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Abstract. This work focus on quality of service (QoS) estimation based on end-to-end
active measurements. The main problem is to continuously monitor the QoS that will receive
a multimedia application in a path between two agents on the Internet. We want to estimate
the QoS without sending ‘heavy’ multimedia traffic in order to measure its QoS parameters
(delay, losses, jitter, etc.). In this paper we extend a recent work of Ferraty et al. [5] on
functional nonparametric regression. We generalize it to include a very important case on the
Internet: nonstationary traffic. We apply this result to our problem describing an end-to-end
active measurement methodology. We also show by simulations how it predicts the QoS of a
multimedia application in a link where its capacity and buffer sizes are unknown. The cross
traffic is also unknown and can be a nonstationary process.
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1. Introduction and Motivation

With the new services offered over the Internet (particulary voice and video), the need
to measure the performance of the network has increased. Measurements of the Internet
performance are necessary for different reasons, for example to advance in understanding the
behavior of the Internet or to verify the QoS assured to the new services.

Multimedia services in a packet switched network have some QoS problems like delay, jitter,
packet losses and, in some cases, degradation due to low bit rate codification.

An IP network like Internet has some problems to measure the performance parameters
since the route of the packets can change, the traffic bit rate is not constant and normally is in
burst, the probe packets can be filtered or altered by one ISP (Internet Service Provider) in the
path, there is not clock synchronization between routers and end equipments, etc. Normally
the internal routers in the path between two points of interest are not under the control of
only one user or one ISP. Therefore, it is not useful to have measuring procedures that depend
on the information of the internal routers. For this reason end-to-end measures is one of the
most developed methodologies during last years.

This work focus on the development of an end-to-end active measurement methodology that
allows to estimates the QoS parameters of a multimedia application sending the least possible
amount of probe packets.

Our goal is to estimate the QoS of an Internet multimedia service for applications like the
following.

(1) to monitor and verify during long time periods a Service Level Agreement between a
user and a ISP or between ISPs.

(2) to predict the QoS that will experiment a video stream or one or more voice conver-
sations along an Internet path.
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(3) to monitor the paths between one video or TV Internet service provider and its users
in order to take actions such as reducing the bit rate codification or selecting an
alternative path.

Some measurement applications on the Internet estimates QoS parameters like delay or
losses for any service, sending probe packets with a constant or an exponential interdeparture
time. However QoS parameters depend on the statistical behavior of each service, so, in many
cases, this type of estimation gives inaccurate estimators.

For the type of applications described above, one way to estimate the QoS parameters is to
send during a sufficiently long time period a video or a set of voice conversations and to measure
over these packets the selected parameters (mean delay, packet losses, etc.). This solution
gives more accurate estimators, but it is unpractical because we are probably overloading the
network during long time periods.

We are looking for a methodology to infer the QoS of a multimedia application without
sending the multimedia service all the time.

One way to solve this problem could be to have a model of an Internet path with a known
function (or functions) that allows to calculate the end-to-end QoS parameters given:

(1) a multimedia traffic model
(2) a cross traffic model
(3) the capacities and buffer sizes of the links along the path.

The first problem of this method is that looking the path from the ends, we do not know
the cross traffic, and the links capacities and buffer sizes. Unfortunately, even in the case that
we can have good estimations from the ends of the cross traffic, the link capacities and the
buffer sizes along the path, there is not a general analytic model of an Internet path that gives
us such function (or functions) to calculate the end-to-end QoS parameters.

Our approach to solve this problem is based on:

(1) the estimation of the cross traffic using a set of ‘light’ probe packets
(2) inferring or learning with some probe multimedia traffic the function that gives the

QoS parameter of interest from an estimation of the cross traffic
(3) sending only ‘light’ probe packets in order to estimate the cross traffic and to predict

the QoS of a multimedia application, without sending ‘heavy’ multimedia traffic during
long time periods.

