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1 Introduction

The goal of these notes is to provide a description of the optimal theory of control and its appli-

cations to the economy. These applications are analyzed mathematically. Mathematics provide

compact ways to express ideas and are long-range tools to analyze them. In order to obtain

these objectives a deep knowledge of the tool is necessary, therefore we will offer the proofs of the

theorems and the main subjects related to the applications.

• Consider the problem of shooting a guided missile to intercept an airplane. The problem

is to obtain an optimal trajectory that minimizes the time for the missile to reach the

airplane. Clearly this trajectory can be controlled by a number of variables. These variables

are represented as a vector in Rn and hence the problem is to obtain a trajectory (the states

of the system) by choosing a function (a control function) so as to maximize or minimize a

certain objective.

• The economy of a typical capitalistic country is a system made up in part of the populations

(as consumers and as producers) , companies, material goods, production facilities, cash,

credit available, and so on. The state of the system can be thought of as a massive collection

of data wages and salaries, profits, losses, sales of goods and services, investments, unemploy-

ment, welfare costs, the inflation rate, gold and currency holdings, and foreign trade. The

central government can influence the state of this system by using several controls, notably

the prime rate, taxation policy, and persuasion regarding wage and price settlements.

2 Some Examples of optimal control problems

Only continuous deterministic process are investigated in these notes. We shall here introduce the

concepts and methods of optimal control theory, we begin considering several particular examples:

Example 1 Control of a mechanism along a smooth track.

Consider a mechanism as a cart or a trolley, of mass m which move along a track with negligible

friction. The position coordinate at time t is determined by Newtons law:

mẍ = u(t),

where u(t) is the external controlling force. Suppose that initial position and velocity are (x0, y0).

We consider the problem of stopping the trolley at a prescribed target: x = y = 0 in minimal time

possible by means of (possibly discontinuous force) u(t) subject to the restraint |u(t)| ≤ 1.

5



For convenience choose m = 1 and we write the Newton equation:

ẋ = y

ẏ = u(t)
(S)

or in matrix notation:
(

ẋ
ẏ

)

=

(

0 1
0 0

)(

x
y

)

+

(

0
1

)

u(t).

or ẋ = Ax+ bu.

Fix time t1 and consider all the various possible controllers u(t) on 0 ≤ t ≤ t1 with |u(t)| ≤ 1.

By direct substitution we can see that the solution is:

x(t) = x0 + y0t+
∫ t
0 [
∫ s
0 u(σ)dσ] ds

y(t) = y0 +
∫ t
0 u(σ)dσ

or: x(t) = eAtx0 + eAt
∫ t
0 e

−Asbu(s)ds.

Define the set K(t1) in the phase plane, to be the totality of all end points of all responses

which initiate a x0, we will prove later that K(t1) is a closed, bounded and a convex set, that

varies continuously with the end time t1.

The minimal time t = t∗ is determined as the first time at which K(t) contains the target

(0, 0). It can be proved that (0, 0) lies on the boundary of the set K(t∗). See subsection (9).

The optimal response x̄∗(t) = (x∗(t), y∗(t)) leads to the origin at t = t∗. And the optimal

controller u∗(t) is the controller that produce the optimal response.

Let η(t∗) = (η1(t
∗), η2(t

∗)) be a unit vector at the origin that is an outward normal for the

convex set k(t∗). Then for each response x(t) we must have:

η(t∗)x̄(t∗) ≤ 0,

that is, the vector x(t∗), has no positive component along the direction of η(t∗). , observe that

x∗(t∗) = 0, this means that:

η1(t
∗)x∗1(t

∗) + η2(t
∗)y∗(t∗) = max

(x,y)∈K(t∗)
η1(t

∗)x+ η2(t
∗)y.

This inequality is called the maximal principle

Using the explicit integral expressions we consider de maximal principle:

η1(t
∗)

[

x0 + y0t
∗ +

∫ t∗

0

∫ s

0
u(σ)dσds

]

+ η2(t
∗)

[

y0 +

∫ t∗

0
u(σ)dσ

]

.
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When we disregard all terms not involving u(t) the expression that must be maximized is:

η1(t
∗)

∫ t∗

0

∫ s

0
u(σ)dσds+ η2(t

∗)

[

∫ t∗

0
u(σ)dσ

]

.

From the equality:
∫ t

0

∫ s

0
u(σ)dσds =

∫ t

0
(t− σ)u(σ)dσ

and doing;

η1(s) = η1(t
∗), η2(s) = η1(t

∗)(t∗ − s) + η2(t
∗)

on the interval: 0 ≤ s ≤ t∗, we must maximize:

∫ t∗

0
η2(s)u(s)ds.

It is clear that the maximun for the integral, recalling that |u(t)| ≤ 1, is achieved only by the

controller:

u∗(t) = sign η2(t) on 0 ≤ t ≤ t∗.

Therefore the optimal controller u∗(t) assume only the values +1 and −1, except where it

switches between these, precisely at the zeroes of the unknown function η2(t). Note that from the

definition of η̄(t) it follows that η̈2(t) = 0. Then η2(t) is a linear polynomial in t. So, u∗(t) can

have at most one zero.

The optimal response from x0 to the origin must follow an arc of a solution of the extremal

differential system
ẋ = y

ẏ = −1
(S−)

and then an arc of a solution of the extremal:

ẋ = y

ẏ = 1
(S+)

Let us construct all possible extremal responses. To do this we follows the method of backing

out of the target. Choose a unit vector η(0) = (η1(0), η2(0)) and use this as initial date to

determine the solution (backward on time) of:

ẋ = y

ẏ = sgn η2(t)
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If we consider η2(t) > 0 on t < 0 we obtain the curve trough the origin

Γ+ : 2x = y2, for y(= ẋ) ≤ 0.

Similarly if we take: η2(0) < 0 we trace the response along

Γ− : −2x = y2, for y(= ẋ) ≥ 0.

For arbitrary η(0) we follow Γ+ or Γ− respectively if η2(0) is positive or negative, until t̄ :

η(t̄) = 0 then we follow the appropriate solution of S− or respectively S + .

The curve consisting of Γ− and Γ+ is called the switching locus W. In this example

y = W (x) =

{

−
√

2x for x ≥ 0
+
√
−2x for x < 0

We define the synthesizer by;

Φ(x, y) =



























−1 if y > W (x) or if (x, y) 6= (0, 0) lies on Γ−

0 if x = y = 0

+1 if y < W (x) or if (x, y) 6= (0, 0) lies on Γ+

Then the optimal response from any initial state (x0, y0) to the origin is just the solution of

ẍ = Φ(x, y), and the optimal controller u∗(t) = Φ(x, ẋ).

Example 2 Consider an economy that at any time has some amount of capital K(t), and labor

L(t), these are combined to produce output Y (t). Suppose that labor grows exponentially L(t) =

L0e
nt, where L(0) = L0 denotes the initial amount of labor. The production function takes the

form: Y (t) = F (K(t), L(t)), where t denotes time. Suppose that the production function has

constant returns to scale in its two arguments. That is: F (cK, cL) = cF (K,L), c > 0. Define

k = K/L the capital per unit of labor, the assumption of constant returns to scale allow us to work

with the production function in the form f(k) = 1
LF (K(t), L(t)) = F (K

L , 1).

Suppose that output is divided between consumption and investment. The factor devoted to

investment is s is exogenously determined. One unit of output devoted to investment yield one

unit of new capital. In addition existing capital depreciates at rate δ, where δ < a. As usual,

capital stock increases with investments and decreases with depreciation. So, the dynamics of the

capital is given by the equation:
˙K(t) = sY (t) − δK(t).
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Suppose that F (K(t), L(t)) = aK(t)L(t) So, we obtain

k̇ = sy(t) + (δ − n)k

where y(t) = Y (t)/L(t). It follows that

k̇ = (sa− δ + n)k. (1)

Suppose that the central planner wishes to maintain the economy in an steady state: k(t) = k̄

and that any deviation of this value be corrected in minimal time. The political mechanism to

obtain this target is the saving rate 0 ≤ s ≤ 1.

The solution of 1 is k(t) = k0e
(sa+n−δ)t, here k0 is the value of capital at t = 0. Consider the

case where n < δ. Then if:

1. k0 < k̄ the planner choose s(t) = 1 until k(t) = k̄ this occurs at time t∗ = [log k̄
k0

] 1
a+n−δ and

then the planner fixes s(t) = −n+δ
a for all t ≥ t∗. We obtain that the optimal saving rate is

s∗(t) =

{

1 t < t∗
−n+δ

a t ≥ t∗

2. k0 > k̄. Analogously:

s∗(t) =

{

0 t < t∗∗
−n+δ

a t ≥ t∗∗

Where t∗∗ = [log k̄
k0

] 1
n−δ .

We define the synthesizer by:

ψ(k) =



















1 k < k̄

−n+δ
a k = k̄

0 k < k̄

3 A mathematical formulation

We now give a precise mathematical formulation of the type of control problem we will be dis-

cussing.
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3.1 Some of notation

Let m and n be natural numbers, and let R stand for the real numbers. If x, is a vector in Rn,

we denote by i− th its component xi. We define xtr to be the transpose of x, and introduce a dot

product and two norms:

xy = xtry =
n
∑

i=1

xiyi,

|x| =
n
∑

i=1

|xi|, ‖x‖ = (xx)
1

2 .

Remark 3 We say that a property is fulfilled almost surely (a.s) or almost everywhere (a.e.), if

it fails in a set of null measurement

A set N ∈ Rn is called a null set , if N can be covered by a countable union of n-cubes whose

total n-volume is less than an arbitrarily prescribed ε > 0.

Given a set C we will denote its interior by int[C] and the points belonging to its frontier will

be denoted by Fr[C].

The most general control process considered here is described by the following dates:

3.2 The optimal control problem: a survey

1. The plant of the process. It relates the state or response x(t) to the input or control u(t) by

a ordinary differential system ẋi(t) = fi(t, x(t), u(t)) i = 1, ...n. If the variable t does not

appear explicitly the process is called autonomous, otherwise it is called non-autonomous.

A measurable function u defined on an interval [t0, t1] with range in Rm, is said to be a

control if there exists an absolutely continuous function x defined on [t0, t1] with range in

Rn such that is a solution of the system of differential equations :

ẋ = f(t, x, u).

Fixed the initial position x(0) = x0, each controller u(t), defines a unique response x(t) ∈ Rn.

2. An initial point or state x0 and a target set T are prescribed. The initial point x0 is a known

vector in phase space. In a real physical process x0 and the response x(t) describe position,

velocities or other dates that can be measured by appropriate instruments. In economics

these vectors describe the initial capital k(0) and its evolution K(t), or initial consumption

of some good and its intertemporal evolution. In other cases they can describe prices or

other data that can be measured by the agents of the economy. The target set represents

10



the desirable states at the end of the process. Sometimes this is a moving set T (t) ∈ Rn at

each t.

3. The class of admissible controllers ∆ usually consists of measurable functions 1 u(t) on

various time intervals t0 ≤ t ≤ t1. Various additional restrictions are often imposed on the

function comprising ∆. For example, the condition u(t) ⊂ Ω, where Ω is a fixed compact

and convex restraint set in Rn is usual. Also the initial or final time for the duration of the

controllers is sometimes prescribed.

4. The cost functional or objective functional, is an accepted quantitative criterion for the

efficiency of each admissible controller u(t). Often the cost functional is described as: C(u) =
∫ t1
t0
f0(t, x(t), u(t))dt. The optimal control problem consists in maximizing or minimizing a

cost functional choosing for this an admissible control in such way that the response x(t)

verifies the initial state at t = t0 and x(t1) ∈ G(t1).

Definition 4 A controller u∗(t) in the admissible class ∆ is called optimal in case C(u∗) ≤ C(u)

for all u(t) ∈ ∆.

If f0(t, x(t), u(t)) ≡ 1, then C(u) = t1 − t0 and we have the minimal time problem.

Definition 5 Each choice of the control, u(·) generates a response x(t) = x(t, x0, u(·)), if the

response reaches the target at some t1 then u(·) is a successful control. We define:

S(t1, x0) = {u(·) ∈ Ω : there exists t1 ≥ 0 : x(t1, x0, u(·)) ∈ T (t1)}

Remark 6 Summarizing: We assume that the dynamic of the system, that is the evolution

of the state x(t) under a given control u(t), is determined by a system of ordinary differential

equation: ẋ(t) = f(t, x(t), u(t)), x(t0) = x0, where x0 is the initial state, f ∈ C1. Also restraint

set Ω and a target T are given.

In each optimal control problem our ultimate goal is to synthesize the optimal control by an ap-

propriately designed feedback loop. A feedback control can often correct for unpredictable variations

in the environment of the plant or irregularities in the process.

1A real function h(t) on a real interval I is called measurable in case for all real α and β, the set
{t ∈ I and α < h(t) < β} is measurable in R1. If h(t) is measurable on I we can define the Lebesgue integral,
H(t) =

∫

I
h(t)dt by considering appropriate limits of approximating sums. If h(t) is piecewise continuous the

Lebesgue integral is the same that the usual Riemann integral. The indefinite integral H(t) =
∫

I
h(t)dt defines an

absolutely continuous function. Recall that the measurable sets of Rn are defined as the members of the smallest
family of sets in Rn that contains all open and closed sets, the null sets of Rn and also every countable union and
intersection of its members and its complements.
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As we shall show in the next example, given a system of state equations together with end

conditions and control constraints there is not guarantee that the set of admissible pairs, control

and its corresponding response, u(t), x(t), its not void.

Example 7 Let x be one dimensional. Let the state equation be ẋ = u(t). Let x(0) = 0, and

x(1) = 2 be the initial and final point. Let Ω = {u : |u| ≤ 1} be the set of admissible controllers.

The trajectory is given by x(t) =
∫ t
0 u(s)ds. These pairs are no admissible, because we need

x(1) = 2 but if u ∈ Ω then |u| ≤ 1.

3.3 The controllable set

Definition 8 We define the controllable set, at time t1 as the set of initial states x0 that can be

steered, using a bounded measurable controller, to the target set in time t1.

C(x0) = ∪t1>0C(t1, x0),

where

C(t1, x0) = {x0 ∈ Rn : there exists u(·) ∈ Ωb : x(t1, x0, u(·)) ∈ T (t1)}

where: Ωb is the class of bounded measurable controls on [t0, t1]. In the case in that x0 = 0 we will

use the notation C(t) for the controllable set at time t from 0.

An autonomous control process ẋ = f(x, u) is said completely controllable in the cases in which

for each pair of points x0 and x1 in Rn there exists a bounded measurable controller u(t) on some

finite interval 0 ≤ t ≤ t1 such that the corresponding response x(t) steers x(0) = x0 to x(t1) = x1.

In some cases we will consider T (t) ≡ 0 ∈ Rn. In these cases the controllable set is called the

set of null controllability.

The control problem is to determine those x0 and u(·) ∈ ∆ such that the associated response

satisfies x(t1) ∈ T (t1) for some t1 > 0, we then say that the control u steers x0 to the target.

3.4 The set of attainability

Consider a control process ẋ = f(x, u) with restraint set Ω, initial state x0, Let x(t) be the

corresponding responses initiating at x(t0) = x0. The attainable set (or reachable) K(t1,x0) is

the set of all end points x(t1) from the initial point x0 in time t1. When x0 is given we will denote

this set by K(t1).
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3.4.1 Continuity of the set of attainability

Suppose that K(t) is a continuously moving set on τ0 ≤ t ≤ τ1. That is, for each such instant t

we designate a nonempty set K(t) in Rn. The continuity of K(t) as a function of the real variable

t is defined in terms of the following concept of the distance from K(t) to K(t′) :

dist(K(t),K(t′)) = max

[

max
P∈K(t)

dist(P,K(t′)), max
P ′∈K(t′)

dist(P ′,K(t)).

]

Thus, dist(K(t),K(t′)) is a continuous function at t if for each given ε > 0 there exist δ > 0

such that dist(K(t),K(t′)) < ε whenever |t− t′| < δ.

Remark 9 Now we will prove that, if t∗ is the first time at which the attainable set K(t) contain

the target 0, then 0 ∈ fr[K(t∗)]. Where fr[K(t∗)] denotes the frontier of K(t∗).

Proof of the remak (9). Consider t1 < t∗ < t2 and suppose that 0 6∈ K(t) for all t1 < t < t∗,

and 0 ∈ K(t) for all t∗ ≤ t ≤ t3. If there exists ε > 0 such that for each t2 ≥ t ≥ t∗ the family of

open balls {B(0, r)} for all r ≤ ε are in the interior of K(t) the function dist[K(t),K(t)] is not

continuous. Then for all ε > 0 there exists tε and r(tε) ≤ ε such that B(0, r(tε)) ∩ Fr[K(tε)] 6= ∅.
So, it is possible to choose a convergent subsequence {tn} ∈ [t∗t2] such that r(tn) → 0 let t̃ be the

limit of {tn} . Since 0 ∈ K(t) for all t∗ ≤ t ≤ t3, then 0 ∈ Fr[K(t̃)]. Suppose now that 0 ∈ intK(t).

