences or with a very dissimilar set of sequences.

Our contribution is the following: based on the remark-
able Geodesic Active Regions segmentation algorithm of
Rousson et al. [7], we increase its robustness (by estimat-
ing if the moving curve has lost any object so as to launch a
re-initialization step) and make automatic the crucial choice
of the optimum weights for the different channels involved
(color, texture, etc).

This papers is organized as follows. In section 2 we
present the general framework. Our algorithm is described
in section 3. Section 4 shows the experimental results. Fi-
nally, in section 5 we give some conclusions.

2. GENERAL FRAMEWORK

Our starting point is the region-based active contour frame-
work proposed by Rousson et al. [7]. For a single (color)
imageI : Ω → R3, with Ω ⊂ R2, we compute a cor-
respondingfeature imageU : Ω → RN whereN is the
number of feature channels (like color, texture, optical flow,
etc).

To solve the segmentation problem, we seek for a curve
Γ which gives a partition of the spaceΩ in two (non neces-
sarily connected) regionsΩ1 andΩ2: the object of interest
and the background. This is accomplished by finding the
curve that divides the feature image in such a way that max-
imizes the likelihood of each region probability distribution
with respect to the observed previous frame. This process
is repeated for each frame, taking as ground truth the seg-
mentation of the previous one. The algorithm takes as input
the sequence of images and an user provided ground truth
for the first image (a set of manually segmented objects of
interest).

Under the hypothesis that both regions area-priori
equiprobable, following [5] and using a level-set formula-



tion we arrive to the following Partial Differential Equation:
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whereφ(t) is an embedding function for the evolving
curve,pj

i is the Probability Density Function (PDF) of fea-
turej in regioni (usually computed with Gaussian estima-
tion or a Generalized Gaussian Density) andκ is the Eu-
clidean curvature. The parameters that need to be chosen
and updated for each frame are thewj , the weights for the
different channels.

The desired curveΓ is obtained computing the zero level-
set ofφ whent → ∞.

3. OUR CONTRIBUTION

3.1. Weighting algorithm

We propose a method for the automatic choice and updat-
ing of the weightswj . For the first frame the user supplies
a segmentation which is taken as ground truth. For each
feature channelj we compute the PDF inΩ1, call it p

j
1
,

and the PDF inΩ2, call it p
j
2
. Then we measure thedis-

tancedj betweenpj
1

andp
j
2
, using a symmetrized version

of the Kullback-Leibler divergence [9]. A big value fordj

means that the channelj provides good discrimination, so
wj should be big as well. We choose:

wj =
dj

∑N

i=1
di

(2)

For the second and following frames, the procedure is
the same, only that the PDF’s are computed for the segmen-
tation of the previous frame.

3.2. Reinitialization

As in many tracking algorithms, we take as initial estima-
tion for the curveΓ in the (n + 1)-th frame the final result
for Γ in the n-th frame. Assuming that the difference be-
tween two consecutive frames is not too big, this choice of
initial condition speeds up the convergence of equation 1. It
also minimizes the risk of falling into a local minima and
not adequately segment our object of interest, something
that would happen often if our starting condition were an
arbitrary curve (a set of circles covering the image, for in-
stance).

The downside of this choice of initial condition is that,
if a new object of interest appears at framen+1 that was not
there at framen, it will most probably not be detected. See
for instance the sequence in fig. 1, where the objects of in-
terest are the small dark round shapes, which generally keep

Fig. 1. Blobs detected in the 9th frame of theramsequence.
Left: no re-initialization. Center: initializing with evenly
spaced circles. Right: our re-initialization (see text.)

their position (so they are easy to track) but keep appearing
and disappearing along the sequence. For this sequence,
choosing as initial condition the curve(s) found in the previ-
ous frame would imply that only the objects present in the
first frame of the sequence would be tracked, they would
gradually disappear and after just a few frames the segmen-
tation would yield an empty set, although there are always
many objects of interest in each one of the frames of this
sequence.

To solve this problem, we propose a method to detect if
the curveΓ is missing any object, and if it does we launch
a re-initialization step. This mechanism is composed of two
stages: decision and re-initialization.

The decision mechanism works as follows. As the evo-
lution reaches a minimum, we assume that we have a con-
siderable part of the object detected. Thus we can obtain a
roughly accurate estimation of the object PDF in the inner
region (Ω1). In the outer region, we have the background
and the missing part of the object. So we can model the dis-
tribution of Ω2 as a mixture modelp2(x) = Pa.p(x|θa) +
Pb.p(x|θb) wherePi are theprior probabilities of each dis-
tribution andθi its parameters. We use the Expectation
Maximization algorithm to learnPi andθi. After the mix-
ture is trained, the distance betweenp1(x) andp(x|θi) ∀i

(computed as in 3.1) is measured and if it is lower than
a threshold (dmax), we say that they are the same object.
Once a match is found, we check if the area of the found
object is bigger than a threshold (Pi > amin), and if so, we
start the re-initialization process.