In this work we extend some recent theoretical results about functional nonparametric
estimation and we apply these generalizations to solve the explained problem. In that sense
this work is a first step in a research where there are many open issues.

In section 2 we resume some related works. In section 3 the main problems of this work
and the proposed solutions are explained. Further, in section 4 we formalize some theoretical
results that are necessary for our work. In chapter 5 the experimental methodology that we
use to evaluate our results is explained and also some simulations are shown. Finally in section
6 we discuss the main conclusions and future research directions.

2. Related works

The main research topics on end-to-end Internet metrology are:

(1) Estimation of each link capacity in a network path or the capacity of the bottleneck
link. The are many proposed procedures in order to estimate the link capacity. Each
technique works better than the others depending on the constraints on the network
and the cross traffic. In general, all techniques work fine if there is not cross traffic,
but in a heavy loaded network or in a path with cross traffic in many links, the errors
in the estimation can be large [11].

(2) Internet tomography, that is inferring some QoS parameter of a network interior link
from estimations of the end-to-end value of these parameters [1] [2] [4] [6] [12] [13] [17].
These works are related with our problem, because they contribute with methodologies
and ideas to measure some end-to-end parameters, but they do not solve it.

(3) Measure the link or path ‘available bandwidth’(ABW). The ABW of a link i in the time
interval (t, t + τ) is Ai(t, t + τ) = Ci(1− ui(t, t + τ)) where Ci is the link capacity and
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ui(t, t + τ) is the average link utilization in the time interval (t, t + τ). The minimum
Ai in a path is defined as the ABW of the path. There are two main techniques to
estimate the ABW. The first one sends a growing volume of probe traffic and analyzes
the point where the probe traffic generates congestion in the path. There are different
tools that use this methodology, for example Pathload [7] [8] and PathChirp [15]. The
second technique is based on sending a packet pair or a packet train to measure the
time dispersion at the end of the path. For example Spruce [16] sends packet pairs
with interdeparture time Din and measures at the end the interarrival time Dout of
the packets of each pair. From this values and knowing the link capacity they estimate
the ABW. Strauss et al. in [16] compare Spruce with other tools used to estimate the
ABW, like Pathload.

In the context of our work, the estimation of the link capacity is important but it is not
enough. In order to have a good QoS for a multimedia traffic, it is necessary but not sufficient
condition to have enough capacity at the bottleneck link. If the link has enough capacity but
the cross traffic at that link introduces delays, or jitter to the multimedia traffic the QoS could
be poor. For this reason, we are interested on an estimation of the whole effect of the link
characteristics and the cross traffic on a multimedia service. In this sense the works about
the estimation of the ABW of a link or a path are more useful to solve our problem because
the ABW take into account both effects. But the ABW does not give enough information to
evaluate the QoS that a multimedia traffic on that path will receive because:

(1) the ABW gives information about the average over a time interval of the cross traffic,
while the QoS of a multimedia traffic depends on all the statistics of the traffic that
use the link or the path and not only on its average value.

(2) the ABW depends on the time scale selected for its average, and its value and vari-
ability depend on that time scale.

(3) with the information about the ABW, it is not possible to estimate the QoS that will
be received by a multimedia traffic on that path. Jain and Dovrolis [9] have recently
shown, measuring the ABW over different Internet paths, that this value experiments
large variations over the time for each fixed time scale. They also show that these
variations depend not only on the time scale but also on the cross traffic type.

3. Problem formulation and solution proposed

In this section we analyze a single link where cross traffic and probe traffic arrive. The
cross traffic of this link, the link capacity, the buffer size, etc. are not known. The goal is to
monitor the QoS that will experiment a multimedia traffic during long time periods.

We know that the performance metric Y (delay, jitter, losses, etc.) for packets of a multi-
media traffic is a function Y = Φ(Xt, Vt, C, B), where Xt is the cross traffic stochastic process,
Vt is the video or voice stochastic process, C is the link capacity, and B is the buffer size. We
want to estimate Y without sending video or voice traffic during long time periods.

