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Abstract— The constant growth of internet and the
variety of services provided makes the estimation of QoS
parameters a fundamental need for every Internet Service
Provider. The present work introduces a software tool
that calculates the overflow probability on the core links
of a MPLS network. The calculation is based on the
statistical properties of the arriving traffic and the routing
on the network. The procedure uses the results of the large
deviations theory and the work of Likhanov et al. [17]
for small buffer. The results obtained show high degree
of accuracy as well as very short processing times. This
allows the user to determine the overflow status of the
network without the need to use the traditional highly
time consuming simulation techniques.

I. I NTRODUCTION

Traffic Engineering (TE) is a main research area
in Telecommunications and particularly in the Internet
because by using TE the network can be optimized and
the quality of service of the network can be improved.

Traffic Engineering maps the traffic over the network
topology in order to optimize the performance, by means
of an even distribution of the traffic flows over the
network. Moreover another objective to be achieved
is to enhance performance indexes, such as overflow
probability, loss probability and end to end delay.

MPLS (MultiProtocol Label Switching)[21] is a net-
work architecture standardized by the IETF in 1999, that
enables to perform traffic engineering in IP networks.
MPLS introduces the notion of Forwarding Equivalence
Class (FEC), giving the network operator the possibility
to split the traffic in aggregated flows according to the
service model adopted by the Internet Service Provider
(ISP).
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The edge routers in an MPLS network (or LER for La-
bel Edge Router) are responsible for establishing MPLS
tunnels named LSPs (Label Switched Path) between the
endpoints of the MPLS domain, and to send each arriving
packet to the corresponding LSP.

Explicit Routing (ER), a typical MPLS feature, is
the main function that enables Traffic Engineering (TE).
Using ER the network operator can establish for each
FEC one or more LSPs.

In order to guarantee end to end QoS in a MPLS
network, a performance model is required. This model
provides methods to analyze the end to end QoS perfor-
mance parameters.

Likhanov et al. [17] developed a model that can be
used for performance evaluation and traffic engineering,
which is useful to analyze the overflow probability in
a core network link, in the many sources and small
buffer asymptotic. Based on such model, we developed
a software tool that computes a core link’s overflow
probability. In our context, the overflow probability rep-
resents the stationary probability that the arrival rate to
a given link is larger that the link’s capacity, that on the
small buffer (or bufferless multiplexing) context leads to
losses. Under the typical hypothesis of ergodicity it can
be considered as the time proportion in which the link
cannot process the arriving traffic.

The work of Likhanov et al. is briefly explained in
sectionII . In sectionIII we present the main problems
that need to be solved in order to develop a software tool
that implements the main results of Likhanov’s work. In
sectionIV the solutions of the previous problems and
the software architecture are explained. In sectionV the
results obtained with our tool are validated with network
simulations. Finally the conclusions are presented in
sectionVI .
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II. N ETWORK MODEL AND PERFORMANCE

ESTIMATORS

A. Introduction

Our goal is to find fast estimations of performance
metrics for all links on the network by means of knowing
the network’s arriving traffic. We will focus on the
estimation of overflow probability over a network path,
and some recent results from large deviations theory will
be used. This theory allows the use of use more general
traffic models than traditional queuing models.

The large deviations theory applied to network per-
formance analysis gives asymptotic results for links that
are fed by a large number of traffic sources and where
the link’s resources (buffer size, link capacity, etc.) are
scaled according to the number of sources. There are
different types of asymptotic regimes useful in different
kind of networks depending on the type of resource
scaling used.

To model an Internet backbone the regime presented
by Likhanov et al. on [17] is very useful. The main result
of this work allows to analyze the overflow probability in
any link of the network, with an independence hypothesis
between the aggregate traffic flows feeding the network.
The regime studied is called “many sources and small
buffer asymptotic”, the results of which we will explain
briefly in the following paragraphs.

