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Abstract—The constant growth of internet and the The edge routers in an MPLS network (or LER for La-
variety of services provided makes the estimation of QoS bel Edge Router) are responsible for establishing MPLS
parameters a fundamental need for every Internet Service tynnels named LSPs (Label Switched Path) between the

Provider. The present work introdgpes a software _tooI endpoints of the MPLS domain, and to send each arriving
that calculates the overflow probability on the core links packet to the corresponding LSP.

of a MPLS network. The calculation is based on the

statistical properties of the arriving traffic and the routing . i i i
on the network. The procedure uses the results of the large  EXPIicit Routing (ER), a typical MPLS feature, is
deviations theory and the work of Likhanov et al. [17] the main function that enables Traffic Engineering (TE).

for small buffer. The results obtained show high degree Using ER the network operator can establish for each
of accuracy as well as very short processing times. This FEC one or more LSPs.
allows the user to determine the overflow status of the
network withput t_he ne.ed to use the traditional highly In order to guarantee end to end QoS in a MPLS
time consuming simulation techniques. network, a performance model is required. This model
provides methods to analyze the end to end QoS perfor-
mance parameters.
. INTRODUCTION
Traffic Engineering (TE) is a main research area Likhanov et al. [17] developed a model that can be
in Telecommunications and particularly in the Internetsed for performance evaluation and traffic engineering,
because by using TE the network can be optimized awthich is useful to analyze the overflow probability in
the quality of service of the network can be improveda core network link, in the many sources and small
Traffic Engineering maps the traffic over the networkuffer asymptotic. Based on such model, we developed
topology in order to optimize the performance, by means software tool that computes a core link’s overflow
of an even distribution of the traffic flows over theprobability. In our context, the overflow probability rep-
network. Moreover another objective to be achievaésents the stationary probability that the arrival rate to
is to enhance performance indexes, such as overflavgiven link is larger that the link's capacity, that on the
probability, loss probability and end to end delay. small buffer (or bufferless multiplexing) context leads to
MPLS (MultiProtocol Label Switching)[21] is a net-losses. Under the typical hypothesis of ergodicity it can
work architecture standardized by the IETF in 1999, thie considered as the time proportion in which the link
enables to perform traffic engineering in IP networksannot process the arriving traffic.
MPLS introduces the notion of Forwarding Equivalence
Class (FEC), giving the network operator the possibility The work of Likhanov et al. is briefly explained in
to split the traffic in aggregated flows according to thgectionlll In sectionlll] we present the main problems
service model adopted by the Internet Service Providiéat need to be solved in order to develop a software tool
(ISP). that implements the main results of Likhanov’s work. In
section[V] the solutions of the previous problems and
This research was partially supported by PDT (Programa dRe software architecture are explained. In sedtibtihe

Desarrollo Tecndlgico), Péstamo 1293/0OC-UR: S/C/OP/17/02, : : ; :
SICIOP/17/03 and program FCE (Fondo Clemente Estable) 8079results obtained with our tool are validated with network
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Il. NETWORK MODEL AND PERFORMANCE the order ofb/a.

ESTIMATORS Large deviations theory states, under certain mild
hypothesis, that for an aggregated flow, the following
proposition is valid:

Our goal is to find fast estimations of performance
metrics for all links on the network by means of knowing

. o1
the network's arriving traffic. We will focus on the — inf Im(z) < l}wgofﬁlogP(Xﬁ/Ne B) <

A. Introduction

estimation of overflow probability over a network path, . 1 N
and some recent results from large deviations theory will < h]IVn sup — log P(X,, /N € B) <
. — 00
be used. This theory allows the use of use more general < —inf In(z) (1.1)

traffic models than traditional queuing models. z€B

The large dev_iatio_ns theory applied to netw_ork Pefor all B R, wherel,, : R — [0,00] is the function
formance analysis gives asymptotic results for links thafjied rate function of the traffic of typer, which is

are fed by a large number of traffic sources and whefgated to the traffic statistical characteristics by:
the link’s resources (buffer size, link capacity, etc.) are