The link capacity C and the buffer size B are not known but it is assumed that are constants
during the monitoring process. We want to evaluate the QoS of the process Vt so this is a
known variable in our problem. Therefore, we can say that Y = Φ(Xt).

The first problem is that the cross traffic process Xt on the Internet is a dependent nonsta-
tionary process. This topic has been studied for many authors during the last years. Zhang et
al. [18] [19] show that many processes on the Internet (losses for example) can be well mod-
elled as i.i.d. within a ‘change free region’, where stationarity can be assumed. They describe
the overall network behavior as a series of piecewise-stationary intervals. Karagiannis et al.
[10] recently have found nonstationarity at different time scales analyzing the traffic of a link
belonging to a Tier 1 ISP. They found that the traffic can been considered stationary at small
time scales with events that change its stationarity at multi-second scale o larger.

The nonstationarity has different causes at different time scales and the ‘stationary’ time
scale can be different for different paths and performance metrics. In all cases is very important
to have measuring methodologies that can be used with nonstationary traffic. This is one of
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the main contributions of this paper. We will develop a measuring methodology that allows
to estimate the QoS parameters in a network with nonstationary cross traffic.

In what follows we describe the procedure to estimate the function Φ. We divide the
experiment in two phases:

(1) First, we send a burst of small probe packets (pp) of fixed size K spaced a fixed time
tin. Immediately after the burst we send during a short time a video stream. We
repeat the previous procedure during some time, sending a new burst and a video
probe after an interval time t1 measuring from the previous end of the video stream.
This can be seen in figure 1.

pp video

Figure 1

With the probe packets burst we infer the cross traffic of the link. We measure at the
output of the link the interarrival time tout between consecutive probe packets. This
time series is strongly correlated with the cross traffic process that shares the link with
the probe traffic. Using this cross traffic estimation and measuring the performance
metric of interest over the video we will estimate the function Φ.

(2) In the second phase, sending only the probe packets in order to estimate the cross traffic

and using the function Φ̂ estimated in the first phase we estimate the performance of

the QoS parameter Ŷ .

One problem is to find the ‘best’ time scale t∗in to be used as interdeparture time between
consecutive probe packets. Later we will discuss further this topic, and for the moment we
consider a fixed time scale.

At the output of the link we have a time series tout. We compute the interarrival times and
estimate its empirical distribution function Xt∗in . We write Xt∗in to indicate the dependence
on the time scale for interdeparture times between probe packets.

From each probe packet burst and video sequence j we have a pair (Xj , Yj), where Xj is the

empirical distribution function estimated from the time series tjout and Yj is the performance
metric of interest measured from the video stream j.

Therefore, our estimation problem has been transformed to the problem of inferring a
function Φ : D → R where D is the space of the probability distribution functions and R is
the real line.

After we have obtained the estimation Φ̂, we only need to send probe packets in order
to estimate the empirical distribution Xt∗in and the performance metric of interest can be

estimated from Ŷ = Φ̂(Xt∗in) .
To obtain and estimation of Φ from the pairs (Xj , Yj) we will use a recent result about

functional nonparametric estimation [5]. This result needs to be extended in order to be ap-
plied to our problem because in that work the authors suppose that the samples (Xj , Yj) are
equally distributed As we have explained before in the Internet the cross traffic is nonstation-
ary, and for this reason our samples of cross traffic estimation will not be equally distributed.
In the next section we will extend the results of [5] to a more general case that includes the
nonstationary case.

To estimate the cross traffic suppose that the probe packets are separated a time tin shorter
enough to assure that for each two consecutive packets the second one is queued before the
first one leaves the queue (see figure 2).