Repeating successively the previous reasoning we found t∗ ≤ t̃1 < t̃ such that 0 ∈ Fr[K(t̃1]. So

repeating successively this reasoning we can construct a convergent sequence to t∗ of
{

t̃n
}

. So,

for the continuity of the distance function 0 ∈ Fr[K(t∗)].

4 The linear control process

Consider an autonomous system

ẋ = A(t)x+B(t)u+ v(t), (2)

where:

1. A(t) is an n × n matrix, B(t) is an n × m matrix, and v(t) is a column n-vector of real

measurable functions on −∞ < t <∞.

2. The norms |A(t)|, |B(t)|, and |v(t)| are integrable on each compact interval of time t.

3. A controller u(t) is a real bounded measurable m-vector on some interval I.

13



A response or solution x(t) is a real absolutely continuous n-vector on I which satisfies (2),

x(t) = Φ(t)x0 + Φ(t)

∫ t1

t0
Φ(s)−1[B(s)u(s) + v(s)]ds.

Here Φ(t) is the fundamental matrix solution of the homogeneous system dotx = A(t)x with

Φ(t0) = I. If A(t) = A is constant, Φ(t) = eA(t−t0).

4.1 Controllable set’s properties.

Consider a linear control process, whose target state is T (t) ≡ 0. Control variables are restricted

to the restraint set Ω which is compact although it does not need to be convex, but in order to

get easier proves we assume in some cases its convexity. Some of the properties next properties

are true in more general cases than the linear one.

• 1. If x0 ∈ C and y is a point in the trajectory from x0 to T (t), then y ∈ C. This means that

the whole of the successful path from x0 to the target lies in the controllable set.

• 2. C is arc wise connected. If x0 and y0 are in C there is a path from each point to the origin

lying wholly in C. This proves that C is not composed of a number of disjoint parts.

• 3. If t1 < t2, then C(t1) ⊆ C(t2).

• 4. C is open if and only if 0 ∈ int(C).

• 5. In the linear case, C(t1) and C are symmetric and convex.

Remark 10 Some of the properties previously enunciated are verified under conditions more gen-

eral than the linearity of the process

• The property 1 is also verified for nonlinear autonomous process, ẋ = f(x, u) whenever, for

example, f is a continuous function.

• Property 2 is verified if f(0, 0) = 0; this ensures that once the target is reached, it is possible

to remain there by switching off all the controls. enditemize

Let x(t) be denote the response for the control system with restraint set Ω, initial point x0 and

all controllers u(t) ⊆ Ω. Proof of the claims.
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1. Suppose that the trajectory is given by x(t), with the control u(t) Assume that at t =

t1, x(t1) = 0. Suppose that ȳ = x(τ). consider now the control

v(t) = u(t+ τ)

This is an admissible control. Thus ȳ ∈ C(t1 − τ) and then ȳ ∈ C

2. Suppose that x0 ∈ C and y0 ∈ C, with x(t1) = 0 and y(t2) = 0. Consider the arc conformed

by this trajectory, it is a path that between these two points, then C is a connected set.

3. Suppose t1 ≤ t2 and consider x0 ∈ C(t1) with control u(t). Define

v(t) =

{

u(t) t1 ≤ t
0 t1 ≤ t ≤ t2

Since f(0, 0) = 0, x(t) = 0 ∀t ≥ t1. So x0 ∈ C(t2)

4. If 0 ∈ int[C], there exists ε > 0 such that B(0, r) ⊂ C for all r < ε where B(0, r) is the open

ball of radio equal to r. Let φ(t, t0, x0) be the solution of the dynamical process ẋ = f(x, u)

with x(0) = x0 where f(x, u) ∈ C1. It is well know that φ(t, t0, x0) is of class C1 in x0.We will

prove that there exists ε > 0 such that for all r ≤ ε, B(x0, r) ∈ int[C]. Let y0 ∈ B(x0, r̄). Let

y(t) be the solution of ẋ = f(x, u) with y(0) = y0. Then for r̄ small enough y(t1) ∈ B(0, r).

So, there exists an admissible control v such that steer y(t1) to the origin at time t2. Then

it is possible to steer y0 to the origin in time t = t1 + t2 for this consider the control

ṽ(t) =

{

u(t) t ≤ t1
v(t− t1) t1 ≤ t ≤ t1 + t2

So y0 ∈ C.
Since 0 is controllable, the reciprocal part is straightforward.

5. The convexity of C is obtained from the following equality:

cx1 + (1 − c)x2 = −
∫ t1

0
Φ(s)−1B[cu1 + (1 − c)u2]dτ. (3)

Recall that x(t) = Φ(t)
[

x0 +
∫ t
0 Φ(s)−1Bu(τ) + v(τ)dτ

]

is the solution of ẋ = A(t)x +

B(t)u+ v(t) with x0 = x(0). So, x0 ∈ C(t1) if x(t1) = 0, then x0 is controllable if and only if

x0 = −
∫ t1

0
Φ(s)−1Bu(τ)dτ.

So, if x1, x2 ∈ C(t1) with controllers u1 and u2 its convex combination also belongs to C(t1)

with the control v = cu1 + (1 − c)u2 that is an admissible controller.
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Exercise 1 Consider a linear control process:

1. Show that the controllable set is symmetric.

2. Let t1 ≤ t2. Show that if x0 ∈ C(t1) and y0 ∈ C(t2) then z0 = αx0 + (1 − α)y0 ∈ C(t2).

4.2 The attainable set of a linear control

The main characteristics of the attainable set for linear control problems are summarizing in the

next theorem. We will give an idea of the demonstration of the theorem and we left for the reader

the task of completing it.

Theorem 11 The attainable set of a linear control process ẋ = A(t)x+B(t)u+v(t), with compact2

convex restraint set Ω, initial state x0 and controllers u(t) on t0 ≤ t ≤ t1 is compact, convex and

varies continuously with t1 on t1 ≥ t0.

The proof of this claim follows from the properties of the variation of parameters formula

x(t) = Φ(t)x0 + Φ(t)

∫ t1

t0
Φ(s)−1[B(s)u(s) + v(s)]ds.

See [Lee, E.; Markus, L.] 69.

Remark 12 It is important to notice that if K(t) varies continuously and if P ∈ int(K(t1)) then,

there exists δ > 0, such that P ∈ int(K(t2)) for all |t2 − t1| < δ.

4.3 Examples

To illustrate these ideas let us consider the following simple examples.

Example 13 Consider the state equation

ẋ = Ax+Bu,

where A(n× n) and B(n×m) are constant matrices.

2In order to show the compactness of this set, consider a sequence of admissible controllers un(t) and its responses
xn(t). Since Ω is a weakly compact set there exists a subsequence uni

which converges weakly to ū(t) ∈ Ω. So, xni

the correspondent subsequence of responses converges to x̄(t) = Φ(t)
[

x0 +
∫ t

0
Φ(s)−1Bū(τ) + v(τ)dτ

]
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It follows that

x(t) = exp(At)

(

x0 +

∫ t

0
exp(−Aτ)Bu(τ)dτ

)

.

We see that x0 ∈ C(t1) if and only if there exists a control admissible, u ∈ Ω such that:

x0 = −
∫ t1

0
exp(−Aτ)Bu(τ)dτ.

• A point x1 is in the attainable set K(t1, x0) when:

x1 = exp(At1)

(

x0 +

∫ t1

0
exp(−Aτ)Bu(τ)dτ

)

, (4)

for some u ∈ Ω.

If we define the time reversed system where the state equation is:

ẋ = −Ax−Bu.

• we can define C(t1, x1) as the set of points that are controllable to x1 in time t1, so x0 will

belong to this set if:

x0 = exp(−At1)
(

x1 −
∫ t1

0
exp(−Aτ)Bu(τ)dτ

)

, (5)

for some control u ∈ Ω.

There is obviously a reciprocal relationship between the two sets: if x1 ∈ K(t1, x0), then

x0 ∈ C(t1, x1). so the controllable set for the time reversed system is equal to the attainable set

for the original system. Analogously for the attainable set.

Remark 14 Although we showed the reciprocity for the linear system, as it is easy to see, the

same holds for the Non Linear Autonomous System, but not for non autonomous systems.

Example 15 Let us consider a very simple one-dimensional system,

ẋ = x+ u, x0 =
1

2
, |u| ≤ 1.

Points in the reachable set at time t1 are given by

x1 = exp(t1)

(

1

2
+

∫ t1

0
exp(−τ)u(τ)dτ

)

and the bounds on the possible values u can take show that R(t1,
1
2) is the closed interval from:
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1 − 1

2
exp(t1) to

3

2
exp(t1) − 1.

Similarly, points in the reachable set for the time-reversed system are given by:

x1 = exp(−t1)
(

1

2
−
∫ t1

0
exp(τ)u(τ)dτ

)

,

so this reachable set is the closed interval from:

3

2
exp(−t1) − 1 to 1 − 1

2
exp(−t1),

this is the controllable set to the point 1
2 for the original system in the time t1.

Example 16 Let us now consider the case where: A and B are given by:

A =

[

1 0
0 1

]

B =

[

1
1

]

So the state equations are:

ẋ1 = x1 + u1, ẋ2 = x2 + u1,

and u1 ∈ Ub that is, −1 ≤ u1 ≤ 1, from the general result we see that x ∈ C(t1) if:

x1 = −
∫ t1

0
exp(−τ)u1dτ = x2,

since exp(At) = exp(t)I.

Because |u1| ≤ 1, then |x1| ≤
∫ t1
0 exp(−τ)u1dτ = 1 − exp(−t1), and equality is possible,

hence

C(t1) = {x1 = x2, |x1| = 1 − exp(−t1)},

and C is the open interval:

C(t) = {x1 = x2, |x1| < 1}.

As part of R2, int(C) is empty and C is not open.

It is impossible to control initial states that do not lie on this interval. Next we shall see the

necessary conditions for a system to be completely controllable.
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4.4 The controllability matrix:

Consider the autonomous linear control process

ẋ = Ax+Bu,

for real an constant matrices A and B. Here we have assumed that 0 is an equilibrium for the

free system u ≡ 0, more general autonomous linear systems can be considered in this form by

translation of the coordinates in both x and u.

The n rows and mn columns matrix:

M = [B AB A2B...An−1B]

is the controllability matrix.

This matrix for the example 4.3 is given by:

M =

[

1 1
1 1

]

,

and for the example 1 in section 2

M =

[

0 1 0
1 0 0

]

.

The results that we will establish will depend on the rank of this matrix and on the character-

istic of the eigenvalues of A. Observe that in the first case n = 2 and the rank of A rank[A] < 2.

Whereas in the second rank[A] = n.

It is clear that the system cannot be completely controllable when 0 6∈ int(C), for there would

be points close to the origin that are not controllable.

• 1) 0 ∈ int(C) if and only if rank M = n This establishes that if the rank of M is less than

n, C lies in a hyperplane in Rn and the systems definitely are not completely controllable.

However, if the rank is equal to n, the system may or may not be completely controllable.

To obtain it we need additional conditions, these are established in the following items.

• 2)If rank M = n, and u ∈ Ωu, then C = Rn, where Ωu is the set of not bounded integrable

controllers.

• 3) If rank M = n, and Re λi < 0 for each eigenvalue λi of A, C = Rn with u ∈ Ωb.

• 4)If rank M = n, and Re λi > 0 for at least one eigenvalue of A, C 6= Rn.
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• 5) If rank M = n, and Re λi ≤ 0 for each eigenvalue λi of A, C = Rn with u ∈ Ωb.

Proof of the claims:

(1) Suppose that rank M < n, then there exists a constant row vector y ∈ Rn such that

v[B AB ... An−1B] = 0. By the Hamilton-Cayley theorem, each matrix A satisfies its own

characteristic equation:

An = c1A
n−1 + ...+ cnI

for ceratin real numbers c1, ..., cn. So yAkB = 0 for all integer k. Then yexp(−Aτ)B = 0,

hence for all x0 ∈ C(t1),

yx0 = −
∫ t1

0
yexp (−Aτ)Bu(τ)dτ = 0.

Therefore C(t1) lies in an hyperplane with normal y for all t1 and then C lies in the same

hyperplane. Thus 0 6∈ int[C].

Now suppose that 0 6∈ intC. This means that 0 6∈ int[C](t1) for all t1 > 0. But 0 ∈ C(t1) and

since C(t1) is a convex set, there exists an hyperplane trough 0 supporting C(t1). If b(t1) is

the normal to this hyperplane it follows that b(t1)x0 ≤ 0, for all x0 ∈ C(t1) since C(t1) is

symmetric, it follows that −x0 ∈ C(t1), then b(t1)x0 = 0. We obtain that

∫ t1

0
b(t1)exp (−Aτ)Budτ = 0,

for all u ∈ ∆. The vanishing of the integral implies that

b(t1)exp (−Aτ)B = 0, ∀ 0 ≤ τ ≤ t1.

If we put τ = 0 then b(t1)B = 0. Taking k derivatives, and setting τ = 0, we obtain

b(t1)A
kB = 0. It follows that b(t1) is orthogonal to all the columns of M. Thus the rank of

M is less than n.

(2) We have established that 0 is an interior point of C, so there exist an open ball B0(r) ⊆ C.
Let x0 an arbitrary point in Rn. Then y0 = cx0 where c = 1

2r/‖x0‖ is in the ball, then there

exists a control v ∈ Ωu, and so with the control u = v/c ∈ Ωu we obtain that

x0 = −
∫ t1

0
exp (−Aτ)Bu(τ)dτ,

hence x0 ∈ C.
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(3) Let an initial point x1 ∈ Rn be steered by the null control u(t) ≡ 0 until the response x(t)

approaches 0 and enters C. But then x(t) can be steered to the origin in a finite time. Hence

x1 ∈ C and C ∈ Rn.

Note that we could not deduce this result directly from the asymptotic stability of the

system, because the definition of controllable set requires that the target can be reached in

a finite time.

(4) Suppose that λ is an eigenvalue of A and Reλ > 0, and let y be the associated eigenvector,

then ytA = λyt so that ytrexp(−Aτ) = exp(−λτ)ytr and

ytrx0 = −
∫ t1

0
exp(−λτ)ytrBu(τ)dτ.

Because u ∈ Ωb this integral is bounded by p, say, as t1 → ∞, and so ytx0 < p. The

controllable points lie in a half space on one side of an hyperplane in Rn and so C 6= Rn.

(5) Observe that, even in the case when rank(A) = n, Re λi ≤ 0 for each eigenvalue λi of A

does not imply local stability of the solution

Suppose that C 6= Rn then there is an hyperplane with normal b separating y and C, such

that

bx0 ≤ p for all x0 ∈ C, and by > p.

We needed to show that for t1 sufficiently large and for some control u ∈ Ωb

bx0 = −
∫ t1

0
bexp(−Aτ)Bu(τ)dτ > p

which will be a contradiction. Define z(t) = bexp(−Aτ)B. Because rank M = n, z(t) 6= 0, for 0 ≤
t ≤ t1, and we choose ui(t) = −sgnzi(t) so that

bx0 = −
∫ t1

0
|v(t)|dt. (6)

Where v(t) = bexp(−Aτ)Bu(t). Each component of v is a combination of terms of the general

form q(t)exp(−λit), where q is a polynomial and λi is an eigenvalue of A (see appendix of this

section). It is clear that (6 can be made arbitrarily large for t1 large. It grows exponentially if

the terms with Re(λi) < 0 are present ore they are polynomials in t if Re(λi) = 0.

To clarify this point let us consider the following example:
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Example 17 Let ẋ = Ax+Bu be the two components system:

A =

[

0 1
0 −2

]

B =

[

0
1

]

The eigenvalue of A are: λ1 = 0, λ2 = −2.

M =

[

0 1
1 −2

]

whose rank is 2.

exp(−At) =

[

1 0
0 1

]

−
[

0 1
0 −2

]

t +

[

0 −2
0 4

]

t2

2!
−
[

0 4
0 −8

]

t3

3!
+ .... =

[

1 exp(−2t)−1
2

0 exp(2t))

]

z(t) = [b1, b2]

[

1 −1−exp(2t)
2

0 exp(2t))

] [

0
1

]

= b1
−exp(2t) − 1

2
+ b2exp(2t).

finally we obtain : |v(t)| = |b1 −1−exp(2t)
2 + b2exp(2t)|.

Exercise 2 Consider examples 1 and 2 in section 2.

1. Show that every initial point can be steered to the origin.

2. Compute the controllable set C(t1) at time t1 = 1.

3. Compute the attainable set K(t1) at time t1 = 1.

4.5 Appendix:Exponential matrices and Resolution of differential equations

From a square real or complex n× n matrix A we define the matrix:

expA = eA = I +A+
A2

2!
+
A3

3!
+ ...+

Ak

k!
+ ...

The convergence is defined by the convergence of each component.