scaled according to the number of sources. There are Im(z) = sup {sz — Am(s)} (1.2)
different types of asymptotic regimes useful in different ° )
kind of networks depending on the type of resour®®ingAn(s) the log-laplace transform of th&,,, vari-
scaling used. able: .
To model an Internet backbone the regime presented Am(s) = logE (") (11.3)
by Likhanov et al. on [17] is very useful. The main result |n most cases, the latter inequality becomes an equal-
of this work allows to analyze the overflow probability inty, which allows us to write:
any link of the network, with an independence hypothesis
between the aggregate traffic flows feeding the network. P (Xﬁ/N € B) ~ e~ m(B)
The regime studied is called “many sources and small
buffer asymptotic”, the results of which we will explain®€ing Inm(B) = infeep In(z). This is a typical result
briefly in the following paragraphs. of the large deviations theory where we approximate a
From now on we will work on discrete time. The trafrobability by an exponential term. In this case exponen-
fic arrival rate at the edge nodes, is treated as a stationd@)Coefficient is obtained as the result of an optimization
and ergodic stochastic process from the superpositionbpPlem over the rate function of the studied variable.
N independent traffic sources with the same distributiohN€ rate function/,, carries the statistical information

This process is represented by the varialg with Of the aggregated flow of typ&.,,.
m = 1,..., M, being M the number of paths defined The next step is to model the network structure. For

on the network. We shall defing,, = E (X,,), the that purpose, we will assume that the network Héas

mean arrival rate of the traffig:. Thus, X,,, represents links. Each linkk =1,..., K has aNCj, capacity that

a typical traffic arrival on a time unit of the: flow and 9rows linearly with the number of sources (many sources

XN is the superposition ai independent copies of,, hypothesis). We also assume that buffer receive traffic
m .

A relevant issue when working on discrete time, is th}gith FIFO p_olicy and without priorities. The buffer size
choice of sampling unit. The software will estimate thi§ Bx(&) with Bx(N)/N — 0 when N' — oo (small
probability that a buffer is saturated on any (discret@pffer hypothei3|s). Evlery path is an ordered group of
time unit, but the choice of this unit is not strictlyIinks ki = (km’, ... km™).
arbitrary, and has to be chosen carefully. The choicelt is also necessary to assume a stability hypothesis.
of the time unit has to be adequate to the dynami@éaﬁ”ing the group of traffic types that goes through link
governing the sources we will be dealing with. W& by My = {m : k" = k for anyi} we shall assume
should choose a unit as small as possible, in order it
avoid loosing any dynamic phenomena of the sources
considered (i.e. we should be able to observe bursts). Z pm < Cy (I1.4)
However, the unit can not be made as small as desired, meEM
in order to avoid the drifting from the fluid model we are This is a basic hypothesis in order to apply the large
working on (avoid the issued posed by packetization). dieviations theory, because in case the mean work arrival
the mean rate from the source wasand the packet sizerate is greater than the link’s capacity it would lead to
is b, then a reasonable time unit choice would be withimn unstable situation. In this case the fact that the link
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presents losses would no longer be a rare event andhe existence of such function allows to obtain the
therefore is out of scope of this theory. large deviation rate of the buffers’s content, using the

The main contribution of Likhanov et al. en [17] iscontraction principle. The main result of this theory can
the introduction of theransfer functionconcept. Under be stated as follows:
the previous hypothesis the following proposition can be Theorem 2.1:Under the previously mentioned hy-
proofed: pothesis, we have:

Proposition 2.1: There exists a continuous function 1
gm. : RM — R such that the traffic arrival rate of kind ~ lim —log P(link overflow atk) = —I;  (I1.7)
m to link k, noted X,,, ,, satisfies: _

' being:

Xm,k:/N:gm,k(Xl/Nv-'-aXM/N)+0(1) (”5) M
Thal.t is, W|th.a dlfference of an |nf|n.|te3|m.al, the nor- T = inf Z Ln(zm) : ge(z1 .. z0) > Cp b (11.8)
malized traffic arrival rate at any given link, can be el
expressed as a continuous function of the traffic arrivahere I,,,(x) represents the rate function of traffia,
rate for every traffic type entering the network. [h5), g is the transfer function to the link, ar@; is the per
o(1) is an error term due to the small buffers, such thaburce capacity of the studied link.
lim o(1) =0 sincew — 0. To summarize, using only the statistic data of the