From now on we will work on discrete time. The traf-
fic arrival rate at the edge nodes, is treated as a stationary
and ergodic stochastic process from the superposition of
N independent traffic sources with the same distribution.
This process is represented by the variableXm with
m = 1, . . . , M , being M the number of paths defined
on the network. We shall defineρm = E (Xm), the
mean arrival rate of the trafficm. Thus,Xm represents
a typical traffic arrival on a time unit of them flow and
XN

m is the superposition ofN independent copies ofXm.
A relevant issue when working on discrete time, is the

choice of sampling unit. The software will estimate the
probability that a buffer is saturated on any (discrete)
time unit, but the choice of this unit is not strictly
arbitrary, and has to be chosen carefully. The choice
of the time unit has to be adequate to the dynamics
governing the sources we will be dealing with. We
should choose a unit as small as possible, in order to
avoid loosing any dynamic phenomena of the sources
considered (i.e. we should be able to observe bursts).
However, the unit can not be made as small as desired,
in order to avoid the drifting from the fluid model we are
working on (avoid the issued posed by packetization). If
the mean rate from the source wasa, and the packet size
is b, then a reasonable time unit choice would be within

the order ofb/a.
Large deviations theory states, under certain mild

hypothesis, that for an aggregated flow, the following
proposition is valid:

− inf
x∈B◦

Im(x) ≤ lim inf
N→∞

1
N

log P(XN
m/N ∈ B) ≤

≤ lim sup
N→∞

1
N

log P(XN
m/N ∈ B) ≤

≤ − inf
x∈B̄

Im(x) (II.1)

for all B ⊂ R, whereIm : R → [0,∞] is the function
called rate function of the traffic of typem, which is
related to the traffic statistical characteristics by:

Im(x) = sup
s
{sx− Λm(s)} (II.2)

beingΛm(s) the log-laplace transform of theXm vari-
able:

Λm(s) = log E
(
esXm

)
(II.3)

In most cases, the latter inequality becomes an equal-
ity, which allows us to write:

P
(
XN

m/N ∈ B
) ≈ e−nIm(B)

being Im(B) = infx∈B Im(x). This is a typical result
of the large deviations theory where we approximate a
probability by an exponential term. In this case exponen-
tial coefficient is obtained as the result of an optimization
problem over the rate function of the studied variable.
The rate functionIm carries the statistical information
of the aggregated flow of typeXm.

The next step is to model the network structure. For
that purpose, we will assume that the network hasK
links. Each linkk = 1, . . . , K has aNCk capacity that
grows linearly with the number of sources (many sources
hypothesis). We also assume that buffer receive traffic
with FIFO policy and without priorities. The buffer size
is Bk(N) with Bk(N)/N → 0 when N → ∞ (small
buffer hypothesis). Every path is an ordered group of
links km = (k(1)

m , . . . , k
(lm)
m ).

It is also necessary to assume a stability hypothesis.
Defining the group of traffic types that goes through link
k by Mk = {m : km

i = k for any i} we shall assume
that

∑

m∈Mk

ρm < Ck (II.4)

This is a basic hypothesis in order to apply the large
deviations theory, because in case the mean work arrival
rate is greater than the link’s capacity it would lead to
an unstable situation. In this case the fact that the link
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presents losses would no longer be a rare event and
therefore is out of scope of this theory.

The main contribution of Likhanov et al. en [17] is
the introduction of thetransfer functionconcept. Under
the previous hypothesis the following proposition can be
proofed:

Proposition 2.1:There exists a continuous function
gm,k : RM → R such that the traffic arrival rate of kind
m to link k, notedXm,k satisfies:

Xm,k/N = gm,k(X1/N, . . . ,XM/N) + o(1) (II.5)
That is, with a difference of an infinitesimal, the nor-
malized traffic arrival rate at any given link, can be
expressed as a continuous function of the traffic arrival
rate for every traffic type entering the network. In (II.5),
o(1) is an error term due to the small buffers, such that
lim

N→∞
o(1) = 0 since Bk(N)

N →
N→∞

0.

The demonstration of the latter proposition includes
the explicit construction of the functiongm,k for feed
forward networks. It is based on the composition of
functions as:

fm (x1, . . . , xM , Ck) =
xmCk

max
{∑M

i=1 xi, Ck

} (II.6)

that relate the input and output traffic arrival rates at any
link. The meaning ofII.6 can be depicted as follows:
if at any given link, there is a superposition of different
traffic aggregates with ratesx1, . . . , xM and that link has
capacityCk (per source), then, the traffic of typem is
xm in case the capacity is greater than the total traffic
arrival rate (

∑M
i=1 xi). On the other hand, if the capacity

is not enough to serve the total traffic arrival rate, the
output of typem traffic would be a proportion of its
input rate, distributed evenly over every traffic traversing
the link. Composing this functions allows to determine
the contribution of a certain traffic flow at each link.
The infinitesimal termo(1) corresponds to the data that
is stored on the link’s buffers. The fact that buffers are
small makes their contribution less significant.