The time tiout measured at the output of the link between the packets i and i + 1 of the

burst is equal to Xi

C
+ K

C
, where Xi is the amount of bits of cross traffic that arrived to the

queue between probe packets i and i + 1. The probe packets size K and the link capacity C
are constants and K is small. Then the interarrival times are proportional to the cross traffic
volume at least of a small constant.
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Figure 2

Suppose now that the packet i + 1 is queued after the packet i leaves the queue. In this
case as we are inferring the cross traffic volume from the times tiout, we are concluding that
there is a cross traffic volume larger than the real one.

Therefore, it is necessary to send the packets at the highest rate as possible to be sure that
for each two consecutive packets the second one is queued before the first one leaves the queue,
but without overloading the path.

It is important to note that always between two packets separated a very short time we can
have a very small cross traffic volume such that: Xi

C
+ K

C
< tiin and we are inferring during

this time interval a cross traffic volume bigger than the real one. The question is if this small
cross traffic volume is relevant or not for our estimation. For example for voice traffic, where
consecutive packets are separated twenty miliseconds or more, if we have a cross traffic volume
Xi

C
in the order of nanoseconds, clearly this traffic volume is not relevant for our estimation.

The problem is to find a time scale t∗in large enough to not overload the path but also small
enough to give all the information about the cross traffic needed to our estimation problem.

To start, we send a burst of small packets with a time tin smaller or equal than the time
between packets of the traffic we are interested to measure (voice, video, etc.). Our aim is to
estimate the performance metric Y using larger times between packets.

Our performance metric Y depends on the cross traffic process X at all time scales, but for
each application it is not necessary to measure below a specific time scale, that depends on
the statistical behavior of the traffic.

To find this time scale we can say that Y = Φtin(Xtin)+εtin where tin is the time scale for the
interdeparture times between probes to estimate the interarrival times empirical distribution
function Xtin and εtin is the estimation error by considering only tin. The idea is to find a
time scale t∗in such that the estimation Φt∗in gives the estimation of the parameter of interest
with the minimum error, by minimizing the empirical variance of the estimation. We will
explain in more detail in the following section how to calculate this time scale t∗in.

4. Theoretical results

In this section we present a brief description of previous works on functional regression,
and we especially summarize the results on functional regression of Ferraty et al. Our main
theoretical results is the complete convergence of the estimator in the case of a nonstationary
mixture of random variables. Finally we present our approach to the problem of time scales
and how to choose an accurate one.

4.1. Previous results. Our approach to the problem of functional nonparametric regression
is based on the work of Ferraty Goia and Vieu [5]. The model presented is a regression

(1) Y = Φ(X) + ε

where the regressor X is a function in a seminormed vector space with seminorm || ||, the
response Y is a real random variable and ε is a real, centered and independent of X ran-
dom variable. Their estimator for Φ, obtained from a sequence of observations (Xi, Yi), is a
generalization of the Nadaraya-Watson Kernel estimator

(2) Φ̂n(x) =

n∑
i=1

YiK
(
||x−Xi||

hn

)

n∑
i=1

K
(
||x−Xi||

hn

) =

n∑
i=1

YiKn (Xi)

n∑
i=1

Kn (Xi)
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In [5] the authors proved the complete convergence of the estimator, the rate of convergence
and the uniform complete convergence, when the observation is a sequence (Xi, Yi) of sta-
tionary weakly dependent (α-mixing) random variables. One of the main topics discussed in
[5] is the problem of finding good estimators when the observations come from an infinite
dimensional vector space, where finding enough samples near x is crucial. The same problem
in a different context is also treated in the work of Cuevas, Febrero, and Fraiman [3]. Ferraty,
Goia and Vieu introduce the fractal dimension of the random variable X, and the convergence
results depend on this dimension.