N—oo

N— . . .
The demonstration of the latter proposition includdioWs entering the network, given b, and usinggy,
the explicit construction of the function,, » for feed that relates the traffic arrival rate at linkto the edge

forward networks. It is based on the composition &'rival rates, it is possible to estimate the link’s overflow
functions as: probability ase=Vhe.
To deal with the previous problem is necessary to

(11.6) solve an optimization problem of the form:

(P) { min f(2) (11.9)

constrained tagy(z) < 0

T Cl
max {Ef\il i, Ck}

that relate the input and output traffic arrival rates at any

link. The meaning oflL&l can be depicted as follows:

if at any given Iinlg, there is a superp?osition of differenfneref : R" =R, g : R* =Ry z € RnM

traffic aggregates with rates, . . ., z); and that link has ~ Where f is the objective funcﬂor(Zmzl Im(xm))

capacityCj, (per source), then, the traffic of type is andg is the constraint functiotigy (1 . .. zar)).

z,, in case the capacity is greater than the total traffic On the same work [17] an improvement to the ap-

arrival rate Ef\i L z;). On the other hand, if the capacityoroximation of the overflow probability estimation is

is not enough to serve the total traffic arrival rate, tHetroduced, based on a work by M. Iltis [12] that allows

output of typem traffic would be a proportion of its to prove the following result:

input rate, distributed evenly over every traffic traversing Corollary 2.2: Under the previous hypothesis , and

the link. Composing this functions allows to determingsing that the traffic aggregates) are an aggregate of

the contribution of a certain traffic flow at each linki.i.d sources it can be proved that:

The infinitesimal ternv(1) corresponds to the data that

is stored on the link's buffers. The fact that buffers are

small makes their contribution less significant.
Following from the previous statements, we Calhere C'y

fm(xlv'-'axMaCk):

P (link overflow k) ~ Cye N (1.10)

can be written as:

deduct:
Corollary 2.1: There exists a continuous functigmp, Cn = %
such that, up to an infinitesimal term, allows to calculate _ do
the total traffic arrival rate to a link, using only the V27N det(V(a))|al(det(|of (Ha(2+))))"/

information of the traffic arrival rate at the edge nodes | hare.* is the point where the minimum of equation

of the network. This func_tion corresponds to th_e sum gﬂ is reachedp = VI|., V(z*) = (Hes¢)|..) ™",
th_e 9m.k OVer every traffic that tr_averses the link, an nd H, = H), — Hy are the substraction of the hessians
will be denominatedransfer function of h and f, that are local expressions of the border of
the feasible region and the level curves of the function
gr(z) = Z Im k() I. dy is an adjustment factor that is constrained by the
meMi order of the buffer.
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By means of this correction it is possible to improve  we will treat them as two separate links, with traffic

the results on equatidi.8l Settingdy, = 1, we get an flowing in opposite directions, just for calculation
estimation of the form:%e—mk. matters.
Observation 2.1:Setting dy = 1 corresponds to « Add the LSP found on the last step to the list of

asume we are estimating the parameters on a buffer- important LSPs.
less network. The result by Likhanov shows that the « For each of this LSPs, find the previous link:

approximation is good for networks where the buffersare  _ |f the current link is the first of the LSP, (it has
kept “small” compared to the link capacity. In networks no previous link) the algorithm finishes for this
with larger buffer sizes the overflow probability will be LSP and it goes on with the others.
smaller meaning that, should be less than 1. Selecting — If there is a previous link, the relevant LSPs
another value for this parameter is not posible at this time for it are found using this same algorithm, and
as it depends in a complex way of buffer sizes across the added to the list of important ones.

o conclude, the necessary stops fo nd the overfy " NeN WOTKING with feectforward networks, the fact
probability in a’ network link are the following: MWat we go through in a recursive way all the LSPs, that_ at
) o e some point share resources with the one we are studying,
« Find the large deviation rate function for eacly rantees us that the algorithm will converge, finding
traffic aggregate that feeds the netwdrKz). This

. ) / the relevant LSPs.
function must be estimated from the traffic traces.

« For each link k, the transfer functian () must be
calculated. ] ]

« Solve the optimization probleffidlto find the link's B- Computation of the transfer function
overflow probability.