Following from the previous statements, we can
deduct:

Corollary 2.1: There exists a continuous functiongk,
such that, up to an infinitesimal term, allows to calculate
the total traffic arrival rate to a link, using only the
information of the traffic arrival rate at the edge nodes
of the network. This function corresponds to the sum of
the gm,k over every traffic that traverses the link, and
will be denominatedtransfer function:

gk(x) =
∑

m∈Mk

gm,k(x)

The existence of such function allows to obtain the
large deviation rate of the buffers’s content, using the
contraction principle. The main result of this theory can
be stated as follows:

Theorem 2.1:Under the previously mentioned hy-
pothesis, we have:

lim
N→∞

1
N

log P(link overflow atk) = −Ik (II.7)

being:

Ik = inf

{
M∑

m=1

Im(xm) : gk(x1 . . . xM ) > Ck

}
(II.8)

where Im(x) represents the rate function of trafficm,
gk is the transfer function to the link, andCk is the per
source capacity of the studied link.

To summarize, using only the statistic data of the
flows entering the network, given byIm and usinggk,
that relates the traffic arrival rate at linkk to the edge
arrival rates, it is possible to estimate the link’s overflow
probability ase−NIk .

To deal with the previous problem is necessary to
solve an optimization problem of the form:

(P )
{

min f(x)
constrained tog(x) ≤ 0 (II.9)

wheref : Rn → R, g : Rn → R y x ∈ Rn

Wheref is the objective function
(∑M

m=1 Im(xm)
)

andg is the constraint function(gk(x1 . . . xM )).
On the same work [17] an improvement to the ap-

proximation of the overflow probability estimation is
introduced, based on a work by M. Iltis [12] that allows
to prove the following result:

Corollary 2.2: Under the previous hypothesis , and
using that the traffic aggregatesXN

m are an aggregate of
i.i.d sources it can be proved that:

P (link overflow k) ∼
N→∞

CNe−NIk (II.10)

whereCN can be written as:

CN = d0C√
N

= d0√
2πN det(V (x∗))|α|(det(|α|(Hd(x∗))))1/2

wherex∗ is the point where the minimum of equation
II.8 is reached,α = ∇I|x∗ , V (x∗) = (Hess(I)|x∗)−1,
andHd = Hh −Hf are the substraction of the hessians
of h and f , that are local expressions of the border of
the feasible region and the level curves of the function
I. d0 is an adjustment factor that is constrained by the
order of the buffer.
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By means of this correction it is possible to improve
the results on equationII.8. Settingd0 = 1, we get an
estimation of the form: C√

N
e−NIk .

Observation 2.1:Setting d0 = 1 corresponds to
asume we are estimating the parameters on a buffer-
less network. The result by Likhanov shows that the
approximation is good for networks where the buffers are
kept “small” compared to the link capacity. In networks
with larger buffer sizes the overflow probability will be
smaller meaning thatd0 should be less than 1. Selecting
another value for this parameter is not posible at this time
as it depends in a complex way of buffer sizes across the
network, and there are no results on this subject.

To conclude, the necessary steps to find the overflow
probability in a network link are the following:

• Find the large deviation rate function for each
traffic aggregate that feeds the networkIj(x). This
function must be estimated from the traffic traces.

• For each link k, the transfer functiongk(x) must be
calculated.

• Solve the optimization problemII.9 to find the link’s
overflow probability.

• Calculate the correction constantC, which depends
of the functionsIj andg on a neighborhood of the
solution point.

• Estimate the link overflow probability as:

P(overflow) ≈ 1√
N

Ce−NI (II.11)

where N is the number of sources the feeds the
link’s buffer.

On the following sections we will discus the different
steps mentioned on the previous paragraph.

III. PROBLEMS TO SOLVE

A. Find the relevant LSPs

As mentioned on the last section, the first problem we
have to deal with is to determine which LSPs contribute
in any way to the traffic arriving to the studied node.
We will take into consideration not only those LSPs that
actually pass through the link, but also any other one that
shares resources anywhere on the network with them. It
is really important to accurately establish the number
of LSPs that affect each link, because this number will
be the dimension of the optimization problem to be
solved. The dimension of this problem will influence
directly on calculation times, and so will affect the tool’s
performance.

• Determine which LSPs go through the link in the
specified direction. Eventhough all the links that
defined on the network topology are full duplex,

we will treat them as two separate links, with traffic
flowing in opposite directions, just for calculation
matters.