4.2. Nonstationary mixture model. We will consider a nonstationary model where X is
a mixture of stationary variables. Consider the regression model

(3) Y = Φ(X) + ε

but instead of having the random variables X equally distributed let

(4) Xi = ϕ(ξi, Zi)

where ξi takes values in a seminormed vector space with a seminorm || ||, and Zi is a real
random variable that takes values in a finite set {z1, z2, . . . , zm}. The sequence ϕ(ξi, zk) is
weakly dependent and equally distributed for every 1 6 k 6 m, but the sequence Zi may be
nonstationary as in the work of Perera [14]. Under these hypotheses in this section we will
obtain the asymptotic behavior of the estimator defined by (2). Our proof is a generalization
of the proof of Theorem 4.1 in [5].

We assume some mild hypotheses for the kernel, the mixing coefficients of the sequence
(Xi, Yi), and the distribution of Y that are the same of Ferraty et al. [5] and for the sequence
Xi we assume different hypotheses as follows.

There exist the conditional moments

(5) E {|Φ (ϕ(ξi, zk)) , Φ (ϕ(ξj , zl)) |} = h(|i − j|) < ∞

For each 1 6 k 6 m exists δk(x) > 0 such that

(6) lim
α→0

1

αδk(x)
P (ϕ(ξi, zk) ∈ B(x, α)) = ck(x) > 0∀i

For each 1 6 k 6 m and ∀i 6= j exists δkl
|i−j|(x) such that

(7) lim
α→0

1

α
δkl
|i−j|

(x)
P (ϕ(ξi, zk), ϕ(ξj , zl) ∈ B(x, α) × B(x, α)) = ckl

|i−j|(x) > 0

The bandwidth hn is a positive sequence such that

(8) lim
n→∞

hn = 0, lim
n→∞

nh
δ(x)
n

log n
= ∞, δ(x) = min{δk(x) : 1 6 k 6 m}

For each 1 6 k 6 m exists pk > 0 such that

(9) lim
n→∞

1

n

n∑

i=1

P (Zi = zk) = pk

For each 1 6 k, l 6 m, h > l exists ph
kl > 0 such that

(10) lim
n→∞

1

n

n∑

i=1

P (Zi = zk, Zi+h = zl) = ph
kl

Remark. Hypothesis (6) is about the distribution of each component of the mixture and (7)
is about the joint distribution. As it is noticed in [5] δ(x) is the analogous to the dimension d
when the random variable X ∈ R

d. In the case of the mixture, if δk(x) is different for each k,
for the convergence theorems the component of the mixture that gives the properties of the
estimator is δ(x) = min{δk(x) : 1 6 k 6 m}. Then, the properties of the estimator depend on
the component of the mixture that has more samples in a neighborhood of x.
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Remark. Hypothesis (9) means that the sequence Zi only verifies stationarity conditions in
average, and (10) implies stationarity in average for the joint distribution. (9) is a very general
hypothesis, a counterexample can be constructed as in example 2.2 in [14].

In order to prove the main result that is the complete convergence of the estimator Φ̂n(x) to
Φ(x) we will prove some previous lemmas, analogous to lemmas 4.1, 4.2 and 4.3 of [5] under
our hypotheses. Let us write

(11) Φ̂n(x) =
gn(x)

fn(x)

with gn(x) =
1

nh
δ(x)
n

n∑
i=1

YiKn (Xi) and fn(x) =
1

nh
δ(x)
n

n∑
i=1

Kn (Xi)

Lemma 1. Under general hypotheses about the kernel, (6), (8) and (9)

(12) lim
n→∞

E (fn(x)) = Cδ(x) =
m∑

k=1

pkCδk(x)1{δk(x)=δ(x)}

where 1{ } is the indicator function and Cδk(x) = ck(x)δk(x)
∫ θ

0 K(v)vδk(x)−1dv
Further, if Φ is a continuous function then

(13) lim
n→∞

E (gn(n)) = Φ(x)Cδ(x)

Proof. Lemma 4.1 of [5] assures that for each 1 6 k 6 m

(14) lim
n→∞

1

h
δk(x)
n

E {Kn (ϕ(ξ, zk))} = Cδk(x)