The Jordan canonical structure. For every complex n×n matrix A, there is a nonsingular

complex matrix P such that

PAP−1 = diag {A1, A2, ...Ak}

where each block

Ai =

















λi 1 0 . . . 0
0 λi 1 . . . 0
...
0 0 . . . λi 1
0 0 . . . 0 λi
















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involves eigenvalue λ1 of A.

The following equality is straightforward: Pexp[A]P−1 = exp[PAP−1].

If A(t) is integrable on each compact subinterval of I, then for given initial data t0 ∈ I, there

exists a unique, absolutely continuous fundamental solution matrix Φ(t) (or Φ(t, t0)) on I, with

Φ(t0) = I. The solution of

ẋ = A(t)x, with x(t0) = x0

is

x(t) = Φ(t)x0.

If A(t) = A is constant, then: Φ(t) = eA(t−t0).

Now consider the non-homogeneous linear differential system

ẋ = A(t)x+B(t)

for a given prescribed initial data x(t0) = x0, b(t) is a n-column integrable vector. The solution

x(t) is given by the fundamental formula:

x(t) = Φ(t)x0 + Φ(t)

∫ t

t0
Φ(s)−1B(s)ds

Here Φ(t) is the fundamental matrix solution of the corresponding homogeneous system:

ẋ = A(t)x.

A direct calculation verifies that this formula yields the required solution.

5 The time-optimal control. A first approach.

The Balancing problem. A tightrope walker seeks to maintain an upright position; any devi-

ation from the vertical will result in a catastrophic fall unless it is controlled, and the acrobat’s

objective is to regain the (unstable) equilibrium position as quickly as possible. The dynamic

of this system is multidimensional. We will consider a simple one-dimensional model where:

ẋ = x+ u. If u = 0 the solution x1 = 0 is possible, but any initial non zero value of x leads to the

exponential growth of x.

Suppose that we choose an initial value x0 = c > 0 and try to find a control u(t) that will steer

x1 to 0 in the shortest possible time. Suppose that Ub = {u : |u(t)| ≤ 1} . Is easy to see that the

solution of the state equation is:

x(t) = et
(

c+

∫ t

0
e−τu(τ)dτ

)

.
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The reachable set from the initial point at time t1 is the closed interval:

(c− 1)exp(t1) + 1 ≤ x1 ≤ (c+ 1)exp(t1) − 1.

The end points of this interval are reached by the application of control equal to −1 and +1

respectively, for 0 < t < t1.

• Provided that c < 1 this set contain the origin when t1 ≥ −ln(1 − c) and thus not contain

the origin when 0 ≤ t1 < −ln(1 − c).

Hence the equilibrium can be regained in the optimal time −ln(1 − c)by application of

u(t) = −1.

• If c > 1 the initial state is not controllable.

Suppose we repeat the problem, but with initial value x0 = 2 and with target x1 = 3. The ex-

tremal control are u1(t) = 1 and u1(t) = −1, as before and the corresponding extremal trajectories

are:

x(t) = 3et − 1 when u1 = +1, x(t) = et + 1 when u1 = −1

Both these trajectories reach at the target; the first at time t1 = ln4
3 and the second at t1 = ln2.

We have two acceptable candidates for the optimal solution, if we must pick the one with the

smaller value of t1 thus t∗1 = ln4
3 , u

∗(t) = +1. The other extremal solution reaches the target as

long as possible.

6 The Maximun Principle for linear processes

In this section we shall establish the maximal principle for a linear process

(L) ẋ = A(t)x+B(t)u+ v(t)

where the coefficient matrices A(t), B(t), and v(t) are integrable in every finite interval.

This principle characterizes the optimal controller as an extremal controller that is: If a

control u∗ is optimal in the sense that the associated response x∗(t) reaches the target in minimal

time, then u∗(t) is an extremal control, i.e x∗(t∗) ∈ fr[K(t∗)], where t∗ is the first time that

T (t) ∩K(t) 6= ∅.
Next we shall prove the fundamental existence and uniqueness theorems for optimal controllers

of linear process
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6.1 Extremal controllers and the maximal principle

Definition 18 Let u(t) ⊆ Ω on t0 ≤ t ≤ t1 be a controllers for the linear process (L) with initial

state x0 at time t0. If the corresponding response x(t) has an endpoint x(t1) in the boundary

fr(K(t1)) of the set os attainability K(t1), then u(t) is called an extremal controller and x(t)

is an extremal response.

In order to express the extremal condition analytically we shall use the adjoint linear differential

system

(A) η̇ = −ηA(t)

to the linear differential system: ẋ = A(t)x.

Here η(t) is an n−row vector and every solution of it, is of the form η(t) = η0Φ(t)−1, where

η0 is a constant vector and Φ(t) is the fundamental matrix solution of ẋ = A(t)x, with Φ(t0) = I.

This claim can be verified by direct differentiation. In the case A(t) = A where A(t) is a constant

matrix, it follows that η(t) = η0e
−(t−t0)A.

The following theorem, is the principal analytical device in the theory of time-optimal control

problem for linear processes, and it is equivalent to the Pontriaguin maximal principle for this

case.

Theorem 19 Consider the linear process in Rn

ẋ = A(t)x+B(t)u+ v(t) (7)

with u in a compact restraint set Ω and initial state x0 at time t0. A controller u(t) ∈ Ω on

t0 ≤ t ≤ t1 is extremal if and only if there exists a nontrivial solution η(t) of

η̇ = −ηA(t)

such that

η(t)B(t)u(t) = max
u∈Ω

η(t)B(t)u,

for almost all t on t0 ≤ t ≤ t1.

Proof: Assume that u(t) on t0 ≤ t ≤ t1 is extremal and so steers x0 to x(t1) ∈ fr(K(t1))

where k(t1) is the attainable set on t1 by the response:

x(t) = Φ(t)x0 + Φ(t)

∫ t

t0
Φ(s)−1[B(s)u(s) + v(s)]ds.
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Since K(t1) is compact and convex, there is a supporting hyperplane π to K(t1) at the bound-

ary point x(t1). Let η(t1) denote the unit normal vector to π at x(t1) in the direction opposite to

K(t1). Define the nontrivial adjoint response

η(t) = η0Φ(t)−1 with η(t1) = η0Φ(t1)
−1,

then compute the inner product of η(t) and x(t),

η(t)x(t) = η0x0 +

∫ t

t0
η(s)[B(s)u(s) + v(s)]ds.

Now suppose that:

η(t)B(t)u(t) < max
u∈Ω

η(t)B(t)u

Define a controller ū(t) ∈ Ω by:

η(t)B(t)ū(t) = max
u∈Ω

η(t)B(t)u

We find that

η(t1)x(t1) < η(t1)x̄(t1).

But this inequality contradicts the construction of η(t1). Therefore we conclude that:

η(t)B(t)u(t) = max
u∈Ω

η(t)B(t)u a.e. t0 ≤ t ≤ t1.

Conversely: assume that for some non trivial adjoint response: η(t) = η0Φ(t)−1, the control

u(t) satisfies:

η(t)B(t)u(t) = max
u∈Ω

η(t)B(t)u

almost everywhere in t0 ≤ t ≤ t1. We must show that the corresponding response x(t) ends at a

boundary point of K(t1). Suppose that x(t1) lies in the interior of K(t1) then there exists a point

x̄(t1) ∈ K(t1) such that η(t1)x(t1) < η(t1)x̄(t1). Let ū(t) be the control which yield the response

x̄(t), our hypothesis states:

η(t)B(t)ū(t) ≤ η(t)B(t)u(t) = max
u∈Ω

η(t)B(t)u

almost everywhere in t0 ≤ t ≤ t1. Computing we obtain:

η(t1)x̄(t1) ≤ η(t1)x(t1),

which is a contradiction, hence x(t1) ∈ fr(K(t1)), as required.[.]
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Remark 20 This theorem states that the response x(t) leading to a boundary point of K(t1), go

in the appropriate direction at the greatest possible speed compatible with the restraint Ω.

The geometry of the solution of L is given by the following corollary, hose demonstration we

left for the reader.

Corollary 21 If u(t) ∈ Ω is an extremal controller for the process L, then u(t) is extremal on

each subinterval t0 ≤ τ ≤ t1, that is x(τ) ∈ K(τ). Furthermore, η(τ) is an exterior normal to a

supporting hyperplane to K(τ) at x(τ)

6.2 Extremal control for autonomous linear with constant coefficients pro-
cesses

Consider the autonomous linear process in Rn :

ẋ = Ax+Bu,

where A and B are constant matrices.

From theorem (19) it follows that the control u(t) is extremal if and only if there exists a non-

null vector η(t) such that, η(t)B(t)u(t) = maxv(t)∈Ω η(t)B(t)v(t) for all t such that 0 ≤ t ≤ t1.

In the linear case we have

η(t) = η0[e
−At].

Observe that η(t) is a not trivial solution of the system η̇ = −ηA.
So

ui(t) = sgn[η0e
−AtBi].

When [η0exp (−At)B]i is zero the component ui of an extremal control is not determined, in

this case, since de function is analytical, there are only two possibilities:

• It has a finite number of zeros and the optimal control is uniquely determined except at a

discrete number of moments, and the trajectory is not affected if for instance we assign +1

to the control in these points.

Therefore there are only a finite number of switches for the extremal controller ui(t). So we

obtain a bang-bang solution everywhere.

• In the second case [η0exp (−At)B]i is identically zero, therefore ui is no determined.

Remark 22 Recall that a function is called analytical in a if there exists an absolutely convergent

power-series expansion about each point in a neighborhood of a.
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1. If f is an analytical function in a and is not identically zero, then there exists some derivative

f (r)(a) 6= 0. Observe that the function f(x) = e−
1

x2 ∀ x 6= 0 and f(0) = 0, is not analytical

function in 0.

2. If f is an analytical function and f r(a) = 0, ∀r then it is identically zero function.

3. If f and g are analytical functions such that, f(x) = g(x) in a set which has an accumulation

point, then f(x) ≡ g(x). So if f(x) = 0 in a set with an accumulation point, then is identically

zero.

6.3 The time-optimal controllers and the maximun principle (TOP)

In this section we shall establish that the maximal principle, characterizes the optimal controller

as an extremal controller. We shall study the minimal time-optimal control problem for the linear

process

ẋ = A(t)x+B(t)u+ v(t)

where the target G(t) is a continuously varying nonempty compact set on τ0 ≤ t ≤ τ1, the

coefficient matrices are integrable on every finite interval.

• (I) The existence of the optimal solution for the linear autonomous case.

Theorem 23 Consider the linear process in Rn

ẋ = A(t)x+B(t)u+ v(t) (8)

with u in a compact restraint set Ω and initial state x0 at time t0, and continuously varying compact

target set G(t) on τ0 ≤ t ≤ τ1. If there exists a controller u(t) ⊂ Ω on τ0 ≤ t ≤ τ1, steering x0 to

G(t1), then there exists a minimal time optimal controller u∗(t) ⊂ Ω on τ0‘t ≤ t∗ ≤ τ1, steering

x0 to G(t∗).

Proof: Define t∗ as the greatest lower bound of all times t1 such that K(t1) meets G(t1). By

the continuous dependence of K(t1) and G(t1) on t1 the set of times for which K(t1) meets G(t1)

is a closed set on R1. Hence t∗ on τ0 ≤ t∗ ≤ τ1, is the first or minimal time at which K(t) meets

G(t). Let u∗(t) ∈ Ω on τ0 ≤ t ≤ t∗, be any controller steering x0 to K(t∗) ∩G(t∗). Then u∗(t) is

an optimal controller as required.

• (II)How can the optimal time and its associated control be founded?

In the following theorem we shall show shows that in the case of a linear process,
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(1) The associate response x∗(t) to the optimal controlleru∗(t) satisfy x∗(t∗) ∈ fr[K(t∗)]. Thus

and optimal control is an extremal control.

(2) Then, to obtain u∗ we use the maximal principle:

Theorem 24 Consider the linear process in Rn

ẋ = A(t)x+B(t)u+ v(t) (9)

with u in a compact restraint set Ω and initial state x0 at time t0, and continuously varying

compact target set G(t) on τ0 ≤ t ≤ τ1. Let u∗(t) ∈ Ω on τ0 ≤ t ≤ t∗ be a minimal time optimal

controller with response x∗(t) steering x0 to G(t∗).

(1) Then u∗(t) is extremal, that is

m(t) = max
u∈Ω

η(t)B(t)u = η(t)B(t)u∗(t),

here η(t) is a nontrivial solution of the adjoint system ẋ(t) = −ηA(t), and η(t∗) is an

outwards unit normal to a supporting hyperplane at x(t∗) ∈ fr(K(t∗)).

(2) Furthermore if

M(t) = max
u∈Ω

η(t)[A(t)x∗(t) +B(t)u+ v(t)] = η(t)[A(t)x∗(t) +B(t)u∗(t) + v(t)]

and G(t) = G is constant, the normal η(t∗) can be selected so that M(t∗) ≥ 0.

(3) If in addition, G(t) is convex, then η(t∗) can also be selected to satisfy the transversality

condition, namely η(t∗) is normal to a common supporting hyperplane separating K(t∗) and

G.

(4) For the autonomous linear process in Rn

ẋ = Ax+Bu+ v

M(t) is constant on τ0 ≤ t ≤ τ1.

Proof:

1. The associate response x∗ at any t ≤ t∗ is on the fr(K(t). Suppose that x∗(t̄) belong to the

interior of K(t̄), then for t′ < t̄ sufficiently close of t̄, since K(t) is continuous, there exists

a neighborhood of x∗(t̄) such that meet k(t′) then x∗(t̄) is reached in t′ < t̄ this contradicts

the optimality of u∗. Since the response endpoint x∗(t∗) must lie on the boundary fr[K(t∗],

the optimal controller u∗(t) is extremal. So, item (1) follows.
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2. Now let T (t) = G be a constant nonempty compact set in Rn. At each instant of time t1 ≤ t∗

there exists and midway hyperplane π̃(t1) perpendicular of the shortest chord from K(t) to

x∗(t∗). Choose a sequence of times

τ0 ≤ t1 < t′1 < t2 < t′2 < ... < t∗.

At some time t′h on τ0 ≤ th ≤ t′h ≤ t∗ the velocity ẋ∗(th) = A(th)x∗(th)+B(th)u∗(th)+v(th)

must have a positive component along the unit normal η̄(t′h) to π̄(t′h) directed out of the

half space containing K(t1). So,

η̄(t′h)[A(th)x∗(th) +B(th)u∗(th) + v(th)] ≥ 0.

Taking limits when h → ∞ and using the compactness of Ω it follows from the continuity

of A(t), B(t), v/t) and x∗(t) that

η̄(t∗)[A(t∗)x∗(t∗) +B(t∗)u∗(t∗) + v(t∗)] ≥ 0.

So M(t∗) ≥ 0 as required.

3. If G is a convex target, then we repeat the above argument, choosing the shortest chord from

G to K(t). Then the limit hyperplane π(t∗) separating K(t∗) and G with the unit normal

η(t∗) satisfyng the required transversality condition.

4. It can be proved that M(T ) is absolutely continuous and has a derivative almost always.

Thus for t2 > t1 we have:

M(t1) −M(t2)

t2 − t1
≥ η(t2) [Ax(t2) +Bu(t1) + v] − η(t1) [Ax(t1) +Bu(t1) + v]

t2 − t1
.

Upon adding and subtracting η(t2)Ax(t1) to the numerator and computing the limit t2 → t1

we find dM
dt (t1) ≥ 0. On the other hand:

M(t1) −M(t2)

t2 − t1
≤ η(t2) [Ax(t2) +Bu(t2) + v] − η(t1) [Ax(t1) +Bu(t2) + v]

t2 − t1
.

And a similar calculation shows that dM
dt (t1) ≤ 0.

• (III)The next problem is the problem of the uniqueness. If conditions for uniqueness of

the optimal control can be founded then, under these conditions the maximal principle

is a necessary and sufficient condition for optimality. Under conditions of normality, the

optimal controller is the unique extremal controller steering x0 to the fixed target set G,

and satisfying the transversality conditions. This problem is the goal of the next section.
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Exercise 3 Suppose that the dynamics of an economy is given by the following system of equations

İ = v

k̇ = I − θk

here 0 ≤ v ≤ 1 is the control variable, and θ = δ+n, where δ is the depreciation rate of capital and

n is the rate of growth of the population. Also suppose that a central planner wishes to maintain

the per-capita capital constantly equal to k̄ , as well as to correct any deviation of this objective in

the smaller possible time. Suppose that in order to attempt this objective , the central planer uses

the rate of variation of investment v, as a policy instrument.

1. Show that the problem is completely controllable.

2. For each pair (k0, I0) of initial conditions, find an optimal control.

3. Show that the transversality conditions are verified.

Exercise 4 Consider the autonomous linear process in Rn ẋ = Ax+Bu, with compact restraint

set Ω ⊂ Rm, initial state x0, and the origin as the fixed target set. Assume that u = 0 lies in

the interior of Ω. Suppose that the process is controllable, and A is stable, that is each eigenvalue

λ of A satisfies Re[λ] < 0. Show that in these conditions, there exists a minimal time controller

u∗(t) ∈ Ω on 0 ≤ t ≤ t∗, steering x0 to the origin at time t = t∗.