• Add the LSP found on the last step to the list of
important LSPs.

• For each of this LSPs, find the previous link:

– If the current link is the first of the LSP, (it has
no previous link) the algorithm finishes for this
LSP and it goes on with the others.

– If there is a previous link, the relevant LSPs
for it are found using this same algorithm, and
added to the list of important ones.

When working with feed-forward networks, the fact
that we go through in a recursive way all the LSPs, that at
some point share resources with the one we are studying,
guarantees us that the algorithm will converge, finding
the relevant LSPs.

B. Computation of the transfer function

One of the objectives previously defined, was to be
able to carry out performance estimations over any kind
of network. This arises two restrictions when dealing
with the implementation of the transfer function: it has to
be robust, and topology independent. More specifically,
the procedure described on this section, calculates the
traffic rate that arrives to a given link (the one that
invokes it). This transfer function (g), was presented on
sectionII and represents the constrain of the optimization
problem.

To calculate the total traffic rate that flows to the
studied link, we need to compute the contribution of
each of the LSPs that traverses it. The following (per
LSP) recursive algorithm was developed to accomplish
this:

• Determine the previous link of the considered LSP.

– If the studied link is an edge link, that is, it has
no previous link, the LSP’s contribution is the
traffic rate at the edge.

– In case there is a previous LSP, its contribution
is computed using the shaping function,II.6.

• The shaping function takes as a parameter each
previous link’s contribution. This is where the recur-
sion appears, as the same function is invoked again,
over each previous link on the path.

As this function is based on the algorithm used to
determine the relevant LSPs, we can assure it will
converge to a result, when dealing with feed-forward
networks.
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C. Optimization algorithm

In order yo solve the minimization problem pre-
sented on sectionII , the constrained problem (P) was
transformed into a non-constrained one using a penalty
method. Furthermore, to solve the latter a steepest de-
scent method was used, with inexact linear searches,
which used step lengths given by the Wolfe’s rule.

On figure1 a flow diagram of the algorithm used is
presented.

Initial condition
       (xo , ρo)

Computation of  
descent direction(pk)

Computation of 
step length (αk)  

Update estimation
xk+1       xk+αkpk

xk verifies convergence
 conditions?

NO YES

xk belongs to
feasible region?

YES

      END
Solution: xk

Enlarge ρ
ρk+1     20ρk    

ΝΟ

Fig. 1. Flow diagram of the iterative algorithm

On each step of the iteration, an auxiliar problemPρ

is solved

(Pρ)
{

minφρ = f(x) + ρ (gm(x))2

x ∈ Rn

for a given value ofρ, wheregm = max {g(x), 0}.
It can be easily proven that the minimum ofPρ is

always less or equal than minimum ofP , our original

problem. Furthermore, the equality will only be reached
on a feasible point, that is, when the constrain is met. So,
after each auxiliar problem is solved, the solution,x(ρ)
is tested to be a feasible point. In case it is feasible,
the whole iteration ends and the optimumx∗ = x(ρ)
is found1. On the other hand, whengm (x(ρ)) > 0 the
value of ρ is increased (on our particular case,ρk+1 =
20ρk) andPρk+1 is solved. Making the value ofρ larger
after each auxiliary problem is solved, determines that
the valuesx(ρ) are increasing on every iteration, and
each time closest tox∗. The iteration stops whenx(ρ)
is a feasible point, that is, a minimum of the original
problemP .

D. Estimation of the rate function

One of the main issues to take into account in order
to estimate the overflow probability is to know the rate
function of each flow, using traffic observations. This
brings up the need to develop estimators for the rate
function of a stationary process using different samples
of it. As may be noticed on the definition (equationII.2),
the rate function is closely related with the effective
bandwidth function [13], thus estimating the latter may
lead us to the desired estimators.

We will adopt the following notation:

M(s) = E
(
esX

)
(III.1)

Λ(s) = log E
(
esX

)
(III.2)

I(x) = sup
s
{sx− Λ(s)} (III.3)

On the previous equations,X represents a typical work
arrival, and as the process is stationary, thet parameter
does not appear at all.

Our goal is to use a traffic trace (one single run of the
processXt) to develop an estimator for functionI (that
is, the valueI(x) for eachx).

More specifically, we have samples{xt : 0 ≤ t ≤ n}
and we will obtain, for eachx, an estimationIn(x), that
varies depending on this samples.