E (fn(x)) =
1

nh
δ(x)
n

n∑

i=1

E (Kn (Xi))

E (Kn (Xi)) = E {E (Kn (Xi) |Zi)} =
m∑

k=1

E {Kn (ϕ(ξi, zk))}P (Zi = zk)

As E {Kn (ϕ(ξi, zk))} does not depends on i

E (fn(x)) =
m∑

k=1

(
1

h
δ(x)
n

E {Kn (ϕ(ξ, zk))}
1

n

n∑

i=1

P (Zi = zk)

)

We have that

(15) lim
n→∞

1

h
δ(x)
n

E {K (ϕ(ξ, zk))} =

{
Cδk(x) if δk(x) = δ(x)
0 if δk(x) < δ(x)

and using (9) and (14)

lim
n→∞

E (fn(x)) =
m∑

k=1

pkCδk(x)1{δk(x)=δ(x)} = Cδ(x)

To prove (13) lemma 4.2 of [5] assures that

(16) lim
n→∞

1

h
δk(x)
n

E {Φ (ϕ(ξ, zk)) Kn (ϕ(ξ, zk))} = Φ(x)Cδk(x)

We have

E (gn(x)) = E

(
1

nh
δ(x)
n

n∑

i=1

YiKn (Xi)

)
=

1

nh
δ(x)
n

n∑

i=1

E (YiKn (Xi))

Then taking

E (YiKn (Xi)) = E (Φ(Xi)Kn (Xi)) = E {E (Φ(Xi)Kn (Xi) |Zi)}
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with calculus analogous to the previous ones

E (gn(x)) =
m∑

k=1

1

h
δ(x)
n

E {Φ(ϕ(ξ, zk))Kn (ϕ(ξ, zk))}
1

n

n∑

i=1

P (Zi = zk)

From (9) and (16)E (gn(x)) converges to Φ(x)Cδ(x) ¤

Lemma 2. Under hypotheses about the kernel, the mixing coefficients, the distribution of Y
and (5) to (10), with general assumptions for the relationship between δ(x), hn and conditions
on the mixing coefficients and the distribution of Y , there exists ε > 0 such that

∞∑

i=1

P

(
|fn(x) − E(fn(x))| > ε

√
log n

nh
δ(x)
n

)
< ∞

∞∑

i=1

P

(
|gn(x) − E(gn(x))| > ε

√
log n

nh
δ(x)
n

)
< ∞

Proof. This lemma is the analogous of lemma 4.3 of [5]. The proof is based on computing

s2
n =

n∑
i=1

n∑
j=1

|Cov(∆i, ∆j)| with ∆i = Kn(Xi) − E (Kn(Xi)) and proving that there exists

ε > 0 such that
∑∞

i=1 P
(
s2
n > εnh

δ(x)
n

)
< ∞. The rate nh

δ(x)
n is obtained by imposing some

relationships between a, p, δ(x) and hn. In our case the thesis is obtained by assuming the
extra hypothesis (10) that allow us to make the same calculus as in [5] but conditional to Z
as in the previous lemma, and to prove the thesis for the stationary sequences ϕ(ξ, zk) and
then taking the limit of (10). ¤

The main result is the complete convergence stated in the next theorem.

Theorem 1. Under the assumptions of lemma (2), for Φ continuous, Φ̂n(x) converges com-
pletely to Φ(x).

Proof. The proof of this theorem is the same as in [5], based on lemmas 1 and 2. ¤

With this theorem we assure that we can compute the function Φ̂n with n samples of the
sequence (Xi, Yi) and then use this function to predict the QoS based only on new samples
Xi. In what follows we will address the problem of time scales for the samples Xi.