Exercise 5 If the target set T is compact, we know that there exists a minimal time t∗ in which

the target is reachable. There is an important difference with the case where the target is only one

point x1. We have proven only that the target is reached in a point of its border, but we do not

know exactly where.

Let t∗ be the minimal time for a linear optimization problem. Show that if K(t∗) is strictly

convex, and if u∗1(t) and u∗2(t) are optimal controllers, then x∗1(t
∗) = x∗2(t

∗) where x∗1(t) and x∗2(t)

are the respective associate optimal responses.

6.4 Normality: condition for uniqueness.

If there exists just one maximal controller steering x0 to the target then the maximal principle is

sufficient, as well as necessary, for optimality. In this setion we analize conditions for uniquenes

of the optimal controller.

Definition 25 Consider the linear control process

ẋ = A(t)x+B(t)u+ v(t)
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with restraint set Ω initial state x0 at time t0. The problem defined by the data (L,Ω, x0, t0, t1) is

called normal in case any two controllers u1(t) and u2(t) on t0 ≤ t ≤ t1, which steer x0 to the

same boundary point P1 ∈ Fr[K(t1)], are equal almost everywhere.

As we shall see in this section, this condition is strongly related with the geometry of the

attainable set.

We start this section with and example where there are infinitely many optimal optimal con-

trollers.

Example 26 Consider the two dimensional system ẋ = u, (n = m = 2). Then

A =

[

0 0
0 0

]

B =

[

1 0
0 1

]

e−At = I u(t) =

[

u1

u2

]

,

and η0e
−AtB = η0 ≡ (α, β). Thus

(∗) u1(t) = sgn α u2(t) = sgn β.

If either of α, β is zero, then (*) does not tell us anything about the corresponding component of

u(t).

Consider the initial point (−1, 0). This state can be steered to the target (0, 0) in the time

t1 = 1. The time is optimal because we cover the shortest distance using maximun velocity. This

is not a bang-bang control, and we must have in this case α > 0, β = 0. Actually there are

infinitely many optimal controls steering from (−1, 0) to (0, 0) e.g., u1(t) ≡ 1 and:

u2(t) =











1, 0 ≤ t ≤ a,
0, a < t < 1 − a

−1, 1 − a ≤ t ≤ 1.

The idea is to burst x2(t), and then bring it back to zero. This control will be bang-bang in

exactly one case (a = 1
2):

Analytically, in this example the difficulty stems from the fact that η0e
−AtB has a component

identically zero; geometrically, the problem is that K(t, x0) has flat spots on its boundary.

Exercise 6 With m = n = 2, consider ẋ = u with x0 = (−1, 0), T (t) ≡ 0.

1. Sketch the reachable cone RC, in (x1, x2, t)-space where

RC = {(t, x(t, x0, u(.))t ≥ 0, u(.) ∈ Ub} = ∩t≥0 {t} ×K(t;x0).

Show that the attainable set K(t;x0) = {(x(t, x0, u(.))t ≥ 0, u(.) ∈ Ub} is always a square.
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2. Show that the control u1(t) ≡ 1, u2(t) = φ(t), with φ(.) any function such that
∫ 1
0 φ(s)ds = 0,

is time optimal.

3. Show that if Q is a corner of fr[K(t, x0)], the the control steering to each Q is unique, but

the support hyperplane P and normal h are not unique.

4. Show that if Q is not a corner of fr[K(t, x0)] the support hyperplane P and normal h are

unique, but the path to Q is not unique.

Definition 27 We say that a linear autonomous process has the normality condition if for

each vector with constant coordinates, η0 6= 0 no component of η0e
AtB can vanish on a set of

positive measure.

Of course this definition is of little practical use. We will show that this definition is equivalent

to the:

1. Geometrical definition. (LA) normal if and only if k(t, x0) is strictly convex for all t. Recall

that y ∈ K(t, x0) f and only if: y = eAtx0 +
∫ t
0 e

A(t−s)Bu(s)ds. for some u(.) ∈ Ωb. Show

that the convexity of K(t, x0) is independents of x0.

2. Analytical definition. Let bi be the ith column of B and define the n× n matrix Mi by:

Mi = [bi, Abi, ..., A
n−1bi].

We say that a the problem is normal if rankMi = n; for i = 1, 2, ...,m.

Clearly, if any one of these matrices has rank equal to n, M contains n independent columns

and also has rank equal to n. So, The conditions for uniqueness are more stringent than the

controllability.

In the following theorems we give explicitly verifiable hypothesis to uniqueness for autonomous

linear processes with convex target.

Theorem 28 If the process

ẋ = Ax+Bu+ v

is normal, and if there exists a successful control (steering x0 to 0) then there exists a unique

time-optimal control, which is bang-bang and piecewise constant.
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Proof: The existence of the solution and the fact that any solution is bang-bang (in all coordi-

nate) follows because the process is linear and uniqueness follows from the normality hypothesis
3. Suppose that u(t) and v(t) were two distinct time-optimal bang-bang controls. Then as the

process is linear w(t) = 1
2 [u(t) + v(t)] would also be time optimal, but not bang-bang, this is a

contradiction.

Theorem 29 Consider the autonomous linear process in Rn

ẋ = Ax+Bu+ v

with compact and polyhedral convex restraint Ω ⊂ Rn and initial state x0 ∈ Rn. If

1. The normality condition holds

2. G is a fixed compact target set and

3. For each point x̄ ∈ G there is a controller ū(t) with response x̄(t) ∈ G, ∀t : 0 ≤ t <∞.

Then any extremal controller u1(t) ∈ Ω on 0 ≤ t ≤ t1, steering x0 to G and satisfying the

transversality condition, is equal to the unique optimal controller u∗(t) almost everywhere, and

t1 = t∗.

Proof: Suppose that there exist distinct extremal controllers u1(t) and u2(t) such that:

η(t)Bu1(t) = η(t)Bu2(t) = max
ω

η(t)Bu

almost every where on [0, τ1], where η(t) = η0e
−At and u1(t) 6= u2(t) on a set S of positive duration

on [0, τ1]. Now as Ω is a convex set the function η(t)Bu assumes for each t ∈ S its maximun in

a edge et of Ω. Since Ω has only a finite number of edges, then there exists some positive time

duration S1 ⊂ S where the function assumes its maximal value on a fixed edge e1. Let w be a

parallel vector to e1. Since η(t)Bu = η0e
−AtBu, then η0e

−AtBw = 0 then taking derivatives we

obtain

η0e
−AtAkBw = 0, k = 0, 1, ..., n− 1.

Then the vectors AkBw k = 0, 1, ..., n − 1 are orthogonal to η0e
−At an the linearly dependent.

This contradicts the normality condition.

Conditions ( 2 ) and ( 3 ) imply that t1 = t∗. Suppose that t1 > t∗, condition (3) implies that

G meets K(t) for all t > t∗, then K(t1) meets G and thus, K(t1) can be separated from G. In this

case this is impossible, so t1 = t∗.

3As counterexample see example (26).
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Thus: any extremal controller satisfying the transversality condition, in particular the optimal

controller u∗(t) on τ0 ≤ t ≤ t∗ must be equal u1(t) almost everywhere on τ0 ≤ t ≤ t1 = t∗.

Example 30 Uniqueness does no imply normality. [Macky, J.; Strauss, A.] 66

Definition 31 Let x0 be given. We say that the response from x0 to a point y in K(t∗, x0) is

unique if every control which steers from x0 to y in time t∗ generates the same response function,

i.e., if u(.) and v(.) are successful controls for 0 ≤ t ≤ t∗ then x(t, x0, u) = x(t, x0, v) on [0, t∗].

Corollary 32 Suppose that y ∈ K(t∗, x0). Then the control steering from x0 to y at time t∗ is

unique if and only if y is an extreme point of K(t∗, x0).

Example 33 In the balancing problem,(this problem was already considered above) we have a

simple one-dimensional model : ẋ = x+u. If u = 0 the solution x1 = 0 is possible, but any initial

non zero value of x leads to the exponential growth of x. In this case exp(At) = e−t and B = 1. If

η0 = α, then

u1 = sgn(αe−t).

As it is easy to see this is not a normal problem.

In this case there are no possibility of α = 0, there are only two possibilities for α : either

α > 0 and u1 = +1 ∀t, or α < 0 and u1 = −1 ∀t.

Example 34 The position problem. Consider the problem of moving an object along a line

with a coordinate x1. The state of the system is determined by the position and the velocity of the

object, we need another state variable x2.

ẋ1 = x2, ẋ2 = u1

It is a two dimensional problem with a single control: n = 2, M = 1. The state equation is

given by the matrices:

A =

[

0 1
0 0

]

, B =

[

0
1

]

.

This is a normal problem.

Suppose that the target is x1 = 0. Then from theorem (28) we know that there exists only one

extremal controller steering x0 to x1 and it is optimal.

Since A2 = 0 so:

exp (At) = I +At =

[

1 −t
0 1

]

.
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Since, the solution of the adjoint system has the form η = η0e
At, if we suppose η0 = (α, β),

from the maximal principle:

u1(t) = sgn(β − αt).

The linear function of t has at most one zero, so u1 has at most one switch from +1 to −1

or from −1 to +1. Since α and β are unknown, we cannot be sure from the maximal principle if

and when such a switch will occur. If the initial and final states are given by: x(0) = (0, x0) and

x(t1) = (0, 0).

(a) Beginning with u1 = −1 the initial section of the trajectory can be found by solving de

differential system. The solution is:

x2 = −t, x1 = x0 −
1

2
t2. (10)

• In the space of phases the trajectory is given by the equation:

x1 =
1

2
x2

2 + x0.

• At some time t1 we switch the control to the value +1. At this time the initial conditions of

the system are given by: (10) with t = t1.

• Then we solve the differential system with u = +1. The solutions of this system are:

x1 =
1

2
t2 − 2tt2 + x0 + t22, x2 = t− 2t2.

• In the spaces of phases the trajectory is given by the equation:

x1 =
1

2
x2

2 − t22 + x0.

• We now find values t1 and t2 such that:

t1 − 2t2 = 0,
1

2
t21 − 2t1t2 + x0 + t22 = 0.

These values are: t1 = (x0)
1

2 , t2 = 1
2 t1.

(b) The extremal controls admits a second possibility, with start with u1 = 1 and switch to

u1 = −1. It is easy to verify that such control leads to an increase in the value of of x1 and

when x2 = 0 we are further from the target than when we started. This sequence of controls

does not enable the target to be reached, and so can be dismissed.

So, the optimal time is t∗ = t1 + t2 = 3
2(x0)

1

2 , and the optimal control is given by:

u∗(t) =

{

−1 t ≤ (x0)
1

2

1 t > (x0)
1

2
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6.5 The backing out of target technique.

• (1) Use the reversed time system:

ẋ = −Ax−Bu(t) − v
η̇ = ηA,

with initial conditions x(0) ∈ fr(G) and η(0) being an inward unit normal to a supporting

hyperplane to T at x(0). Define u(t) by the maximal principle,

η(t)Bu(t) = max
u∈Ω

η(t)Bu

• (2) Find the solution x(t), u(t) passing trough the prescribed initial state x0 at some time

t∗ > 0.

• (3) Reverse the time sense again and define:

x∗(t) = x(t∗ − t) and η∗(t) = η(t∗ − t) on 0 ≤ t ≤ t∗.

Then u∗(t) defined by:

η∗(t)Bu∗(t) = max
u∈Ω

η∗(t)Bu

is the optimal controller and x∗(t) the corresponding optimal response.

Example 35 Consider the autonomous control process in R2

L ;
ẋ1 = x2 + u
ẋ2 = −x2 + u

with restraint Ω : |u| < 1 in R1. We wish to steering to the line x1 = 0. This implies that ẋ1(t) = 0

so x2(t) = u(t) then |x2| ≤ 1. Thus the target is the set G = {x1 = 0, |x2| ≤ 1}

We note that each point in R2 can be steered in T by a non extremal controllers u(t) =

−x2e
−2t, t ≥ 0.

Using the coefficient matrices:

A =

(

0 1
0 −1

)

, B =

(

1
1

)

,

we can verify that the system is controllable and that the normality condition for uniqueness of

the optimal controller holds.
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From the controllability an normality of the system, it follows that each initial state in R2 can

be steered to T by an unique optimal control satisfying the transversality condition. Since

M =

(

1 1
1 −1

)

condition (1) of theorem (29) is verified. To see that condition (2) of this theorem follows, consider

the control ū(t) = x̄20e
−2t where x̄ = (0, ¯x20) where |x20| ≤ 1.

Write the system and the adjoint system with time reversed

ẋ1 = −x2 − u and u = sgn(η1 + η2)
ẋ2 = x2 − u
η̇1 = 0
η̇2 = η1 − η2.

Note that along a solution where η̇1 = 0, it follows

η1 + η2 = c1 + c2e
−t.

Then each extremal control has at most one switch on 0 ≤ t <∞.

We examine all extremal controllers satisfying the transversality condition to obtain the switch-

ing locus W.

• For the time reversed system, take initial data: x1(0) = 0, |x2(0)| < 1, η1(0) = ±1, η2(0) =

0. Then η1 + η2 = ±2 ∓ e−t so there are no switches.

• Use the value u = −1 and start from x1(0) = 0, x2(0) = +1 to define the curve:

Γ− =
{

x1 = −2et + 2t+ 2, x2 = 2et − 1, for t ≥ 0
}

• Observe that all hyperplanes through (x10, x20) = (0, 1) normal to η0 = (η10, η20) = (cosθ, sinθ)

for each fixed θ on π ≤ θ ≤ 2π is a supporting hyperplane for the convex set G. The extremal

with data x10 = 0 and x20 = 1, follows Γ− as long as η1(t) + η2(t) < 0. But

η1(t) + η2(t) = (sinθ − cosθ)e−t + 2cosθ

Thus for each θ on π ≤ θ ≤ 3π/2, we find

u(t) = sgn[η1(t) + η2(t)] = −1

For each θ on 3π/2 ≤ θ ≤ 7π/4, there exists a t(θ) positive zero for η1(t) + η2(t). It is

easy to show that (θ) decreases monotonically from +∞ to 0 as θ increases. Thus there
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exists extremal controllers satisfying the transversality condition η(t1)x(t1) = 0 at G, which

switches from u = 1 to u = −1 at an arbitrarily prescribed point of Γ−, and then follows for

Γ−.

Define Γ+ reflecting Γ− trough the origin to obtain the complete switching locus: W = Γ+∩Γ−.

Note that the corresponding curve x2 = W (x1) separates R2 −G.

Define the synthesizing function:

Φ(x1, x2) =

{

−1 for x2 > W (x1) and on x2 = Γ−(x1)
+1 for x2 < W (x1) and on x2 = Γ+(x1)

7 Optimal control for linear process with integral cost criteria.

We will consider now the Maximun Principle for the case where the control process is linear

ẋ = A(t)x(t) +B(t)u(t) with an integral convex cost.

C(u) = C(u(t)) =

∫ t1

0
f(x(t), u(t))dt, x(t) = x(t, x0, u(t)).

This principle can be applied to a much wider class of optimal control problems, as we will show

there is no restriction to linear state equations.

A system in unstable equilibrium is one in which any deviation from equilibrium increases if

the system is left to itself. The application of a control aims to reduce the deviation to zero, but

at some cost depending on the size of the control that has to be employed. When there are several

successful controls, the choice of one over the other, may be dictated by a cost or performance

criterion. Our problem will then become an Optimal Control Problem.

The O.C.P. is to find a controller such that, x0 will be steered to an state in the target, using

a control u(·) from the appropriate class ∆ of the admissible controllers in such way that C(u) is

a minimun.

For each control u(t) ∈ Ω there is a corresponding x(t) with x(0) at some fixed initial state x0

that satisfies the state equation

ẋ(t) = f(t, x(t), u(t))

Definition 36 A control u is said to be an admissible control if there exists a trajectory x

corresponding to u such that:

• (i) f0(t, x(t), u(t)) is integrable in [t0, t1]

• (ii) u(t) ∈ Ω
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• (iii) x(t0) = x0 and x(t1) ∈ T .

The control u∗ ∈ Ω if optimal if it is successful, i.e., if it is appropriate for the problem, and

there exists t1 ≥ 0 such that x(t1, x0, u(·)) reaches the target, and is minimal that is:

C(u∗) ≤ C(u) for all u ∈ Ω.

The first problem which we face is the one of existence of the optimal control. If the answer

to this problem is affirmative then, we face the following one: How can this optimal control be

found? We will see that the maximal principle is an answer for this question, but in most cases

it is not possible to find an analytical solution, computational methods are necessary, but this is

not easy matter. We shall not pursue these matters here.

In the differential calculus the minimun of a function of a real variable is located by examining

the critical points, those points at which the derivative is zero. In the theory of optimal control

we look for those points such that maximize the hamiltonian function:

H(x(t), u(t), t) = η0f(x(t), u(t), t) + η(t)[A(t)x+B(t)u(t)]

which are called the maximal controllers.