The main problem concerning the estimation, is that
I represents a complex transformation ofΛ(s), and its
estimation is not direct using the samples. Because of
this, we propose to follow an indirect path, estimatingΛ
as Λn(s) and apply the transformation in equationII.3
to it:

In(x) = sup
s
{sx− Λn(s)} (III.4)

Moreover, the value of the overflow rate, (I) for a given
buffer, which comes from the equationII.8, will be

1And x∗ is the minimum of (P)
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estimated by a certainIn, which is the result of solving
the same equation, substitutingI(x) by its estimations:

In = inf

{
M∑

m=1

I(m)
n (xm) : g(x1, . . . , xM ) > C

}

(III.5)
whereI

(m)
n represents the estimation ofIm from the data,

g the transfer function, andC the link’s capacity.
This gives place to several subproblems, which will

be addresses one at a time on the section:

• Find a suitable estimator for the functionsM(s)
andΛ(s), that is, the effective bandwidth, using the
input data. We will also estimate the order of the
estimation error.

• Find under what circumstances the estimator,In(x)
of equationIII.4 converges to the real valueI(x)
as well as the error in this operation.

• Determine under what circumstances it is possible
to estimate the value ofI, solving equationII.8.

Effective bandwidth estimation (or eitherM(s) or
Λ(s)), can be dealt with using two different approaches.
On the first place, one can be tempted to search suitable
estimators that can be used for several traffic models,
without assuming any restrictive hypothesis. This ap-
proach is referred to asnon-parametric

The non-parametric approach consists in using the
usual hope estimator:

Mn(s) =
1
n

n∑

i=1

esxi (III.6)

Secondly, when working with parametric models (e.g.
Markov ON/OFF fluid sources [14]), it is possible to
develop a parametric estimation of the magnitudes of
interest. This is based on the fact that some explicit
formulas exist to compute this magnitudes using the
parameters of the Markov chain modulating the process.
This leads toplug-in estimations where we estimate the
parameters of the model in first place, and later substi-
tute them on the expressions to estimate the effective
bandwidth. Further reference about this estimation can
be found on [19].

The next step is to find an estimator for the rate func-
tion I(x). The way to do so was presented on equation
III.4, and briefly consists in finding the maximum inII.2
substitutingΛ(s) with an estimation. The accuracy and
validity of this estimator is not trivial, on [10] this issue
is studied thoroughly.

If an estimator of the derivative ofΛ is available, (Λ′n),
the problem can be dividen in two steps. Firstlys∗ is
estimated as:

s∗n : x− Λ′n(s∗n) = 0 (III.7)

and following,I(x) is estimated as:

In = s∗nx− Λ(s∗n) (III.8)

There are several alternatives to estimate the deriva-
tive. If we have an estimator forΛ, Λ′ could be ap-
proximated with a incremental quotient. On the non-
parametric case, the derivative can be estimated, taking
into consideration that:

Λ′(s) =
(
log

(
E

(
esX

)))′
=

E
(
XesX

)

E (esX)

so, Λ′ can be estimated by an average quotient:

Λ′n(s) =
∑n

i=1 xie
sxi

∑n
i=1 esxi

(III.9)

To solve equationIII.7, the secant method for nonlin-
ear equations was used, [7].

Finally, having In(x) as the estimator forI(x), we
estimateI, the overflow rate of a link using equation
II.8. The demonstration that this procedure is valid, is
similar to the one used to prove thatIn estimatesI.

IV. SOFTWARE ARCHITECTURE

On the present section we describe ARCA (Analizador
de Redes de CAminos Virtuales meaning virtual path
networks analyzer) the software developed to solve the
theoretical problems presented on the previous section,

This software tool was developed following the guide-
lines to allow code reusability, and the possibility to be
complemented by auxiliar software packages in order
to add new functionalities without major modifications.
In order to comply with the previous requisites we
programmed using an object oriented language, JAVA.
On this section we will describe thoroughly on the im-
plementation of the two main aspects of the tool: network
representation and performance parameters estimation.

A. Network Representation

According to the guidelines previously defined, we
focused on identifying on a network those elements that
represent a concept either because of their operating or
physic characteristics. Later we would associate them a
java class describing their properties and implementing
their functionalities. With the interaction of this classes
we came to a network architecture that will be described
in brief, and provides the physical support to every
process that occurs on the network.

Our network model has three levels of abstraction:
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• One describing the network topology, implemented
using the classesNodoandEnlace.

• A second level, to define virtual paths over the
topology, represented by the classLsp.