4.3. Choosing the time scale. In our experiment the probe traffic is sent with fixed time
t between consecutive probe packets. The aim is to find some criterion for choosing the best
time scale in order to infer as accurately as possible the performance metric Y . We consider
different sequences of observations for a finite number of time scales {t1, t2, . . . , tr}. In practice,
as we send bursts of probe traffic with fixed time t between packets we will have observations
with time scales in the set {t, 2t, . . . , rt}. Consider n + m observations for each time scale

{
(X

tj
i , Y

tj
i ) : 1 6 i 6 n + m, 1 6 j 6 r

}

By dividing the sequence for a fixed time scale in two we can estimate the function Φtj (for

the time scale tj) by Φ̂
tj
n with the first n samples. With the remaining data we compute the

difference

σ2
tj (n, m) =

1

m

m∑

i=1

(
Φ̂

tj
n (X

tj
n+i) − Y

tj
n+i

)2

that gives a measure of how good is the estimator at time scale tj . If we compute σ2
tj (n, m)

for 1 6 j 6 r we could choose t∗n,m such that

σ2
t∗n,m

(n, m) = min{σ2
tj (n, m) : 1 6 j 6 r}

Hereafter we choose this time scale for the measurement methodology. σ2
t(n, m) converges

a.s. to V ar(εt) when n, m → ∞. Then, if there exists an optimum time scale t∗ such that

V ar(εt∗) is minimum, and the estimator Φ̂n has good properties of convergence, the estimator
t∗n,m converges to t∗.



END-TO-END QUALITY OF SERVICE PREDICTION BASED ON FUNCTIONAL REGRESSION 9

5. Simulations

We have simulated cross traffic using the function X = ϕ(ξ, Z), where each ξ is equally
distributed in one of two sets as an ON-OFF Markovian traffic and Z is a random variable
that selects periodically between this two sets.

The first set (SET 0) is a set of Markovian ON-OFF traffic that has average bit rate varying
from 150 Mb/s to 450 Mbs and average time Ton in the ON state and Toff in the OFF state
Toff varying from 100 to 300 ms.

The second set (SET 1) of Markovian ON-OFF traffic has average bit rate varying from 600
Mb/s to 900 Mb/s and average time Ton in the ON state and Toff in the OFF state varying
from 200 to 500 ms.

After we have selected for the next period the SET 0 or SET 1, an independent random
variable is sampled to select the average bit rate, Ton and Toff.

We send this cross traffic to a network link. We also send to that link the probe traffic that
is composed of a number of tests. Each test has a burst with fixed interdeparture time t∗in, and
after it a simulated multimedia traffic. For each test j we estimate the empirical distribution
function Xj of the cross traffic at the time scale t∗in.

With the simulated multimedia traffic we measure for each test j the average delay Yj of
this traffic.

We generated 51 tests. We use 50 tests to estimate the function Φ̂ and we leave one test out

to verify our estimation. The kernel used to estimate Φ is K(x) =

{
(x2 − 1)2 x ∈ [−1, 1]
0 x /∈ [−1, 1]

and we use the L1 norm for the distance between the empirical distribution functions. The
selection of the Kernel and the bandwidth must be studied in more detail in the future.

In figure 3 the estimated and the measured value for the average delay and the relative error
of the estimated and the measured value are plotted. Each value corresponds to a estimation
for this point taking as training sample all the samples without this value. The results are
relatively accurate for that small amount of tests.
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6. Conclusions

In this work we have developed a methodology to estimate the end-to-end QoS of a mul-
timedia service. This methodology allows to monitor the QoS that a multimedia application
along an Internet path during long periods of time would receive. We have extended some
recent results on functional nonparametric regression that enable us to apply our measuring
methodology to nonstationary traffic. This is very important for practical applications because
the Internet has nonstationary traffic as has been shown by many works in last years. We
tested our methodology with simulated nonstationary traffic and we obtained good accurate
estimations. There are many open issues in this research. Our methodology must be tested
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with real Internet traffic and can be extended to other QoS estimation problems. We will also
work in other two directions: to find confidence intervals for the estimators and to study the
extension of the results that are valid for weak dependence to other dependence models.
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