«» Calculate the correction constafit which depends
of the functions/; andg on a neighborhood of the
solution point.

» Estimate the link overflow probability as:

One of the objectives previously defined, was to be
able to carry out performance estimations over any kind
of network. This arises two restrictions when dealing
with the implementation of the transfer function: it has to
be robust, and topology independent. More specifically,

1 NI the procedure described on this section, calculates the
P(overflow) ~ \/Nce (I111) traffic rate that arrives to a given link (the one that
where N is the number of sources the feeds thigvokes it). This transfer functiorg], was presented on
link's buffer sectiorfllland represents the constrain of the optimization

Problem.

To calculate the total traffic rate that flows to the
studied link, we need to compute the contribution of
each of the LSPs that traverses it. The following (per

Ill. PROBLEMS TO SOLVE LSP) recursive algorithm was developed to accomplish
A. Find the relevant LSPs this:

As mentioned on the last section, the first problem we, Determine the previous link of the considered LSP.
have to deal with is to determine which LSPs contribute

in any way to the traffic arriving to the studied node.
We will take into consideration not only those LSPs that
actually pass through the link, but also any other one that ) . . o
shares resources anywhere on the network with them. It :2 ggsme Lﬁgzjeulzii p:ﬁ\élos%zl_iip, fllzsnc(::t(i) butlon
is really important to accurately establish the number .p _ 9 ping o

of LSPs that affect each link, because this number will + The shaping function takes as a parameter each
be the dimension of the optimization problem to be previous link’s contribution. This is where the recur-
solved. The dimension of this problem will influence  SION appears, as the_same function is invoked again,
directly on calculation times, and so will affect the tool's ~ ©Over each previous link on the path.

performance. As this function is based on the algorithm used to

o Determine which LSPs go through the link in theletermine the relevant LSPs, we can assure it will

specified direction. Eventhough all the links thatonverge to a result, when dealing with feed-forward
defined on the network topology are full duplexnetworks.

On the following sections we will discus the differen
steps mentioned on the previous paragraph.

— If the studied link is an edge link, that is, it has
no previous link, the LSP’s contribution is the
traffic rate at the edge.
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C. Optimization algorithm problem. Furthermore, the equality will only be reached
In order yo solve the minimization problem pre_on a feasible point, that is, when the constrain is met. So,

sented on sectioffi} the constrained problem (P) wagfter each auxiliar problem is solved, the solutiefp)
transformed into a non-constrained one using a pendfytested to be a feasible point. In case it is feasible,
method. Furthermore, to solve the latter a steepest §&€ whole iteration ends and the optimum = x(p)
scent method was used, with inexact linear searchissfound. On the other hand, whem, (x(p)) > 0 the
which used step lengths given by the Wolfe’s rule. value of p is increased (on our particular cagg,, =

On figure[ a flow diagram of the algorithm used is?0%) @nd P, ,, is solved. Making the value of larger
presented. after each auxiliary problem is solved, determines that

the valuesz(p) are increasing on every iteration, and
each time closest te*. The iteration stops whemn(p)

Initial condition is a feasible point, that is, a minimum of the original
(Xo » Po) problem P.
J D. Estimation of the rate function
Computation of One of the main issues to take into account in order
descent direction(py) to estimate the overflow probability is to know the rate

function of each flow, using traffic observations. This

brings up the need to develop estimators for the rate
Computation of function of a statiorjary process usmg different samples
step length (o) of it. As may be noticed on the definition (equatibz)),

the rate function is closely related with the effective

bandwidth function [13], thus estimating the latter may

lead us to the desired estimators.

Update estimation Enlarge p We will adopt the following notation:
Xk+1 ¢— Xk+OlkPk Pk+1¢—20pk M(s) = E (eSX) (I1.1)
A(s) = log E (e*X) (1.2)

Xk verifies convergence I(z) = — A 1.3

conditions? () = sup {sz = Als)} (1-3)

NO YES On the previous equation¥ represents a typical work
arrival, and as the process is stationary, ttgarameter
does not appear at all.

X« belongs to NO Our goal is to use a traffic trace (one single run of the

feasible region? . .
processX;) to develop an estimator for functiah(that

}YES is, the valuel (x) for eachz).