• A last level, describing the properties of the flow
traversing the network, done with the classFlujo,
from which other classes will inherit, describing
each one different traffic models.

All this classes group together on a package named
Topoloǵıa, which also contains a classMinim whose
main role is to implement mathematical tools that carry
out computations on the topology. The UML2 diagram
on figure2 allows a better comprehension of the rela-
tions between the classes that belong to this package.
Following we present a brief description of each class.

1) ClassNodo (Node): The node represents on our
network architecture the connecting element. A non
predefined number of links may originate or converge
to a node, which will later form the paths that will go
across the network. This characteristic defines nodes as
an absolutely necessary element in order to determine
the way the flows traverse the network.

2) ClassEnlace(Link): Whenever data transmission
occur on a network, the link appears as the key element.
This topological element concentrates most of the param-
eters relative to this task, e.g. data processing capacity,
buffer size, etc.

Each instance ofEnlace represents a bidirectional
connection between two instances ofNodo, that are given
during its definition. The nodes are used to determine
the way the LSP passes throw the link, which is useful
to find out which flows share resources at a given
link, and thus are relevant when estimating the overflow
probability.

3) ClassLsp: This class is used to model the virtual
paths which can be defined over MPLS networks, and
allow to direct an traffic aggregated flow. This class is
the first that does not represent any physical element
from the network, and can be associated with the second
level of abstraction in our model. Each one of this LSPs
is formed by an ordered concatenation of links, in the
way they are traversed. Moreover, as the LSPs define the
way an aggregated flow will follow, they will be linked
to an instance of the classFlujo. This class represents
the characteristics of the traffic passing throw the LSP.

4) Class Flujo (Flow): As said, this class is used
to represent the characteristics and requirement of the
different kind of flows that enter the studied network.
It stores the statistic properties of a representative flow
from the aggregate passing throw a path.

2Unified Modeling Language

The objective of this class is to provide a frame-
work defining the main functionalities any flow has.
Later other classes will be build that inherit from this
one, defining a unique interface presented to the rest
od the package. For those traffic models that, due to
their specific characteristics allow a simpler and/or more
effective way to compute the methods associated to a
flow, additional classes will be defined, which inherit
from Flujo.

The most general way an instance of “Flow” can be
defined is using a traffic trace, this is why this class
provides methods to read from an archive and store, as
well as perform statistic calculation with the data.

5) ClassFlujoONOFF (ON-OFF Flow): A kind of
traffic that is of particular interest on modern networks is
Exponential ON-OFF model, also known as Markovian
ON-OFF.

In order to be able to represent this model on our
tool, a special class was developed,FlujoONOFF, that
inherits fromFlujo and redefines the methods that can be
compute on a more efficient and exact way taking into
consideration the Exponential ON-OFF flow hypothesis.

6) Class Minim: The main task of this class is
to implement the minimization algorithm described on
sectionIII-C, as well as some complementary tools for
performance estimation computations. The decision to
create a specific class for this purpose, was taken based
on theexpert pattern from UML, [15]. This algorithm
shall be controlled by a class conceptually above the
rest of the network, and with access to all the necessary
information.

B. Performance parameter estimation

The main goal of the software tool is estimate the
overflow probability at any given link of the network.
In sectionsII and III we described both theoretical and
practical implementation to achieve this goal. On the pre-
vious sections we focused on the classes involved in this
implementation. In the present section we will describe
the interaction process between classes to implement the
desired estimations.

The general use of the tool is splitted in two different
phases. In the first one, the user defines the network
topology basically represented by its physical elements,
nodes and links (classesNodo and Enlace). Later, over
the physical elements the user defines the paths for the
traffic usingLSPandFlujo classes.
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Fig. 2. UML diagram of package “Topologia”
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In the second phase we procede to estimate the over-
flow probability over the previously defined topology.
The user is able now to request the tool to solve a certain
Link or LSP3. The resolution of a link implies to estimate
it’s overflow probability. The user invoques commands
which allows him/her to solve one or more links by using
the methodresolver from theLink class.

We chose this kind of structure to handle the link cal-
culations in order to implement a distributed architecture
where each link is capable to solve itself and store the
results. This structure also allows us to avoid implement-
ing a global scope class to handle the estimations for
each link. That implementation would have lead to an
unnecessary exchange of data and overflow of such a
class.

Every result of the overflow probability is stored in
such a way that is accessible all the time for each link.

In the next subsection we describe the methodre-
solverand its interaction with the rest of the architecture,
once the user request a certain link to be solved.