Where η0 ≤ 0 and η(t) is the solution of the adjoint system η̇ = − ∂H
∂x .

Then we use the maximal principle: This principle establishes that: If a control is optimal

then it is a maximal control. (Note that u(t) is called a maximal controller even thought it yield

a minimun cost).

We start considering a criterium for a convex cost with a linear control process more general

problems will be considered later.

7.1 Existence of the optimal control for linear processes with integral convex
cost.

We now treat the linear control process in Rn :

ẋ = A(t)x+B(t)u (11)

with the integral cost functional:

C(u) = g(x(T )) +

∫ T

t0
f0(t, x) + h0(t, u)dt (12)

where A(t), B(t), g(x), f0(t, x) and h0(t, u) are continuous in [t0, T ] and x ∈ Rn and u ∈ Rm.
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Remark 37 We also assume here that for each fixed t

• (a)f0(t, x) and h0(t, u) are convex functions,

• (b)f0(t, x) ≥ 0 and h0(t, u) ≥ a|u|p for some a > 0 and p > 1.

Hence, C0(u) =
∫ T
t0
f0(t, x) + h0(t, u)dt ≥ a

∫ T
t0
|u(t|pdt.

As we will see in theorem (41), the conditions (a) and (b) stated above, assure the existence of

(minimal cost) optimal controller among the class of all measurable controllers with finite cost. If

we assume that the each controller u(t) on t0 ≤ t ≤ T lies in a given compact convex restraint set

Ω, then we can eliminate any need for positivity or growth bounds on functions f0 and h0, as we

will see in theorem (42).

If the class of admissible controllers and its associate responses is non empty, it does not nec-

essarily follow that an optimal control exists. The following example illustrate the non-existence

of optimal controllers.

Example 38 Non existence of optimal controllers

C(u) =
∫ 1
0 t

2u2(t)dt
ẋ = u(t)
x(t0) = 1 x(1) = 0

Let Ω the set of integrable functions.

The trajectory for each u ∈ Ω is x(t) = 1 +
∫ t
0 u(s)ds.

For each 0 < ε < 1 define a control uε as follows:

uε =











0 ifε ≤ t ≤ 1

−ε−1 if 0 ≤ t ≤ ε

Let xε the unique trajectory corresponding to uε satisfying x(0) = 1.

C(u) =

∫ ε

0
t2ε−2dt = ε/3.

So, limε→0C(u = 0. It is clear that C(u) = 0 if and only i u = 0 but this is not admissible,

because φ(0) = 1. So there does not exist optimal control.

The following example shows that there may be more than one optimal controller.

Example 39 Let C(u) =
∫ 1
0 (1−u2(t))dt be the cost functional. Let the state equation be: ẋ = u(t)

and x(0) = 0, x(1) = 0 and Ω = {u : |u(t)| ≤ 1.} .
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Exercise 7 Show that for each integer n = 1, 2, ..., the controller u∗(t) = (−1)k if k
2n ≤ t ≤

k+1
2n . k = 0, 1, 2, ..., 2n−1 are admissible controllers, and C(u∗) ≤ C(u) for all admissible controller.

.

• For notational convenience we define:

x0
u(t) =

∫ t

t0
f0(t, x) + h0(t, u)dt.

K̄ = K̄(T ;x0) ⊂ Rn−1 is the set of all response endpoints,

x̄u(T ) = (x0
u(T ), xu(T )) ∈ Rn+1,

for all admissible control vectors u(t) on t0 ≤ t ≤ T.

The response x̄(T ) can be computed from:

x(t) = Φ(t)x0 + Φ(T )

∫ T

t0
Φ(s)−1B(s)u(s)ds and, C(u) = g(x(T )) + x0(T )

Theorem 40 Consider the control optimal program given by (11) and (12) then: The set of

attainability K̄ ⊆ Rn+1 is closed and convex.

Proof: Let x̄1 = (x0
1, x1) and x̄2 = (x0

2, x2) be two points in K̄, corresponding to the controllers

u1(t) and u2(t) on 0 ≤ t ≤ T. Let

ȳ = (y0, y) = λx̄1 + (1 − λ)x̄2, 0 ≤ λ ≤ 1.

To prove that K̄ is convex we must construct a controller steering (0, x0) to ȳ.

Define

ũ(t) = ũ1(s) + (1 − λ)ũ2(s).

with the corresponding response:

xũ(s) = λx̄1(s) + (1 − λ)x̄2(s).

So, xũ(T ) = y.

Now from the convexity of h(t, ·) it follows that:

x0
ũ(T ) ≤ λx̄0

1(T ) + (1 − λ)x̄0
2(T ) = y0.
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But if (x0
ũ(T ), xū(T )) ∈ K̄ and if y0 ≥ x0

ũ(T ) then (y0, xū(T )) ∈ K̄ 4.

The proof that K̄ is a closed set is given in [Lee, E.; Markus, L.] 209.

Theorem 41 If either g(x) is (a) bounded below or (b) is a convex function, then there exists a

(minimal cost) optimal controller.

Proof: Since each allowable control u(t) defines an end point (x0(T ), x(T )) ∈ K̄ we need only

prove that the function g(x) + x0 assumes its minimun in K̄.

(a) If the hypothesis in the remark (37) are satisfied and g(x) > a then limx0→∞[g(x)+x0] = ∞.

Thus, there exists α such that the minimun of [g(x) + x0] on K̄ is assumed on the compact

set K̄ ∩ [x0 ≤ α].

(b) Assume that g(x) is a convex function not bounded below. Then, for each real number c1

the set in Rn+1 defined by C =
{

x : g(x) + x0 ≤ c1
}

is closed, has a non empty interior

(because g(x) is not bounded below) and it is also convex.

(b1) To prove the convexity of the set C consider:

g(x1) + x0
1 ≤ c1 and g(x2) + x0

2 ≤ c1,

it follows that

g[λx1 + (1 − λ)x2] + λx0
1 + (1 − λ)x0

2 ≤ c1.

Now consider a constant c1 such that the set g(x) + x0 ≤ c1 meet K. This intersection

is closed and convex. As we shall see, this intersection is also bounded and hence

compact. Then the existence of the optimal control follows.

(b2.) To prove the boundedness of this intersection:

• Consider the hyperplane π as the supporting hyperplane in Rn+1 to the convex set C such

that for (x0, x) below π.

4To see this, construct ū(t) = ū(t) + uβ(t) such that:

∫ T

t0

Φ(s)−1
B(s)uβ(s)ds = 0

and

x
0

u(T ) + b =

∫ T

t0

f0(t, x) + h0(t, ū)dt.
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• We shall show that for points (x0, x) ∈ K̄ such that |x(T )| is large enough then x0(T ) ≥
k|x(T )| for a prescribed constant k > 0. Such point must lie above π and hence satisfy

g(x) + x0 > c. Then C ∩ K̄ is bounded.

Upon this calculation, we obtain the require compactness then, the existence of the minimun is

proved.

We now prove the boundedness of C ∩ K̄.
For points (x0, x) ∈ K̄ we have:

|x(T )| ≤ |Φ(T )x0| +
∫ T

t0
|Φ(T )Φ(s)−1B(s)||u(s)|ds

Using the assumptions on f 0(t, x) and h0(t, u) if |x(T )| ≥ 2|Φ(T )x0| and we write: M ≥ |Φ(T )Φ(s)−1B(s)|
then:

∫ T
t0
|u(s)|ds ≥ |x(T )|/2M. By Schwarz’ inequality:

∫ T
t0
|u(s)|ds ≤ c2

[

∫ T
t0
|u(s)|2ds

] 1

2 for a

constant c2.

Then we obtain: |x(T )|p ≤ 4Mpc2
∫ T
t0
|u(s)|pds ≤ c3x

0(T ). Hence for sufficiently large |x(T )|
we have: x0(T ) ≥ |x(T )|, and (x0(T ), x(T )) ∈ K lies above the hyperplane π.

Therefore the closed intersection of
{

x : g(x) + x0 ≤ c1
}

and K is bounded, hence compact.

If we consider the linear control process in Rn : given by (11) and (12), where the matrices

of coefficient are continuous and g(x), f0 = (x, t) and h0(x, t) are continuous for all values of this

argument, if in addition of the f0 = (x, t) and h0(x, t) are convex in each t0 ≤ t ≤ T we assume

that each controller u(t) on t0 ≤ t ≤ T lies in a given compact convex restraint set Ω, then we can

eliminate any restriction of positivity or grounds bounds on the functions f 0(x, t) and h0(x, t).

Theorem 42 Consider the control process in Rn

ẋ = A(t)x+B(t)u

with cost functional

C(u) = g(x(T )) +

∫ T

t0
f0(x, t) + h0(t, u)dt

and compact convex restraint Ω ⊂ Rm. Then there exists an optimal controller.

Proof: Wee seek the minimun of the real continuous function g(x) + x0 on the bounded K̄ ⊂
Rn+1. s this function decreases monotonically with x0 for each x fixed, the infimun of g(x) +

x0 is just the minimun, on the lower boundary of K̄. The required minimun is assumed, see

[Lee, E.; Markus, L.].
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7.2 Necessary and sufficient conditions for optimality in the case of linear
processes

We shall prove in this section that an optimal control is necessarily extremal. We begin the section

characterizing the condition of extremal controllers, and then we obtain necessary and sufficient

conditions for extremality. Finally we obtain necessary and sufficient conditions for optimality.

Definition 43 Given a control problem in Rn, with set of attainability K̄ ⊆ Rn+1 corresponding

to the cost functional C(u), a control ū(t) on t0 ≤ t ≤ T, which steers (0, x0) to a relative boundary

point of K̄ is called an extremal control and the corresponding response x̄(t) is also extremal.

7.3 The maximal principle for linear processes with convex cost functional.

Theorem 44 Consider the control process in Rn given by (11) and with the integral cost func-

tional:

C(u) =

∫ T

t0
f0(t, x) + h0(t, u)dt (13)

A controller ū(t) with response x̄(t) is extremal if and only if there exists a vector η̄(t) = (η0, η(t))

satisfying:
η̇0 = 0, η0 < 0

η̇ = η0
∂f0

∂x (t, x̄(t)) − ηA(t)

(14)

and such that the maximal principle holds almost everywhere:

η0h0(t, u
∗) + η(t)B(t)u∗ = max

u
[η0h0(t, u) + η(t)B(t)u].

Proof: Let ū(t) be a controller with response ¯̄x(t) = (x̄0(t), x̄(t)) and adjoint response ¯̄η(t) =

(η0, η(t)) satisfy: (11) , and ẋ0 = f0(t, x) + h0(t, u), ¯̄x(t0) = (0, x0), and also the system (14) and

the above maximal principle. We shall prove that

¯̄η(T )¯̄x(T ) ≥ ¯̄η(T )¯̄ω(T ),

where ¯̄ω(T ) = (ω0(t), ω(t)) is the response to an arbitrary admissible controller u(t).

From this inequality it follows that ¯̄x(T ) lies on the boundary of K̄ and that ¯̄η(T ) is an exterior

normal to K̄.

Use the equality:
d

dt
[¯̄η(t)¯̄ω(t)] = η0ẇ

0 + η̇w + ηẇ,
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and compute: ¯̄η(T )¯̄ω(T ) − ¯̄η(t0)¯̄x0

=

∫ T

t0
η0

[

f0(t, w) − ∂f0

∂x
(t, x̄)w

]

+ [η0h0(t, u) + ηBu]dt.

Analogously for: ¯̄η(T )¯̄x(T ) − ¯̄η(t0)¯̄x0,

=

∫ T

t0
η0

[

f0(t, x̄) −
∂f0

∂x
(t, x̄)x̄

]

+ [η0h0(t, ū) + ηBū]dt.

Using now the maximal principle and the convexity condition

f0(t, w) − f0(t, x̄) ≥
∂f0

∂x
(t, x̄)(w − x̄),

then the claim follows.

Conversely, assume that ū(t) is extremal, so that the corresponding response ¯̄x(t) = (x̄0(t), x̄(t))

steers (0, x0) to ¯̄x(t) on the boundary of K̄. Let ¯̄η(T ) = (η0, η(T )) be an exterior normal to K̄ at

x̄(T ). Clearly η0 < 0 then, we can assume that η0 = −1. Let ¯̄η(t) be defined as the solution of the

adjoint system A with the given data ¯̄η(T ). We must prove that

−h0(t, u
∗) + η(t)B(t)u∗ = max

u
[−h0(t, u) + η(t)B(t)u],

almost everywhere on t0 ≤ t ≤ T.

Essentially, this method consists in adding an impulse perturbation, to ū(t) over a short

duration t1 ≤ t ≤ t1 + ε, where we suppose that ū(t) fails to satisfy the maximal principle.

The perturbed controller u∗(t) yields an increment in the terms
∫ T
t0

[η0h
0(t, u) + η(t)B(t)u]dt in

the computation of ¯̄η(Y )w̄(T ), which contradicts the assertion that x̄(T ) lies on the boundary of

K̄.

The details of the proof are in [Lee, E.; Markus, L.] 213.

Remark 45 A comment on uniqueness. In the case where g(x) is convex and h(t, u) is

strictly convex, any two extremal controllers steering (0, x0) to the same boundary point of K̄

must coincide almost everywhere

Theorem 46 Consider the control process in Rn given by (11) and (12). Assume that g(x) ∈ C1

is convex in Rn. Then there exists a solution x∗(t), η∗(t) of the system:

ẋ = A(t)x+B(t)u∗(t, η)

η̇ = ∂f0

∂x (t, x(t)) − ηA(t)

(15)
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with x(t0) = x0, η(T ) = −grad g(x(T )).

where u∗(t, η) is defined by the maximal principle

−h0(t, u
∗) + η(t)B(t)u∗ = max

u
[−h0(t, u) + ηB(t)u], (16)

An optimal controller is u∗(t) = u∗(t, η∗(t)) with the corresponding optimal response x∗(t).

• If h0(t, u) is strictly convex for each t, then the solution x∗(t), η∗(t) is unique and u∗(t) is

the unique optimal controller with the optimal response x∗(t). Therefore, in this case the

principle of the maximum is also a sufficient condition for the optimality of the control and

its associate response.

• If h0(t, u) is merely convex we choose u∗(t, η) selecting the point in Rm which has minimal co-

ordinates among all solutions of the maximal principle. That is choose u∗(t, η) = (u∗1, ..., u
∗
m)

so that u∗1 is minimal among all possible solutions of the MP., then choose u∗2 as minimal

among all solutions with designed value of u∗1, continue in this manner. The u∗(t) = u∗(t, η)

is an admissible controller.

We shall give the proof of the theorem, following several steps:

1. We first show that there exists a unique constant m such that the set

Sm =
{

x̄ ∈ Rn+1 : g(x) + x0 ≤ m
}

is tangent to K̄ but is separated from the relative interior of K̄ by a common supporting

hyperplane π∗.

2. We show that m is the optimal cost.

3. We find a solution x∗(t), η∗(t) for the nonlinear boundary-value problem.

4. If h0(t, u) is strictly convex for each fixed t, then the optimal control u∗(t) and its response

x∗(t) are unique.

5. Then (x∗(t), η∗(t)) are unique.

Proof of the step 1. As we know, the intersection of K̄ with Sc is compact for large c. Hence

we define m as the infimun of all such numbers c such that the corresponding intersection is

not empty. For c > m the hypersurface Sc meets the relative interior of K̄, and for c < m, Sc

does not meet K̄. Thus only for c = m can Sc be tangent to K̄.
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Proof of the step 2. It follows immediately from step 1.

Proof of the step 3. Let η̄∗(T ) = (−1, η∗(T )) be the normal to the tangent hyperplane to Sm

at some point P ∈ Sm ∩ K̄. Let u∗(t) be an extremal control, steering (0, x0) to P = x̄∗(T )

by the response x̄∗(t) = (x0∗(t), x∗(t)). Let η̄∗(t) = (−1, η∗(t)) be defined as the solution of

η̇ =
∂f0

∂x
(t, x∗(t)) − ηA(t),

with η∗(T ) = −grad g(x∗(T )).

From the previous theorem, we find that u∗(t) satisfies the maximal principle with the adjoint

response η̄∗(t) thus x∗(t), η∗(t) is the solution of the nonlinear boundary-value problem.

Proof of the step 4. If h0(t, u) is strictly convex for each fixed t, then Sm ∩ K̄ is just a single

point P. In other case, let P1 and P2 two points in K̄∩Sm, and thus in the relative boundary

of K̄.

Let u1(t) and u2(t) be extremal controls with responses x1(t) and x2(t) leading to P1 =

(x0
1(T ), x1(T )) and P2 = (x0

2(T ), x2(T )) respectively.

Consider the control u′ = 1
2 [u1(t) + u2(t)] with response x̄′(t) = (x′0(t), x′(t) then

x′(T ) =
1

2
[x1(t) + x2(t)]

and from the strict convexity of h(t, u) for each t we obtain that

x′0(T ) <
1

2
[x0

1(t) + x0
2(t)].