For the re-initialization, we modify the front in such a
way that we get two curves: the current curve and another
one that will evolve outwards to find the lost objects. This
is achieved simply by displacing theprovisional curve Γ
outwards a few pixels, inverting the front, and intersecting
with the original curve. Figure 1 illustrates the importance
of such a mechanism.

An important property of the re-initialization algorithm
is that it is devised in such a way that the segmentation pre-
viously achieved cannot be hindered and the detected ob-



Fig. 2. 14th frame of thecrypt sequence. Left: fixed
weights. Right: using automatic weighting.

jects cannot be lost. However this step has two major draw-
backs: evolving outwards we can add spurious objects to
the previously achieved segmentation and it increases the
(time consuming) iterations for each frame treatment. For
these reasons it is important to use the decision mechanism
in order to re-initialize only when it is needed.

4. RESULTS

4.1. Implementation

The framework permits the combination of different fea-
tures in the segmentation process, and the automatic weight-
ing mechanism is responsible for the relative importance of
each channel in the segmentation of a given sequence. In
these experiments we use theYCbCrcomponents for color
images or the intensity channel in the case of gray level im-
ages. In order to produce texture feature channels, we pro-
cess the intensity channel with the wavelet packet transform
(assuming that all texture information is contained in theY
channel).

In these experiments we use six feature channels: inten-
sity Y, Cb andCr for the color images, and the horizontal,
vertical and diagonal detail for the first level of wavelet de-
composition.

The values chosen for the parameters needed by the al-
gorithm are fixed and the same for all the experiments: the
weight of the regularization termα, the minimum size of
the detected objectamin, the maximum distance between
the PDFsdmax, and the stopping condition for the curve
evolution.

Our algorithm was tested with four sequences of images
of real biological tissue1.The seriesspider (560x460x50)
andram (1000x800x19) are obtained from optical
microscopy (OM).Crypt (2200x1000x32) is a collage of
OM images and the mosaic effect is quite apparent. The
Echinococcussequence (512x768x50) is produced by con-
focal microscopy (CM). Figure 1 shows some results over
the ram sequence. The biological material corresponds to
slices of seminiferal cells of rams. This sequence is com-
posed by many small objects, which tend to appear only

1Some of this sequences are in color, a more detailed color version can
be found at http://iie.fing.edu.uy/ juanc/publ/icip05.pdf
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Fig. 3. Evolution of the weights for thespidersequence.

for a few frames. Sometimes the decision algorithms fails,
and no re-initialization is performed, so we lose some ob-
jects. However, the overall number of lost objects reduces
dramatically using this mechanism, as the figure shows. In
order to be sure that no object is lost, the re-initialization
can be forced in all frames.

Figure 4 shows the results on thespidersequence. The
objects are successfully tracked, despite the important topol-
ogy changes taking place over the 50 frames sequence. How-
ever if a similar color structure appears close to the bound-
ary, the algorithm detects it as part of the object (e.g. frames
30 and 50).

Figure 3 illustrates the evolution of the computed pa-
rameterswj for this sequence. Some features become more
relevant (for the segmentation process) in different frames,
compare for instance the weights at frames 10 and 30. In all
the tested sequences the weighting mechanism outperforms
the fixed-weights approach, even if we choose manually the
channels that contain relevant information. In addition, the
computed weights are close to the manual choice. However,
their variability over the sequence shows the importance of
using an adaptive strategy rather than a fixed approach.
Figure 2 shows the results on thecrypt sequence. Here,
the interesting structure is the homogeneous region which
forms a cavity that must be reconstructed in order to analyze
its shape. The images are built with a collage of several OM
images and some mosaic artifacts can be seen. The struc-
ture is well segmented in general even if some regions are
lost.

Figure 5 shows the results on theechinococcussequence.
This is a very different sequence, obtained by Confocal Mi-
croscopy and characterized by the absence of strong edges.
The structures marked by the biologist in the first frame are
well tracked along the sequence. After the 40th frame, the
point density becomes too low and the algorithm quickly
loses the structure of interest.



Fig. 4. spider: frames 1,10,30,50

5. CONCLUSION AND FUTURE WORK

The Active Regions framework allows for a combination of
cues in the segmentation process. Critical issues are the ini-
tialization criteria and the estimation of the relative weights
of the features. We have added two novel mechanisms:
automatic re-initialization and feature weighting. Our ex-
periments show that these mechanisms are essential when
dealing with long and variable sequences. We are currently
addressing the improvement of our technique regarding sev-
eral aspects: adding someinertia to the computation of the
weights, taking more than one frame into account, refining
the results by running the sequencebackwards, and intro-
ducing some sort ofshapeinformation into the procedure.
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