It is important to remark that for the first phase the
user has two options to define the network topology. The
tool has a user friendly graphical interface to define the
nodes, links, paths and flows. On the other hand, the
same interaction could be achieved by providing a text
file with a preestablished format. This last alternative
allows the user to automatically (script) create multiple
scenarios, solve them and store the results.

C. Resolvermethod

As it was said before this section attempts to describe
the processes that take place once the user requests to
solve a link. Since we are working with bi-directional
links, the first thing to do is select the direction of
interest. In order to do so, methodresolver receives as a
parameter an instance ofNodo, to decide which direction
to take into account. At the same time, the method checks
the coherence of the request by verifying the existence
of the given node.

In most cases, the method shall run the minimization
algorithm described inIII-C, but in order to avoid
unnecessary processing several checks are performed
before that. This improves dramatically the software’s
performance.

The first task the method carries out is to find the
relevant LSPs, as described before. If it finds none,
the method ends indicating that no traffic is carried in
the specified direction. In this case clearly the overflow
probability is zero.

3Solving an LSP is merely to solve each one of the it it has

In case the method identifies a group of relevant LSP,
the link must be checked to see whether the incoming
traffic is able to overflow it. If the maximum arrival rate
from the previous links on each relevant LSP, is less than
the capacity of the link, it will never lose work under any
circumstances so it is overdimensioned. In this particular
case, the solution is trivial and the overflow probability is
zero. The software also provides additional information
about the remaining capacity of the link. The maximum
arrival rate of a link, is the result of maximizing the
input traffic rate of each LSP that arrive to the link, and
turning zero every other LSP’s rate4.

The next step will depend on the amount of relevant
LSPs for the link. In case there is only one relevant LSP,
the minimization problem is trivial and the solution is
Im(C) wherem is the flow associated to the LSP andC
is the link’s capacity. In this 1 dimensional problem the
correction coefficient is calculated using Bahadur-Rao’s
theorem [8].

Finally, in case our problem’s dimension is greater
than 1 (more than one relevant LSP), the algorithm
creates an instance of theMinim class to solve the min-
imization problem. No references to the Minim instance
are stored, this characteristic optimizes memory usage
and avoids unnecessary redundancy. The correction co-
efficient for this case is calculated using Iltis theorem
[12].

In the previous cases, the link calls the getI method of
the Minim class to handle with the processing. Once the
results are ready the resolver method recovers from the
Minim instance the most relevant values like the overflow
probability, the overflow rate (I), the coordinates of the
minimum (x∗) and the correction coefficient.

With all the numerical results, the link creates an
instance of the ResolverEnlace class to store all the
values together with the particular observations that came
up on the estimation.

V. RESULTSVALIDATION

Some representative network topologies were selected
to test the accuracy of our tool, estimating the overflow
probability. In these cases the probability of overflow
given by our tool was compared with the obtained by
means of simulations in NS-25 varying the number of
sources that enter the network.

Our validation scheme brought up the need to estimate
the overflow probability from simulations in different
links of the network. With this purpose buffers were

4as they will reduce the rate arriving to the studied link
5Network Simulator 2: network simulator developed by the Uni-

versity of Berkeley
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monitored and the overflow probability was estimated
as follows:6:

Pexp(overflow) =

= time units where ths system lose data
total time of simulation in time units

A. General hypothesis for the simulations

In order to evaluate the buffers overflow state, we
worked in discrete time with the same sampling rate that
we used to sample the traffic traces for our application.
The simulation time in all cases was large enough to
assure the estimator’s convergence. Additionally, each
topology was simulated in 5 occasions, and the average
of the obtained overflow probabilities was considered the
real value to reduce the effects of the variance on each
simulation.

In each simullation the size of the buffer grew along
with the number of sources, using a constantb, that
changed on each simulation (B(N) = b

√
N ). Finally we

chose to simulate in all the cases with markovian flows
ON-OFF with different work cycles and arrival rates.

In order to measure the accuracy of the estimations the
distance in logarithmic scale was chosen as magnitude
of comparison:

E = log10{Pestim(overflow)}−log10{Pexp(overflow)}
(V.1)

This magnitude is suitable to measure the precision in
the order of the estimation. It is often more worthy to
consider the order of the overflow probability and not
its exact value. In terms of the chosen measure, a unit
represents an order of magnitude of difference.