The half line x0 > x0(T ), x = x(T ) lies in the relative interior of K̄, which implies that the

midpoint between P1 and P2 lies in the relative interior of K̄. This contradiction show that

Sm ∩ K̄ consists of a single point P.

Proof of the step 5. From step 4 it follows that x0 + g(x) can assume its minimun at just

one single point P ∈ K̄. Then, from the strict convexity of h0(t, u) for each t, it follows that

there is one single optimal control u∗(t) which steers (0, x0) to the point P. In other case,

consider the controller u′ = 1
2 [u1(t)+u2(t)] and then from the convexity of h0 it follows that

h0(t, u′) + η(t)B(t)u′(t) > m(t), whenever u1(t) 6= u2(t).

So the optimal control and its response x∗(t) are unique. Also η∗(t) is uniquely determined

as the solution of a linear differential system with the data: η(T ) = −grad g(x∗(T )).
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7.4 Some remarks on restricted end point problems.

• Suppose that x1 is the prescribed target, and suppose that the initial state x0 is controlled

with minimal cost to x1. We also assume that h0(t, u) is strictly convex for each t. Under

this condition there exists a unique optimal controller u∗ (t) In fact, let l be the line x = x1,

in Rn+1 then l ∩ K̄ is a closed horizontal ray. The control u∗(t) steers (0, x0) to (x0(T ), x1)

where x0(T ) is the lowest point in the ray l ∩ K̄.

• If the target T in Rn is defined by a function γ, convex and C1

G = {x : γ(x) ≤ 0}

such that grad γ 6= 0 on fr(G), the boundary conditions are: x(0) = x0, γ(x(T )) = 0

recall that if u is extremal then the associate response x must satisfy x(T ) ∈ fr(G), and

η(T ) = −k grad γ(x(T )), for some k > 0.

• In the case where g(x) ≡ 0 then C(u) = C0(u) then the minimal value x0∗ ∈ Ḡ ∩ K̄ occurs

at just one common boundary point x̄∗(T ) = (x0∗(T ), x∗(T )).

• In the special case where the optimal controller minimizing C0(u) makes no reference to a

target, that is x(T ) is free, then the corresponding value is η(T ) = 0.

7.5 Examples

Example 47 A simple controlled dynamical system is modelled by the scalar equation

ẋ = x+ u,

and we employ the cost functional:

C(u) =
1

4

∫ 1

0
u(t)4dt.

The control problem consists in steering x(t) from an initial state x(0) = x0 to the target x(1) = 0,

with minimal cost.

The maximal principle states (16):

−u
∗4

4
+ ηu∗ = max

u

[

−u
4

4
+ ηu

]

or:

u∗ = (η)
1

3 .
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Thus we must solve:

ẋ = x+ η
1

3 , η̇ = −η.

with x(0) = x0, x(1) = 0. Since η = η0e
−t we have:

x = etx0 −
3

4
η

1

3

0 [e−
t
3 − et].

The boundary conditions yield:

η
1

3

0 =
4x0

3
(e−

4

3 − 1)−1

and the optimal controller is

u∗ =
4x0

3
(e−

4

3 − 1)−1e−
t
3

Example 48 Consider the Eisener-Stroz model focused on net investment as a process that ex-

pands a firm’s plant size. Assuming that the firm has knowledge of the profit rate π associated

which each plant size, as measured by the capital stock K. We have a profit function π(K). To

expand the plant and adjustment cost C is incurred whose magnitude varies positively with the

speed of expansion K̄(t). Then he have a increasing function C(K ′). The derivative K̄(t) is the

net investment, I = K̄(t).

The objective of the firm is to choose an optimal path K(t) that maximizes the total present

value of its net profit over time:

Maximize
∫ T
0 [π(K) − C(I)]e−ρtdt

subject to K̇ = I

and K(0) = K0, K(T ) = KT .

We assume that both the π and C function are quadratic:

π = αK − βK2 (α, β > 0)

C = aI2 + bI (a, b > 0)
(17)

The maximal principle states:

−C ′(I∗)e−ρt + η = max
0≤I≤1

{

−C ′(I)e−ρt + η
}

Taking derivatives and using(17), we obtain that:

I∗ = η
eρt − b

2a
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Thus we must solve:

K̇ = I∗ and η̇ = π′(K)e−ρt

Taking account of equation (17), it follows that: η = (α+2βK)
ρ e−ρt + k0

So the optimal controller is:

I∗(t) =
(α+ 2βK)

ρ2a
− b

2a
+
k0e

ρt

2a
.

Substituting in the state equation it follows:

K̇ − β

aρ
K =

[

α

2aρ
− b

2a

]

+
k0

2a
eρt.

The optimal path has a qualitative form given by:

K∗(t) = Aeρ1t + Ā

Where Ā = aρ
β

[

α
2aρ − b

2a

]

and A can be found from the initial conditions.

7.6 Regulation over an infinite interval

We next allow the time interval t0 ≤ t ≤ T to become infinite.

Theorem 49 Consider the controllable autonomous process in Rn

ẋ = A(t)x+B(t)u (18)

with the integral cost functional:

C(u) =

∫ ∞

t0
f0(x) + h0(u)dt (19)

where f0(x) ≥ 0 is convex, f(x) = 0 if and only if x = 0, h0(u) ≥ a|u|p is strictly convex and

h0(0) = 0. Then there exists an unique optimal controllers u∗(t) on 0 ≤ t < ∞ with response

x∗(t).

Assume that no eigenvalue of A has zero real part. Then a necessary and sufficient condition

that an admissible controller ū(t) with response x̄(t) on 0 ≤ t <∞ be optimal is that the maximal

principle obtains:

η̄0h0(ū(t)) + η̄(t)Bū(t) = max
u

[η̄0h0(u(t)) + η̄(t)Bu(t)]

where η̄(t) = (η̄0, η̄(t)) satisfies the adjoint system:

η̇0 = 0

η̇ = −η0
∂f0

∂x (x̄(t)) − ηA
(20)

with η̄0 < 0 and η̄(∞) = 0.
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Proof: Since (18) is controllable. the initial state x0 can be steered to the origin at t = 1,

and then kept fixed at the origin by the null control u = 0. In this way there exists an admissible

controller having finite cost M. Next we shall construct the optimal controller u∗(T ) on 0 ≤ t <∞
of the weak limit of the appropriate optimal controllers on finite time intervals.

Using the given initial state x0 at t = 0 to obtain the optimal controller u∗(t) on each finite

interval 0 ≤ t ≤ k, for k = 1, 2, ... with the cost functional Ck(u) =
∫ k
t0
f0(x) + h0(u)dt, write

this minimal cost Ck(u∗k) = mk and note mk ≤ mk+1 ≤ M, since u∗k+1(t) cannot have a smaller

cost than u∗k(t). Since
∫∞
0 |u∗k(t|)pdt ≤ M/a ( we can define u∗k(t) ≡ 0, for t > k), we can select a

subsequence u∗ki
(t) which converges weakly to a limit u∗(t) on each compact time interval 5 For

each finite T > 0,
∫ T

t0
f0(x∗) + h0(u∗)dt ≤ lim

ki→∞
inf

∫ T

t0
f0(x∗ki

) + h0(u∗ki
)dt ≤ lim

ki→∞
≤M.

Therefore u∗(t) is an admissible controller with finite cost C(u∗) = m ≤M.

To show that m = limk→∞mk and u∗(t) is the unique optimal controller on 0 ≤ t < ∞. see

[Lee, E.; Markus, L.] 221.

We now show that η∗0 < 0 and η∗(∞) = 0. If η∗0 = 0 then η∗(t) would be zero. Since

lim ηki→∞(t) = η∗(t) and ηki
(ki) = 0. Using the uniform convergence on compact of (∂f 0/∂x)(x∗k)

to (∂f0/∂x)(x∗k), it follows that

η∗(t) = η∗(0)e−At +

∫ t

0
−η0∂f

0

∂x
(x∗(s))e−A(t−s)ds.

If every eigenvalue of A has positive real part, then |e−At| < ce[−λt on 0 ≤ t <∞ for a constant

c. Using ∂f0

∂x (x∗((t)) → 0, it is easy to prove that η∗(∞) = 0 and we omit the details.

After a linear change of variables on η we can suppose that

A =

[

A+ 0
0 A−

]

where every eigenvalue of A+ has positive real part (and hence the corresponding coordinates of

η(∞), η∗+(∞) = 0), and every eigenvalue of A− has negative real part. Now it is sufficient to prove

that the corresponding coordinates η∗+(∞) = 0. See [Lee, E.; Markus, L.] 225.

5A sequence {un(t)} n = 1, 2, 3, ... of real (or vector valued) integrable functions on a real interval J is called
weakly convergent to u∗(t) in case, for each bounded measurable test function g(t), we have

lim n → ∞

∫

J

g(t)un(t)dt =

∫

J

g(t)u∗(t)dt.

The collection of all vector functions u(t) which are measurable on a given finite interval J and have values in a
given compact convex set Ω ⊂ Rn is know to be (sequentially) weakly compact. That is, each such sequence of
functions has a subsequence that converges weakly on J to a function of the given collection.
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To prove that and admissible controller ū(t) with response x̄(t) and (η̄0, η̄(t)) on 0 ≤ t < ∞,

such that the maximal principle holds and η̄0 < 0, η̄(∞) = 0 is the unique optimal controller, note

that x(∞) = w(∞) and use step 5 of the previous theorem to show that:

η̄0x̄0(T ) + η̄(T )x̄(T ) ≥ η̄0w0(T ) + η̄(T )w(T )

for each finite T > 0. Since each of these terms has a limit as T → ∞ and η0 < 0 we find

C(ū) ≤ C(u).

Thus ū is optimal.

Example 50 Supply of new homes.

Consider a representative firm in the housing market, that has to choose an investment level

I in order to maximizes its profits. The profits are given by:
∫ ∞

0
[P (t)I(t) − C(I(t))]e−rtdt

where C(I) denotes the industry cost corresponding to the gross investment I, and P (t) is the

competitively determined (stock) price of a standard unit of housing at time t. To simplify our

example We shall consider a quadratic cost function, C(I) = αI2. Gross housing investment is

the output of the construction industry, defined in the usual way:

I = K̇ + δK

assuming a exponential depreciation rate δ.

The optimization program is given by:

maxI
∫∞
0 [P (t)I(t) − αI(t)2]e−rtdt

s.a. K̇ = I − δK.

In this case: f0(K) ≡ 0 and h0(I(t)) = P (t)I(t) − αI(t)2. From the previous theorem we

obtain: that the optimal control Ī maximize:

π(I(t)) = η̄0[P (t)I(t) − αI(t)2]e−rt + η̄I. (21)

where (η̄0, η̄) solves the adjoint system:
˙̄η
0

= 0
˙̄η = η̄δ.
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So; ¯η(t) = η0e
δt. So; ¯η(t) = η0e

δt and taking derivatives in (21),

−[P (t) − 2αI]e−rt + η0e
δt = 0

then:

Ī(t) = η0e
(δ+r)t + P (t)

from the initial condition I(0) = I0 we obtain the value of η0.

Observe that the transversality condition implies η0 = 0. So, I(t) = P (t)
2α .

8 Necessary and Sufficient condition for an optimal control with
a non linear process: A particular case.

In the previous section the maximal principle was shown to be necessary and sufficient under

convexity assumptions, for the optimality of a controller for certain linear processes, we shall see

a similar result for particular processes in which the control es effected trough a convex function

and where the control process in Rn is the following:

ẋ = A(t)x+ h(u, t) (S)

with initial state x(t0) = x0 and closed convex target set G ⊆ Rn.

The cost functional is

C(u) =

∫ T

t0
[f0(x(t), t) + h0(u(t), t)]dt

or x0(T ) = C(u) where x0(t) is defined by the scalar differential equation

ẋ0 = f0(x, t) + h0(u, t), and x0(t0) = x0.

The admissible controllers u(t) are all bounded measurable m − vectors functions on the fixed

interval [t0, T ] steering x0 to some point in T and lying in some nonempty restrain set Ω ⊂ Rn.

Theorem 51 In the above conditions, let the coefficients f 0, ∂f0/∂x, h0, A, be continuous and

f0(x, t) is convex in x for each t such that t0 ≤ t ≤ T. Assume that u∗(t) is a controller with

response x∗(t) = (x0∗(t), x∗(t)) satisfying the maximal principle:

−h0(u∗(t), t) + η(t)h)u∗(t), t) = max
u∈Ω

[h0(u(t), t) + η(t)h(u(t), t)

for almost all t. Here η(t) is any nontrivial solution of

η̇ =
∂f0

∂x
(x∗(t), t) − ηA(t).

satisfying the transversality condition:
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η(T ) is inward normal of T at the boundary point x∗(T ). (If G = Rn then η(T ) = 0; if

G = x1 is a single point, the condition is vacuous.)

Then u∗(t) is an optimal controller achieving the minimal cost:

C(u∗) = x0∗(T ).

Proof: Let u∗(t), ¯x∗(t), and η∗(t) satisfy the maximal principle and transversality conditions,

and let u(t) be any admissible controller with response x̄(t) = (x0(t), x(t)) on t0 ≤ t ≤ T. We shall

first prove the basic inequality

−x∗0(T ) + η(T )x∗(T ) ≥ −x0(T ) + η(T )x(T ).

Compute the derivative:

d

dt
[−x∗0(t) + η(t)x∗(t)] = −ẋ0(t) + η̇(t)x(t) + η(t)ẋ(t).

Use the differential systems for ẋ0(t) and ẋ(t) and integrate over the basic interval t0 ≤ t ≤ T

to obtain:

[−x∗0(T ) + η(T )x∗(T )] − η0(t0)x0 =

∫ T

t0

[

δf0(x∗, t)

∂x
x− f0(u, t) − ηh(u, t) − h0(u, t) + ηh(u, t)

]

dt.

Next specialize this formula to the control u∗(t) with the response x̄(t) and subtract these

inequalities to obtain:

[−x∗0(T ) + η(T )x∗(T )] − [x0(T ) + η(T )x(T )]

=

∫ T

t0

{

[−h0(u∗, t) + ηh(u∗, t)] − [−h0(u, t) + ηh(u, t)] + f0(x, t) − f0(x∗, t) +
δf0(x∗, t)

∂x
(x∗ − x)

}

dt.

But the integrand is almost everywhere positive because of the assumptions of maximal prin-

ciple for u∗(t) and the convexity of f 0(x, t). Thus the basic inequality is proved.

If G = Rn the transversality condition asserts that η(T ) = 0 and hence −x0∗(T ) ≥ x0(T ), or

C(u) ≤ C(u∗(t), for every admissible controller u(t). Hence u∗(t) is optimal in this case.

Next let T be a closed convex set in Rn and let π be a supporting plane to T at x∗(T ) with

inward normal η(T ) which could be zero. Then

x0(T ) − x0∗(T ) ≥ η(t)(x(T ) − x∗(T )).

But x(T ) lies in G, hence x(T ) lies on the inward side of π and η(t)(x(T ) − x∗(T )) ≥ 0..Thus

x0∗(T ) ≤ x0(T ) and u∗(t) is an optimal controller.
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Corollary 52 In the conditions of the theorem and cost:

C(u) = g(x(T )) + x0(t)

where g(x) is a differentiable convex function. Let u∗(t) satisfying the maximal principle, and the

transversality condition:

η(T ) = grad g(x∗(T )).

Then u∗(t) is an optimal control.

Proof: The basic inequality relating u∗(t) and its response x∗(t) to any other admissible control

and response still holds,

−x∗0(T ) + η(T )x∗(T ) ≥ −x0(T ) + η(T )x(T ).

Using the transversality condition, and the convexity of T we conclude:

x0(T ) − x∗0(T ) ≥ −grad g(x∗(T ))(x(T ) − x∗(T )) ≤ −[g(x(T ) − g(x∗(T ))]

Therefore:

x0(T ) + g(x(T ) ≤ x∗0(T ) + g(x∗(T )).

9 The maximal principle and the existence of optimal controllers
for non linear processes

In this section we show, for the general case of a non linear non autonomous system with moving

targets with finite or infinite time durations, necessary conditions for the existence of an optimal

control. Next we shall restrict ourselves to the non-autonomous case and we shall see how to find

this optimal control.

The set of conditions that characterize an optimal controller is collectively known as the

Pontriaguin Maximun Principle (PMP). For many important problems, the conditions of the PMP

will only be satisfied by a small subset of our control class (perhaps only by a single control). In

this case there is a reasonable chance of our finding an optimal control if one exists.

We shall show that maximal principle together with the transversality conditions, are necessary

conditions for an optimal control, see theorem (54). The proof of the maximal principle (that is

the necessary condition for an extremal controller)is given further on, see section (14).
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9.1 The existence of the optimal control

In this section we shall discuss a theorem that guarantees the existence of optimal control when

Ω is compact. The theorem covers an important class of problems that arise in applications.