More specifically, we have samplds, : 0 <t < n}
END and we will obtain, for each, an estimation,,(z), that
Solution: Xk varies depending on this samples.
The main problem concerning the estimation, is that
I represents a complex transformation /ofs), and its
estimation is not direct using the samples. Because of
this, we propose to follow an indirect path, estimatihg
On each step of the iteration, an auxiliar problén as A, (s) and apply the transformation in equatifir8]
is solved to it:

Fig. 1. Flow diagram of the iterative algorithm

(P,) { min g, = f(z) + p (gm(x))” In(x) = sup {sz — An(s)} (11.4)
reR"? s
Moreover, the value of the overflow ratd) for a given

for a given value of, whereg,, = max {g(z), 0}. buffer, which comes from the equatidii8, will be

It can be easily proven that the minimum &% is
always less or equal than minimum &f, our original ~ *And z* is the minimum of (P)
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estimated by a certaih,, which is the result of solving
the same equation, substitutidgr) by its estimations: siix—N (s)=0 (11.7)

u and following, I(x) is estimated as:
I, = inf { > I (@) : glan, .. xm) > C I, = stz — A(s)) (111.8)
m=1

11.5) There are several alternatives to estimate the deriva-
whereL(Lm) represents the estimation bf from the data, tive. If we have an estimator foA, A’ could be ap-
g the transfer function, and' the link’s capacity. proximated with a incremental quotient. On the non-
This gives place to several subproblems, which wilarametric case, the derivative can be estimated, taking
be addresses one at a time on the section: into consideration that:

« Find a suitable estimator for the functiond (s) . oy E(XesX)
andA(s), that is, the effective bandwidth, using the N(s) = (10g (E (6 ))) = W
input data. We will also estimate the order of the , _
estimation error. so, A’ can be estimated by an average quotient:

« Find under what circumstances the estimaip(yr) , S wesT
of equationlIL.4] converges to the real valuKz) An(s) = S et
as well as the error in this operation. ] =l ]

. Determine under what circumstances it is possible 10 S0lvé equatiofill.7] the secant method for nonlin-
to estimate the value df, solving equatiofil.8l ear equations was used, [7].

. . . . . Finally, having I, as the estimator for (x), we
Effective bandwidth estimation (or eitheV/(s) or : yI h g ”(ff) f a link usi (z) .
A(s)), can be dealt with using two different approach gstimatel, the overfiow rate of a fink using equation

T . . The demonstration that this procedure is valid, is
On the first place, one can be tempted to search suita IS lar to the one used to prove thag estimates’
estimators that can be used for several traffic mode?s, '
without assuming any restrictive hypothesis. This ap-
proach is referred to ason-parametric

The non-parametric approach consists in using theOn the present section we describe ARCA (Analizador

(111.9)

IV. SOFTWARE ARCHITECTURE

usual hope estimator: de Redes de CAminos Virtuales meaning virtual path
n networks analyzer) the software developed to solve the

M, (s) = 1 Zesxi (1.6) theoretical problems presented on the previous section,

= This software tool was developed following the guide-

] ) ) lines to allow code reusability, and the possibility to be

Secondly, when working with parametric models (€.ghjemented by auxiliar software packages in order
Markov ON/OFF fluid sources [14]), it is possible tG, 544 new functionalities without major modifications.
_develop a pargmetrlc estimation of the magnltudes_ﬁ_)]f order to comply with the previous requisites we
interest. Thl_s is based on th(_a fact th_at some _eXpI"ﬂFogrammed using an object oriented language, JAVA.
formulas exist to compute this magnitudes using the, this section we will describe thoroughly on the im-
parameters of the Markov chain modulating the procesge nentation of the two main aspects of the tool: network

This leads toplug-in estimations where we estimate th‘?epresentation and performance parameters estimation.
parameters of the model in first place, and later substi-

tute them on the expressions to estimate the effective _

bandwidth. Further reference about this estimation cAn Network Representation

be found on [19]. According to the guidelines previously defined, we
The next step is to find an estimator for the rate funéecused on identifying on a network those elements that

tion I(x). The way to do so was presented on equatisapresent a concept either because of their operating or