B. Two links case

Figure3 shows our first studied topology, that consists
of two links and three LSPs. One LSP goes through both
links and the rest share resources with previous one just
in one link.

This simple example will provide a qualitative ap-
proach to the accuracy and validity of estimations pro-
vided by our software tool

On figure 4 the results obtained from the overflow
probability estimation are shown and on figure5 the
resulting error from this estimation appears. Both graphs
show the results varying for several number of sources.
The reason to do so is because as our results are
asymptotic, we expect to get better results asN grows.

6Based on the ergodicity hypothesis on the arrival process

Fig. 3. Two links case topology

Accuracy reached in this case is reflected in the low error
obtained that can be seen in the following graph.

The simulations were made under the following con-
ditions.

• Flow type ON-OFF Markovian Flow, with mean
ON time = mean OFF time =10 time units and a
maximum arrival rate of 5 packets per unit time.

• Links’ capacity: c1 = 7, c2 = 5.5 This magni-
tudes are capacities per source and are measured in
packets per time unit.

• Buffer’s constant b1 = b2 = 2
• Number of sources:N = 20 . . . 450
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Fig. 4. Results for the two link case
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Fig. 5. Error results for the two link case

C. Tree topology network

This case attempts to study the behavior of those links
in which a high concentration of traffic occurs. The
correct design of this kind of links is crucial to guarantee
end to end QoS of the network. In this kind of situations
a tool like the one developed turn out to be really useful.

The aforementioned topology generated with our tool
can be seen on figure6.

Fig. 6. Tree topology

Over this topology 6 LSP were defined from the
different “leaves” of the tree to the “root” node. The
simulations were made under the following conditions.

• Flow type ON-OFF Markovian Flow, with mean
ON time = mean OFF time =10 time units and a
maximum arrival rate of 5 packets per unit time.

• Links capacity: The higher capacity per source is at
the ”leaves”nodes and decrease to the ”root” node.

• Buffer’s constant: bi = 2 with i = 1 . . . n
• Number of sources:N = 10 . . . 220
The results are shown on picture7
As it can be seen, the graphs show the effect caused

of the approximation ofd0 by 1 over the estimations.
As in the previous case our tool properly captures the
asymptotic slope and the error never exceeds the order
of magnitude.
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Fig. 7. Results for the tree topology case

D. Results’ analysis

The most significant result we can conclude from
the previous situations, is that our estimations are close
to the real7. This was confirmed with the different
graphs presented. In spite there is a noticeable error,

7By real we are meaning the obtained on the simulations
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the method captures very accurately the behavior of the
slope (overflow rate).

Unfortunately, for some particular cases the results are
not that good because the model seems not to match
completely to reality. This problem is noticed especially
when the behavior of the network is strongly influenced
by the buffer’s state. Nowadays there are no results on
the field that provide better estimations. This assumption
was checked in simple examples where we could easily
estimate the theoretical probability in another way. This
allowed us to verify that the estimation reaching its
accuracy threshold, and the committed error was caused
by the model used.

Considering the generality of the technique and the
short processing times it important to remark that the
obtained estimations constitute an excellent approxima-
tion of the overflow probability. It is relevant to point out
that for all the cases we worked with, our results always
were on the safety side, since in none of them losses are
underestimated. Additionally, the error obtained in each
case, is never greater than the order of magnitude, that
in many cases is the accuracy degree needed to design.

VI. CONCLUSIONS

The software implements a theoretical set of tools
in a practical methodology that allows to carry out
the calculation of theoretical estimators. The developed
application allows to evaluate the operation of a given
network from samples of its traffic by providing the
overflow probability in each link of such network.

We developed a library of classes that allows to define
a network of arbitrary topology and provide numerical
results about the defined network’s performance. This
library was designed in such a way that could be re-
usable by other applications using different performance
estimators.

The processing time in the final version of the tool
widely surpassed the expectations. The final performance
of the algorithms allows to think about applying these
techniques for on-line traffic engineering. This process-
ing efficiency is based on the development of a specific
algorithm for the complex problem of optimization pre-
sented. With a similar objective, we defined a model to
approximate the statistical characteristics of the traffic
that significantly reduced processing times.

Another contribution constitutes the developed base
language to use the libraries, and the set of classes that
implements the user’s interface with the tool. We also
developed a graphical interface to simplify the usage of
the tool, allowing to visualize the topologies in study and
to allow modifications easily. This allows to analyze the

impact in the performance produced by the variation of
the different parameters of the network, which is very
useful in the design stage.
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