Theorem 53 Consider the process in Rn

ẋ = f(x, t, u)

where f is in C1 in Rn+m+1, let the following hypothesis holds:

1. The initial and target sets X0 and X(t1) are nonempty compact sets varying continuously

in Rn for all t in the basic prescribed compact interval [τ0, τ1]

2. The control restraint set Ω(x, t) is a nonempty compact set in Rn for (x, t) ∈ Rn × [τ0, τ1].

3. The state constraints are (possibly vacuous) h1(x) ≤ 0, ..., hr(x) ≤ 0, a finite or infinite

family of constraints, where h1, ..., hr are real continuous function on Rn.

4. The family F of admissible controllers consists of all measurable functions u(t) on various

intervals t0 ≤ t ≤ t1 in [τ0, τ1] such that each u(t) has response x(t) on t0 ≤ t ≤ t1 steering

x(t0) ∈ X0(t0) to x(t1) ∈ X1(t1) and u(t) ∈ Ω(x, t), h1(x(t) ≤ 0, ..., hr(x(t)) ≤ 0.

The cost functional for each u ∈ ∆ is

C(u) = g(x0, t0, x1, t1) −
∫ t1

t0
f0(x, t, u)dt+maxt0≤t≤t1γ(x(t)).

Where f0 ∈ C1(Rn+m−1), and g(x) and γ(x) are continuous in Rn.

Assume:

• (a)The family ∆ of admissible controllers is non empty.

• (b)There exists a uniform bond |x(t)| ≤ b on t0 ≤ t1 for all admissible response x(t)

• (c) The extremal velocity set V̂ (x, t) =
{

f0(x, t, u), f(x, t, u) : u ∈ Ω(x, t)
}

is convex in Rn+1

for each fixed (x, t).

Then there exists an optimal controller u∗(t) on t∗0 ≤ t ≤ t∗1 in ∆ minimizing C(u).

The proof of this theorem is given for instance in [Lee, E.; Markus, L.] or in [Berkovitz, L.D.].
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9.2 The Pontriaguin Maximal Principle

Let us now consider an autonomous nonlinear process in Rn :

1. ẋi = f i(x1, . . . , xn, u1, . . . , un), i = 1, . . . n with f(x, u) ∈ C1 in Rn × ω, where Ω will

constitute a certain family of measurable m-vector functions.

2. LetX0 andX1 ⊂ Rn be given as initial and target sets and let the nonempty control restraint

Ω ⊂ RM .

3. The class 4 ⊂ Ω is the class of all measurable controllers u with response x(t, x0) which

steer x0 to x(t1, x0) = x1 ∈ X1.

4. The cost functional is C(u) =
∫ t1
0 f0(x(t), u(t))dt where f 0(x, u) ∈ C1 in Rn × Ω.

An admissible controller ū(t) is minimal (optimal), if C(ū) ≤ C(u) for all u ∈ Ω.

Let us now define:

• The augmented state x̄∗(t) =

(

x0∗(t)
x∗(t)

)

as the response to the augmented system:

ẋ0 = f0(x, u)
ẋi = f i(x, u), i = 1, ..., n.

(S̄)

• Let η̄∗(t) be a nontrivial solution of the augmented adjoint system 6:

η̇0 = 0

η̇i = −∑n
j=0 ηj

∂fj

∂xi (x
∗(t), u∗(t)) i = 1, ..., n

(Ā)

Where the last n equations form the adjoint system (A).

• And define the augmented Hamiltonian:

H̄(η̄, x̄, ū) = η0f
0(x, u) +H(η, x, u)

and

M̄(η̄, x̄) = max
u∈Ω

H̄(η̄,x̄, u)

Here the Hamiltonian function is:

H(η, x, u) = ηf(x, u) = η1f
1(x, u) + ....+ ηnf

n(x, u)

6Observe that this condition is equivalent to to the next one:(η0, η(t)) 6= 0 ∀t ∈ [0, t − 1].

58



Theorem 54 Consider the autonomous control process in Rn

ẋ = f(x, u) (S)

• Let X0 and X1 ⊂ Rn be given the initial and target sets and let 5 be the set of all admissible

controllers that steer some initial point of X0 to a final point in the target set X1.

• The terminal time t1, the initial point x0 ∈ X0 and the terminal point x1 ∈ X1 vary with

the control.

• For each u(t) with response x(t) let us assign a cost

C(u) =

∫ t1

0
f0(x(t), u(t))dt

• with f(x, u), f0(x, u), ∂f/∂x(x, u) and ∂f 0/∂x(x, u) continuous in Rn+m.

If u∗(t) on 0 ≤ t ≤ t∗ is a minimal optimal in 5, with augmented response x̄∗(t) = x0∗(t), x∗(t))

then there exists a nontrivial augmented adjoint response η̄∗(t) = (η∗0, η
∗(t)) such that

H̄(η̄∗(t), x̄∗(t), ū∗(t)) = M̄(η̄∗(t), x̄∗(t))

and

M(η̄∗(t), x̄∗(t)) ≡ 0 and η0 < 0 everywhere.

That is there exists a nontrivial adjoint response η̄(t) of

η̇ = −η∂f
∂x

(x̄(t), ū(t)) (A)

such that the maximal principle obtains, that is,

M̄(η̄, x̄) = max
u∈Ω

H̄(η̄, x̄, ū) almost everywhere.

And the following transversal conditions:

9.3 Transversality conditions

Also if the if X0 and X1 (or just one of them) are manifolds with tangent spaces, T0 and T1 at

x∗(0) and x∗(t∗) then η̄∗(t) = (η∗0(t), η
∗(t)) can be selected to satisfy the transversality conditions

at both ends, or just one end:

η̄∗(0) orthogonal to T0

η̄∗(t∗) orthogonal to T1
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Remark 55 If the target set X1 is the whole Rn, then the control problem is known as the free-

endpoint problem. If the optimal control and its associate response satisfy the maximal princi-

ple, then the final transversality condition requires η∗(t1) = 0.

Remark 56 If in the control problem the time interval is fixed, this problem is known as the

fixed-time problem, then there exists a nontrivial adjoint response η̄ = (η0, η) on 0 ≤ t ≤ T

such that

H̄(η̄∗(t), x̄∗(t), u∗(t)) = M̄(η̄∗(t), x̄∗(t))

almost everywhere, and M̄(η̄∗(t), x̄∗(t)) is constant and η0 ≤ 0. The transversality conditions are

verified, but as no time perturbations are allowed that is K̄∓ is replaced by K̄t we are unable to

maintain the vanishing of M̄(η̄∗(t), x̄∗(t))

Proof: Let u∗(t) on 0 ≤ t ≤ t∗, with response x∗(t) steering from x∗(0) = x∗0 ∈ X0 to

x∗(t∗) = x∗1 ∈ X1, be optimal in 4. Consider the augmented system in Rn+1

ẋ0 = f0(x1, ..., xn, u)

ẋi = fi(x1, ..., xn, u) i = 1, 2, ..., n.

or

˙̄x = f̄(x, u) (S),

with corresponding response ẋ = (x∗0(t), x
∗(t)) where

x∗0(t) =

∫ t

0
f0(x∗(s), u∗(s))ds.

Each control u(t) ∈ 4 determines some augmented response x̄(t), leading from X0 to X1. The

optimal controller steers the x0 to the lowest possible point en R×x∗1. Then using the PMP, there

exists a nontrivial adjoint response η̄∗(t) = (η∗0, η
∗(t)) so,

H̄(η̄∗, x̄∗, ū∗) = M(η̄∗, x̄∗)

almost everywhere, and

M(η̄∗, x̄∗) = M̄

is constant everywhere on 0 ≤ t ≤ t∗.

We now prove that M̄ = 0. (Plan of the proof, the details in [Lee, E.; Markus, L.] 313. This

result follows as a consequence of the minimizing property of u∗(t). Define the perturbation cone

K̄±
τ , as the smallest closed cone at τ, 0 ≤ τ ≤ t∗ in the tangent space at x̄∗(τ) containing
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the perturbation tangent cone K̄τ and the two vector v+(τ) = f̄(x∗(τ), u∗(τ)) and v−(τ) =

−f̄(x∗(τ), u∗(τ)). Any vector w in the interior of this cone, must define a line segment from

x̄∗(τ), which lies interior to ∩0≤t≤t∗K̄(t). In particular wτ = (−1, 0) does not lie interior to K̄±
τ ,

other wise there exists an admissible controller of total cost less than C(u∗) = x0∗(t). So, K̄±
τ is

separated from wτ from an hyperplane with a normal vector η̄τ (τ). Let η̄∗(t) the solution of the

adjoint augmented equation, Then from the maximal principle

H̄(η̄∗(t), x̄∗(t), u∗(t)) = M̄(η̄∗(t)x̄∗(t)) = M̄ (constant)

almost everywhere. Since η̄∗τv±(τ) ≤ 0, and v(τ) = v−(τ), we conclude η̄∗τv±(τ) ≤ 0 and thus,

M̄ = 0. This construction is valid at each Lebesgue time, the almost everywhere. In order to see

that M̄ ≡ 0 everywhere we need to construe the limit cone K̄t. The details of this construction

are in the above cited reference.

Finally we must select η̄∗ such that ¯η(t) satisfies the transversality conditions. Let T0 be the

tangent space of X0 at x0 and let T̄0 be the linear space at (0, x∗0) spanned by the vector of the

form (0, T0). Similarly let T̄1 be all vectors (0, T1) at (x0∗(t∗), x∗1.) Let Kt be the smallest closed

cone in the tangent space at x̄∗(t) generated by the displacement of T̄0 and K̄±
t . Let T1 be the

cone in the tangent space generated by wt∗ = (−1, 0) and T̄1. Suppose that the cones Kt∗ and

T1 are separated by an hyperplane π. In this case take a normal vector η̄∗ = (η(0∗), η∗) at x̄∗(t∗)

with η0 < 0 and

η̄∗Kt∗ ≤= η̄∗T1 ≥ 0.

The linear space T̄1 which lies in T1 must lies in the hyperplane π. Thus the vector η∗ satisfies the

transversality condition. From parallel displaced At∗0T̄1 it follows that η∗(0)T̄0 = 0.

The entire proof will be complete justifying the separation of T1 and Kt. See above cited

reference.

9.4 A resource allocation problem

In this section we shall illustrate how the maximal principle and the existence theorem are used

to find the optimal control. Consider the following resource allocation problem

Example 57 Let Y denote the rate of production at time t of a certain commodity. Let I(t)

be the rate of investment of this commodity, and let C denote the rate of consumption. The

equilibrium equation is given by: Y = I + C, I ≥ 0, C ≥ 0. Assume that Y (t) = Y0 +
∫ t
0 I(s)ds.

The first equality say that all the commodity produced in a given period is allocated to investment

or consumption. The second equality, reflects the assumption that the commodity allocated to
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investment is used to increase the stock of the commodity. The constant Y0 is the initial capacity

of production. Let T > 0 be given. The production planner is to choose at each instant t the

magnitudes I(t) and C(t) so that U(C) =
∫ T
0 C(s)ds is maximized.

Let us now formulate this problem as a control problem. Let u(t) denote the fraction of the

commodity produced in time t that is allocated to investment. Thus: 0 ≤ u(t) ≤ 1, and 1 − u(t)

is the fraction allocated to consumption. Hence

I(t) = u(t)Y (t)

C(t) = (1 − u(t))Y (t)

The preceding problem is equivalent to the following control problem: Minimize

C(u) = − ∫ T
0 (1 − u(s))Y (s)ds

subject to
dY
dt = u(t)x Y (0) = Y0

0 ≤ u(t) ≤ 1, Y ≥ 0.

where Y0 > 0, T is fixed, and the terminal state Y1 is non negative, but otherwise arbitrary.

In this case we have that:

Ω = {u : is measur. and 0 ≤ u(t) ≤ 1} f 0(Y, u, t) = −(1 − u)Y (t) and f(Y, u, t) = uY.

Exercise 8 1. Show that the hypothesis of the problem satisfy the hypotheses of the existence

theorem.

2. Show that Y0 ≤ Y (t) ≤ Y0e
t, hence the condition y(t) ≥ 0 is always omitted, and so it can

be omitted from further considerations.

3. From the maximal principle determine the optimal pair (y∗, u∗). In order to do this observe

that the maximal principle becomes:

• [η0 + η(t)Y ∗(t)]u∗(t) ≥ [η0 + η(t)Y (t)]u for all u ∈ [0, 1].

• Show that the transversality condition is η(T ) = 0 (recall that the objective is Y (T ) ≥ 0.)

This implies η0 < 0.

• Show that u = sup {0, sgn(−1 + η(t))} Then u(T ) = 0.

• Consider δ > 0 such that [T −δ, T ] is the maximal interval such that u(t) = 0 and show

that δ = 1.
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• Consider T > 1. Show that η(t) =











< 1 t ≥ T − 1 → u(t) = 0
= 1 t = T − 1
> 1 t < T − 1 → u(t) = 1.

4. Finally:

Y ∗(t) =











Y0e
t if 0 ≤ t ≤ T − 1

Y0e
T−1 if T − 1 ≤ t ≤ T.

and u∗(t) =











1 if 0 ≤ t ≤ T − 1

0 if T − 1 ≤ t ≤ T.

The procedure used in the preceding example is one that can often be used. In large scale

problems, obtaining an analytical solution is not easy, we use in these cases computational meth-

ods.

9.5 Infinite time duration

If the fixed time duration becomes infinite we obtain an interesting problem. Consider fixed

initial-point x0 and end-point x1, measurable controllers u(t) on 0 ≤ t < ∞, bounded on each

compact time interval, satisfying the restraint Ω and each of which defines a response x(t) on

0 ≤ t < ∞, with limt→∞ = x1 in Rn. The set 4∞ of all admissible controllers consist of all such

controllers for which the cost is convergent.

The condition M̄(η̄∗(t), x̄∗(t)) = 0 is verified for all 0 ≤ t <∞ as the following theorem assert.

Theorem 58 Consider the control process in Rn

(S) ẋ = f(x, u).

The measurable controllers u(t) ⊂ Ω on 0 ≤ t < ∞, with responses x(t) steering x0 to x1, having

finite cost:

C(u) =

∫ ∞

0
f0(x(t), u(t))dt,

belong to the admissible class 4∞. Let u∗(t), with augmented response x̄(t), be optimal in 4∞.

Then there exists a nontrivial augmented adjoint response η̄∗ = (η∗0, η
∗(t)) such that

H̄(η̄∗(t), x̄∗(t), ū∗(t)) = M̄(η̄∗(t), x̄∗(t)) everywhere on 0 ≤ t <∞, .

and

M(η̄∗(t), x̄∗(t)) ≡ 0 everywhere on 0 ≤ t <∞, .

and η∗0 ≤ 0.
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Proof: For each time interval 0 ≤ t ≤ T consider the class ∆T of bounded measurable con-

trollers in Ω that steer x0 to x∗(T ). Then u∗(t) is optimal in ∆T , for otherwise any smaller cost

controller in ∆T could be supplemented by u∗(t) on T ≤ t ≤ ∞, contradicting the optimality of

u∗(t) in ∆∞.

Let η̄∗(T ) = (η̄∗0T , η̄
∗
T (t)) be an adjoint response to

˙̄η =
∂f̄

∂x̄
(x∗(t), η∗(t))

such that:

H̄(η̄∗T (t), x̄∗(t), ū∗(t)) = M̄(η̄∗T (t), x̄∗(t)) everywhere on 0 ≤ t ≤ T

and

M(η̄∗T (t), x̄∗(t)) ≡ 0 and η0 < 0 everywhere on 0 ≤ t < T.

Also η∗0 ≤ 0, and we can choose η̄T (0) to be a unit vector. The convergence is uniform on compact

intervals.

Now let T = 1, 2, ... and select a convergent subsequence of a unit vector :

lim
T→∞

η̄∗T (t) = η̄∗(t) on 0 ≤ t ≤ ∞.

Suppose

H̄(η̄∗(t), x̄∗(t), ū∗(t)) < M̄(η̄∗(t), x∗(t))

on some set of positive duration, then for sufficiently large T, we obtain a contradiction with the

last theorem. The proof of theorem (54), shows that

M(η̄∗T (t), x̄∗(t)) ≡ 0 on 0 ≤ t <∞.

9.6 Example: A capital accumulation model

Consider a firm that needs capital goods to produce commodities, which are sold on the output

market. The more capital goods the firm owns, the more commodities it can sell and thus more

revenue R is obtained. The firm can increase its capital stock K by investment, the investment

rate is denoted by I. We assume that there exist investment cost c(I) which are assumed to be

represented by a convex function. Changes in the investment imply changes in the organization of

the firm and these changes have costs.. Representing the changes in investment by v these costs

are equal to g(v); we assume that g is a convex function.

As usual the following equation for capital stock arises:

K̇ = I − δK

assuming constant rate of depreciation δ. We assume that R(K) is positive.
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Example 59 The firm’s objective is to maximize the discounted cash flow over an infinite plan-

ning horizon. Summarizing we obtain the following model:

minv −
∫∞
0 [R(K) − C(I) − g(v)]e−rtdt.

s.t. K̇ = I − δK

İ = v.
R(K) > 0, I(0) = I0, K(0) = K0.