.4}, and briefly consists in finding the maximumlli?] physic characteristics. Later we would associate them a

substitutingA(s) with an estimation. The accuracy angava class describing their properties and implementing

validity of this estimator is not trivial, on [10] this issuetheir functionalities. With the interaction of this classes

is studied thoroughly. we came to a network architecture that will be described
If an estimator of the derivative df is available, /), in brief, and provides the physical support to every

the problem can be dividen in two steps. Firstlyis process that occurs on the network.

estimated as: Our network model has three levels of abstraction:
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« One describing the network topology, implemented The objective of this class is to provide a frame-

using the classelodoand Enlace work defining the main functionalities any flow has.
o A second level, to define virtual paths over theater other classes will be build that inherit from this
topology, represented by the cldssp one, defining a unique interface presented to the rest

« A last level, describing the properties of the flowod the package. For those traffic models that, due to
traversing the network, done with the cldslijo, their specific characteristics allow a simpler and/or more
from which other classes will inherit, describingeffective way to compute the methods associated to a
each one different traffic models. flow, additional classes will be defined, which inherit

All this classes group together on a package nam&@m Flujo.
Topoloda, which also contains a clagdlinim whose  The most general way an instance of “Flow” can be
main role is to implement mathematical tools that carlefined is using a traffic trace, this is why this class
out computations on the topology. The URIdiagram Provides methods to read from an archive and store, as
on figure[? allows a better comprehension of the relavell as perform statistic calculation with the data.
tions between the classes that belong to this packaged) ClassFlujoONOFF (ON-OFF Flow): A kind of
Following we present a brief description of each clasgraffic that is of particular interest on modern networks is
l) ClassNodo (Node): The node represents on ouEXponentiaI ON-OFF mOdeI, also known as Markovian
network architecture the connecting element. A ndaN-OFF.
predefined number of links may originate or converge In order to be able to represent this model on our
to a node, which will later form the paths that will gdool, a special class was develop&dijoONOFF, that
across the network. This characteristic defines nodesirgerits fromFlujo and redefines the methods that can be
an absolutely necessary element in order to determ@mnpute on a more efficient and exact way taking into
the way the flows traverse the network. consideration the EXponentiaI ON-OFF flow hypothesis.
2) ClassEnlace(Link): Whenever data transmission 6) Class Minim: The main task of this class is
OCCUur on a network, the ||nk appears as the key elemem_implement the minimization algorithm described on
This topological element concentrates most of the parafifctionll-Cl as well as some complementary tools for
eters relative to this task, e.g. data processing Capad;@,rformance estimation computations. The decision to
buffer size, etc. create a specific class for this purpose, was taken based
Each instance ofEnlace represents a bidirectionalon theexpert pattern from UML, [15]. This algorithm
connection between two instances\ifdq that are given shall be controlled by a class conceptually above the
during its definition. The nodes are used to determifi@st Of the network, and with access to all the necessary
the way the LSP passes throw the link, which is usefliformation.
to find out which flows share resources at a given
link, and thus are relevant when estimating the overfloB, Performance parameter estimation

probability. _ _ _ The main goal of the software tool is estimate the
3) ClassLsp: This class is used to model the virtuahyerfiow probability at any given link of the network.
paths which can be defined over MPLS networks, and sectiondll] and(Il we described both theoretical and
allow to direct an traffic aggregated flow. This class iractical implementation to achieve this goal. On the pre-
the first that does not represent any physical elemgjk s sections we focused on the classes involved in this
from the network, and can be associated with the secqfdjementation. In the present section we will describe

level of abstraction in our model. Each one of this LSRRg jnteraction process between classes to implement the
is formed by an ordered concatenation of links, in thg.cired estimations.

way they are traversed. Moreover, as the LSPs define the-he general use of the tool is splitted in two different
way an aggregated flow will follow, they will be linkedyhages |n the first one, the user defines the network
to an instance of the claddujo. This class representsionsi0gy hasically represented by its physical elements,
the characteristics of the traffic passing throw the LSR,g4es and links (class@$odo and Enlace. Later, over

4) ClassFlujo (Flow): As said, this class is usedine physical elements the user defines the paths for the
to represent the characteristics and requirement of {hes- usingLSP and Flujo classes.

different kind of flows that enter the studied network.
It stores the statistic properties of a representative flow
from the aggregate passing throw a path.

2Unified Modeling Language
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In the second phase we procede to estimate the overin case the method identifies a group of relevant LSP,
flow probability over the previously defined topologythe link must be checked to see whether the incoming
The user is able now to request the tool to solve a certaiaffic is able to overflow it. If the maximum arrival rate
Link or LSF2. The resolution of a link implies to estimatefrom the previous links on each relevant LSP, is less than
it's overflow probability. The user invoques commandse capacity of the link, it will never lose work under any
which allows him/her to solve one or more links by usingircumstances so it is overdimensioned. In this particular
the methodresolver from the Link class. case, the solution is trivial and the overflow probability is

We chose this kind of structure to handle the link cakero. The software also provides additional information
culations in order to implement a distributed architectusbout the remaining capacity of the link. The maximum
where each link is capable to solve itself and store tlarival rate of a link, is the result of maximizing the
results. This structure also allows us to avoid implementput traffic rate of each LSP that arrive to the link, and
ing a global scope class to handle the estimations forning zero every other LSP’s réte
each link. That implementation would have lead to an The next step will depend on the amount of relevant
unnecessary exchange of data and overflow of such@Ps for the link. In case there is only one relevant LSP,
class. the minimization problem is trivial and the solution is

Every result of the overflow probability is stored in/,,,(C) wherem is the flow associated to the LSP afd
such a way that is accessible all the time for each links the link’s capacity. In this 1 dimensional problem the

In the next subsection we describe the methed correction coefficient is calculated using Bahadur-Rao’s
solver and its interaction with the rest of the architecturégheorem [8].
once the user request a certain link to be solved. Finally, in case our problem’s dimension is greater

It is important to remark that for the first phase ththan 1 (more than one relevant LSP), the algorithm
user has two options to define the network topology. Tisgeates an instance of tdinim class to solve the min-
tool has a user friendly graphical interface to define thigization problem. No references to the Minim instance
nodes, links, paths and flows. On the other hand, tBge stored, this characteristic optimizes memory usage
same interaction could be achieved by providing a tegdd avoids unnecessary redundancy. The correction co-
file with a preestablished format. This last alternativéfficient for this case is calculated using lltis theorem
allows the user to automatically (script) create multiplg-2].
scenarios, solve them and store the results. In the previous cases, the link calls the getl method of
the Minim class to handle with the processing. Once the
results are ready the resolver method recovers from the
Minim instance the most relevant values like the overflow

As it was said before this section attempts to descripeobability, the overflow ratelf, the coordinates of the
the processes that take place once the user requestitimum (z*) and the correction coefficient.
solve a link. Since we are working with bi-directional With all the numerical results, the link creates an
links, the first thing to do is select the direction ofnstance of the ResolverEnlace class to store all the
interest. In order to do so, methogsolver receives as a values together with the particular observations that came
parameter an instance Nbdq to decide which direction up on the estimation.
to take into account. At the same time, the method checks
the coherence of the request by verifying the existence V. RESULTSVALIDATION

of the given node. . .

In m?)st cases. the method shall run the minimizati nSome representative network topologies were selected
alaorithm descri’bed iIZC] but in order to avoid B test the accuracy of our tool, estimating the overflow

9 . rHr%bability. In these cases the probability of overflow
unnecessary processing several checks are perfor ed by our tool was compared with the obtained by
before that. This improves dramatically the software% . . . .

erformance Means of simulations in NS¥varying the number of
P The first tésk the method carries out is to find thséources that enter the network.

Our validation scheme brought up the need to estimate

relevant LSPs, as described before. If it finds non " . . o
the method ends indicating that no traffic is carried iﬁie overflow probability from simulations in different

o . . . links of the network. With this purpose buffers were
the specified direction. In this case clearly the overflow PUTP
probability is zero. 4as they will reduce the rate arriving to the studied link

SNetwork Simulator 2: network simulator developed by the Uni-
3Solving an LSP is merely to solve each one of the it it has  versity of Berkeley

C. Resolvermethod



Fast Overflow Probability Estimation Tool for MPLS Networks 10

monitored and the overflow probability was estimate
as follows:B:

Pexp(overflow) =

__time units where ths system lose data
~ total time of simulation in time units

A. General hypothesis for the simulations

In order to evaluate the buffers overflow state, weg. 3. Two links case topology
worked in discrete time with the same sampling rate that
we used to sample the traffic traces for our application.
The simulation time in all cases was large enough fccuracy reached in this case is reflected in the low error
assure the estimator's convergence. Additionally, ea@htained that can be seen in the following graph.
topology was simulated in 5 occasions, and the averagelhe simulations were made under the following con-
of the obtained overflow probabilities was considered ti§étions.
real value to reduce the effects of the variance on each Flow type ON-OFF Markovian Flow, with mean
simulation. ON time = mean OFF time =10 time units and a

In each simullation the size of the buffer grew along maximum arrival rate of 5 packets per unit time.
with the number of sources, using a constanthat e Links’ capacity: ¢y = 7, co = 5.5 This magni-
changed on each simulatioB(N) = bv/N). Finally we tudes are capacities per source and are measured in
chose to simulate in all the cases with markovian flows packets per time unit.
ON-OFF with different work cycles and arrival rates. o Buffer's constant b; = b, = 2

In order to measure the accuracy of the estimations the Number of sources: N = 20...450
distance in logarithmic scale was chosen as magnitude
of comparison: o

T T
—— Estimated - no correction
Estimated - correction
~ —— Simulated

E =10gg{Pestim (over flow) }—logg{Pezp(over flow) } o
(V.1) )
This magnitude is suitable to measure the precision jn’ |
the order of the estimation. It is often more worthy té
consider the order of the overflow probability and not
its exact value. In terms of the chosen measure, a upit .
represents an order of magnitude of difference. 107}

Owgrflo
//
/

B. Two links case

Figure3 shows our first studied topology, that consists
of two links and three LSPs. One LSP goes thI’OUgh bOthO-ao 50 100 150 Nf.é.%erofsoi%ges 200 350 200 450
links and the rest share resources with previous one just
in one link. Fig. 4. Results for the two link case
This simple example will provide a qualitative ap-
proach to the accuracy and validity of estimations pro-
vided by our software tool
On figure[ the results obtained from the overflow
probability estimation are shown and on figusethe
resulting error from this estimation appears. Both graphs
show the results varying for several number of sources.
The reason to do so is because as our results are
asymptotic, we expect to get better resultshagrows.

®Based on the ergodicity hypothesis on the arrival process
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0.35

« Links capacity: The higher capacity per source is at
the "leaves”’nodes and decrease to the "root” node.

o Buffer's constant: b; =2 withi=1...n

o Number of sources: N = 10...220

The results are shown on picture

As it can be seen, the graphs show the effect caused
of the approximation ofiy by 1 over the estimations.
As in the previous case our tool properly captures the
asymptotic slope and the error never exceeds the order
of magnitude.

0.3

o

o N

) a
T T

Relative error logarithm
o
in
(4
T

0.1

10

0.05

T
—— Estimated - no correction
Estimated - correction
— Simulated

0 50 100 150 200 250 300 350 400 450
Number of sources

o

Fig. 5. Error results for the two link case

=

o
T
I

erflow probability

C. Tree topology network

This case attempts to study the behavior of those links,.|
in which a high concentration of traffic occurs. The
correct design of this kind of links is crucial to guarantee S

end to end QoS of the network. In this kind of situations \
a tool like the one developed turn out to be really useful.
The aforementioned topology generated with our toof° s 50 100 150 200 250
can be seen on figui@ . et
09 —
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Fig. 7. Results for the tree topology case

Fig. 6. Tree topology

_ _ D. Results’ analysis
Over this topology 6 LSP were defined from the The most significant result we can conclude from

different “leaves” of the tree to the “root” node. Th ) . . . . .
simulations were made under the followin conditionsthe previous situations, is that our estimations are close
9 fo the redl. This was confirmed with the different

« Flow type ON-OFF Markovian Flow, with mean graphs presented. In spite there is a noticeable error,
ON time = mean OFF time =0 time units and a

maximum arrival rate of 5 packets per unit time. "By real we are meaning the obtained on the simulations
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the method captures very accurately the behavior of timpact in the performance produced by the variation of

slope (overflow rate). the different parameters of the network, which is very
Unfortunately, for some particular cases the results areeful in the design stage.
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