In this case K and I are the state variables, and v is the control variable. The control process

can be written like:

[

K̇

İ

]

=

[

−δ 1
0 0

]

=

[

K
I

]

+

[

0 0
1 0

] [

v
0

]

That is ẋ = Ax+Bu, where x = (K, I) and

A =

[

−δ 1
0 0

]

B =

[

0 0
1 0

]

Here f0(K, I, t) = [R(K)−C(I)]e−rt and h0(u, t) = (v)e−rt then the adjoint system associate

with our problem is:

η̇ =
∂f0

∂x
(t, x) − ηA

So, we need to solve

max
v

[

g(v)e−rt + ηBu
]

,

where η = (η1, η2) and u = (v, 0).

This problem is equivalent to the following one

max
v

[

g(v)e−rt + η2v
]

.

So, η2 = −g′(v)e−rt.

To analyze examples involving a discount factor, it is possible to use the current-value hamil-

tonian, H in lieu of H. By introducing the new variables mi = ηie
rt, where r is the discount rate

we can introduce the current-value version of H as follows:

H = Hert = η0f
0(x, t, u) +mf(x, t, u).

In this case we obtains, η0 < 0 and
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H = [R(K) − C(I) − g(v)] +m1(I − δK) +m2v.

Maximization of the hamiltonian with respect to the control variable v is equivalent to the

following maximization problem:

maxv [g(v) +m2v]

Assuming a quadratic cost function is quite common in the literature, so consider g(v) = α
2 v

2.

Further application of Pontriaguin Maximun Principle leads to the following differential dy-

namic system:

K̇ = I − δK

İ = v
(22)

ṁ1 = −R′
K(K) + (δ + r)m1

ṁ2 = C ′
I(I) −m1 + rm2

(23)

The steady state. From K̇ = 0, İ = 0, it is straightforward to see why I = δK and v = 0

is required for the steady state. Additional to these equations ṁ1 = 0, ṁ2 = 0, imply that

m1 = C ′
I(δK) =

R′
K(K)

δ
.

Exercise 9 This exercise is inspired by [Haunschmied, J.; Kort, P.; Hartl, R.; Feichtinger, G.].

1. Is it a process controllable?

2. Show that in case of a convex cost function C(I) and a the revenue function R(K) that is

concave, there exists at most one steady state.

3. Analyze the possibility of the existence of more than one steady state depending on the

properties of R(K) and C(I)

4. Suppose that C(I) = aI + bI2, and analyze the possibility that there exist more than one

steady state. Analyze the stability of the stationary states according to the properties of the

function R. In order to do this, it can be useful to analyze the behavior of the jacobian of

the differential system given by:

K̇ = I − δK

İ = m2

α
ṁ1 = −R′

K(K) + (δ + r)m1

ṁ2 = C ′
I(I) −m1 + rm2

.
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5. Analyze the situation when C(I) = aI + bI2, R(K) = −K2 +K + c and g(v) = α
2 v

2, here

a, b, c and α are real numbers. Describe the optimal trajectories depending of the initial

conditions.

10 The maximal principle for nonlinear non-autonomous control
process

We now turn to the most general nonlinear non-autonomous control process. We shall show here

that the maximal principle is also in this case a necessary condition for optimality.

The maximal principle for such processes will be obtained as an immediate consequence of

the theorems for the existence in non-autonomous processes, by introducing the time a s a new

coordinate xn+1 = t.

In the following analysis we assume:

1. (S) ẋ = f(x, t, u) is a control processes in Rn with f ∈ C1(Rn+1+m).

2. The initial and target sets X0 and X1 are nonempty in Rn.

3. The admissible controllers ∆ are bounded measurable functions u(t) on various finite time

intervals t0 ≤ t ≤ t1 satisfying some restraint, u(t) ∈ Ω ⊂ Rn, and each steering some point

x0 ∈ X0 to some point x1 ∈ X1.

4. The cost of controller u(t) on t0 ≤ t ≤ t, in ∆ with response x(t) is:

C(u) =

∫ t1

t0
f0(x(t), t, u(t))dt

where f0 ∈ C1(Rn+1+m).

The time augmented response to u(t) is:

x̃(t) = (x0(t), x(t), x
n+1(t)),

which is the solution of:

(S̃) ˙̃x = f̃(x̃, u)

or
ẋ0 = f0(x, xn+1, u)

ẋ = f(x, xn+1, u)

ẋn+1 = 1
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with x̃(t0) = (0, x0, t0).

The time-augmented adjoint system, based on u(t) and x̃(t), is

(Ã) ˙̃η = −η̃ ∂f̃
∂x̃ (x̃(t), u(t))

or

η̇0 = 0

η̇j = −∑n
i=0 ηi

∂f i

∂xj (x(t), t, u(t)) j = 1, ..., n

η̇n+1 = −∑n
i=0 ηi

∂f i

∂t (x(t), t, u(t))

The time augmented Hamiltonian function is:

H̃(η̃, x̃, u) = η0f
0(x, xn+1, u) + ...+ ηnf

n(x, xn+1, u) + ηn+1 and

M̃(η̃, x̃) = maxu∈Ω H̃(η̃, x̃, u).

We also write
x̃ = (x̄, xn+1), η̃ = (η̄, ηn+1)

H̃(η̃, x̃, u) = H̄(η̄, x̄, t, u) + ηn+1

M̃(η̃, x̃) = M̄(η̄, x̄, t) + ηn+1.

Now we show the existence of optimal controllers for non linear non autonomous processes

when the restraint set Ω is compact. We consider the case where the initial and target sets are

nonempty compact sets at each time varying continuously, and we consider state constraints.

Theorem 60 Consider the nonlinear process in Rn

(S) ẋ = f(x, t, u) in C1(Rn+m+1),

the data are as follows:

The initial and target sets X0(t), X1(t), are nonempty compact set at each time varying

continuously, for all t in a prescribed compact interval [t0, t1].

The control restraint set Ω(x, t) ⊂ Rm is a nonempty compact set at each time varying

continuously, (x, t) ∈ Rn × [t0, t1].

The state constraints h1(x) ≥ 0, ...hr(x) ≥ 0, are real continuous functions on Rn.

68



The family ∆ of admissible controllers consists of all measurable functions on various time

intervals [t0, t1] which associate response steering x(t0) ∈ X(t0) to x(t1) ∈ X(t1) and u(t) ∈
Ω(x, t).

The cost functional for each u ∈ ∆ is

C(u) = g(x(t1)) +

∫ t1

t0
f0(x(t), t, u(t))dt+ max

t0≤t≤t1
γ(x(t))

where f0 ∈ C1(Rn+m+1), and g(x) and γ(x) are continuous in Rn.

Assume

• (a) There exists a uniform bond |x(t)| ≤ b on [t0, t1].

• (b) The extended velocity set Ṽ (x, t) =
{

f0(x(t), t, u(t)), f(x(t), t, u(t)) : u ∈ Ω(x, t)
}

is con-

vex on Rn+1 for each fixed (x, t).

Then there exists an optimal controller u∗(t) on t0 ≤ t ≤ t1 in ∆ minimizing C(u).

Proof: The proof of this theorem is given in [Lee, E.; Markus, L.] 260. (Idea of the demonstra-

tion) Since Ω(x, t) lies within a bounded set in Rm and |x| ≤ b all u(t) ∈ ∆ and x(t) are uniformly

bounded. Thus there is a finite lower bound for the costs of admissible controllers. Choose now a

sequence of controllers uk(t) ∈ ∆ with C(uk) decreasing monotonically to infC(u) ∀u ∈ ∆. Now

we select a subsequence uk′ . We must show that this subsequence leads to an admissible controller

u∗ ∈ ∆ realizing the minimun cost. To prove this we need the Ascoli’s theorem and the weak

convergence of uk(t) ∈ Ω(x, t).

Theorem 61 Consider the process in Rn (S) ẋ = f(x, t, u).

Let ∆ be all bounded measurable controllers u(t) ∈ Ω ⊆ Rn, on various finite time intervals

t0 ≤ t ≤ t1, steering some point x0 ∈ X0 to some point x1 ∈ X1 as above with cost

c(u) =

∫ t1

t0
f0(x(t), t, u(t))dt.

If u∗(t) on t∗0 ≤ t ≤ t∗1 with time-augmented response x̃∗(t) is optimal in ∆, then there exists

a non trivial time-augmented adjoint response η̃∗(t) of Ã such that:

H̃(η̃∗(t), x̃∗(t), u∗(t)) = M̃(η̃∗, x̃∗(t)) a.e.

and

M̃(η̃∗, x̃∗(t)) ≡ 0, η0 ≤ 0, everywhere on t∗0 ≤ t ≤ t∗1.
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These conclusions can also be written

H̄(η̄∗(t), x̄∗(t), t, u∗(t)) = M̄(η̄∗(t), x̄∗(t), t); a.e.

and

M̄(η̄∗(t), x̄∗(t), t) ≡
∫ t1

t0

n
∑

i=0

ηi
∂fi

∂t
(x∗(s), s, u∗(s))ds.

The transversality conditions yield

η∗n+1(t
∗
0) = η∗n+1(t

∗
1) = 0,

so,

M̄η̄∗(t∗1), x̄
∗(t∗1), t

∗
1) = 0.

If X0 and X1 (or just one of them) are manifolds in Rn with tangent spaces T0, and T1 at x∗0 and

x∗1, respectively, then η̄∗(t) can be selected to satisfy the further conditions (or at just one them)

η∗(t∗0) transv T0, η∗(t∗1) transv T1.

Proof: In the space Rn+1 of (x, xn+1) the control problem:

ẋ = f(x, xn+1, u)

ẋn+1 = 1

with cost:

C(u) =

∫ t1

t0
f0(x(t), xn+1, u(t))dt

is an autonomous process as considered before. The initial and target sets are cylinders X0 ×R1

and X1 × R1. Since ẋn+1 = 1, each controller u(t) of this autonomous problem steers (x0, t0) to

(x1, t1).

From the theorem for the autonomous process we obtain the necessary conditions

H̃(η̃∗(t), x̃∗(t), u∗(t)) = M̃(η̃∗, x̃∗(t)) a.e.

and

M̃(η̃∗, x̃∗(t)) ≡ 0, η0 ≤ 0, everywhere on t∗0 ≤ t ≤ t∗1.

The assertions H̄ = M̄ and

M̄ =

∫ t1

t0

n
∑

i=0

ηi
∂fi

∂t
(x∗(s), s, u∗(s))ds
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follow directly from the definitions preceding this theorem and the calculation

η∗(t1) = −
∫ t1

t0

n
∑

i=0

ηi
∂fi

∂t
(x∗(s), s, u∗(s))ds+ η∗n+1(t

∗
0).

Transverslaty conditions follows directly. In fact η̃∗(t) can be chosen in such a way that

(η∗(ti), ηn+1(ti)) is ortogonal to the line x∗i ×R1 i = 1, 2. This means that ηn+1(ti) = 0, i = 1, 2.

Remark 62 1. For the nonoautonomous problem but fixed initial t0 allowing various final

times t > t1, the necessary conditions and transversality conditions are the same, with the

exception that we can not assert that η∗t0 vanishes.

2. We consider now the case of varying initial and target sets.

The maximal principle holds as before. H̃ = M̃ and M̃ = 0 with η0 ≤ 0. Again implies

H̄ = M̄ and M̄ =
∫ t1
t0

∑n
i=0 ηi

∂fi

∂t (x∗(s), s, u∗(s))ds

The transversality conditions assert that:

(η∗(ti), ηn+1(ti)) is transversal to Xi(t
∗
i ) at (x∗i , ti) i = 1, 2, in Rn+1.

If ti is fixed only the transversal condition at tj is fulfilled, i 6= j, i, j ∈ {1, 2}.

The transversality conditions can be written as:

η∗(t∗i )qi + η∗n+1(t
∗
i ) = 0 i = 1, 2.

where qi = ẋi(t
∗
i ) is the velocity of the target (initial) point. In this case

M̄(η̄∗(ti(, x̄
∗(ti), t

∗
i ) = η∗(t∗i )qi.

11 Sufficient condition for an autonomous process in Rn.

We now turn to sufficiency conditions for an optimal control

Consider a control precess in Rn, ẋ = f(x, t, u). The cost functional is

C(u) = g(x(T )) +

∫ T

t0
f0(x(t), t, u(t))dt

where g, f, f0 are in class C1. The admissible controllers u(t) are all bounded measurablem−vector
functions on the fixed interval [t0, T ] steering x0 to some point in T and lying in some nonempty

restraint set Ω ⊂ Rn.
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In the next two subsections we use a dynamic argument to derive the maximal principle. Al-

though the arguments are mathematically correct, the assumptions are such that most interesting

problems are ruled out. The purpose of these subsections is to give some insight to the concept

of the feedback control or optimal synthesis.

In the third subsection we shall give a sufficient criterium for optimality.

11.1 The method of dynamic programming

We shall seek a method for constructing a successful control for each initial state which can be

steered to the target, by a well determined pair (x(s), u(s)), t0 ≤ s ≤ T in such way that for some

function u0(η, s, x) = u(s) maximize H(η, x, t, u) for each fixed (η, x, t).

It is often said that in this case a synthesis has been effected in C, and that u0(η, s, x) is a

feedback control function in C.

Definition 63 The control process in Rn, ẋ = f(x, t, u) with restraint set Ω ∈ Rm and the

hamiltonian function:

H(η, x, t, u) = −f0(x, t, u) + ηf(x, t, u).

has a feedback control u0(η, x, t) in case:

H0(η, x, t) = max
u∈Ω

H(η, x, t, u) = H(η, x, t, u0(η, x, t)).

We shall seek a feedback control u0(η, x, t) that maximizes

H(η, x, t, u) = −f0(x, t, u) + ηf(x, t, u),

for each (η, x, t) ∈ Rn+n+1

For each controller u(t) on [t0, T ] with corresponding response x(t) and and steering x0 to

x(T ) ∈ G. The cost is

C(u) =

∫ t0+δ

t0
f0(x, t, u)dt+

∫ T

t0+δ
f0(x, t, u)dt

where δ > 0 is an arbitrarily small number. Suppose that the minimal cost is; V (x0, t0) and

V (x, t) is C2 for x ∈ Rn and t0 ≤ t ≤ T then the method of dynamic programming asserts that:

V (x0, t0) = min
u∈Ω

{

∫ t0+δ

t0
f0(x, t, u)dt+ V (x(t0 + δ), t0 + δ)

}
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Expanding the above functions in terms of the small δ

V (x0, t0) = min
u∈Ω

{

f0(x0, t0, u)δ + V (x0.t0) + δ[Vx(x0, t0)f + Vt]
}

.

This yields the functional equation for V (x, t)

−Vt(x, t) = min
u∈Ω

{

f0(x, t, u) + Vx(x, t)f(x, t)
}

.

If we write S(x, t) = −V (x, t) then

St = −max
u∈Ω

[−f0(x, t, u) + Sxf(x, t, u)]

or St = −H0(Sx, x, t). This equation is sometimes called the Bellman equation.

Thus the negative cost S(x, t) satisfies the Hamilton-Jacobi partial differential equation:

∂S

∂t
+H0

(

∂S

∂x
, x, t

)

= 0

with boundary data: S(x, t) = −g(x) for x ∈ G.

11.2 The Hamilton-Jacobi equation

Theorem 64 Assume that for the optimal control problem with the conditions given above, there

exists a feedback control u0(η, x, t) in C1 in Rn+n+1 u0(η, x, t) such that: H0(η, x, t) = H(η, x, t, u0(η, x, t))

(a) Let S(x, t) in C2 for x ∈ Rn and t ≤ T be the solution of the Hamilton-Jacobi equation:

St +H0(Sx, x, t) = 0, with S(x, T ) = g(x) for x ∈ G.

Assume that the control law: ū(x.t) = u0(Sx(x, t), x, t) determines a response x̄(t) steering

(x0, t0) to (G,T ). Then ū(t) = ū(x̄(t), t) is an optimal controller, with cost:

C(ū(t)) = −S(x0, t0)

(b) On the other hand, assume that there exists an optimal controller for each initial state

x0 ∈ Rn and arbitrary t0 ≤ T (T fixed), leading to the target set T with minimal cost

V (x0, t0) ∈ C2. Then S(x, t) = −V (x, t) satisfies

St +H0(Sx, x, t) = 0, with S(x, T ) = g(x) for x ∈ G.

Remark 65 The existence of an appropriate solution S(x, t) of the Hamilton-Jacobi equation, in

a region W of the (x, t) space, is sufficient for the construction of a controller that is optimal

among all those with responses in W.
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Proof: 350 [Lee, E.; Markus, L.].

Corollary 66 Consider the autonomous process in Rn, ẋ = f(x, u) with initial state x0 and

target G = Rn. The cost functional is

C(u) = g(x(T )) +

∫ T

t0
f0(x(t), t, u(t))dt

where g, f, f0 are in class C1. The admissible controllers u(t) are all bounded measurable m −
vectors functions on the fixed interval [t0, T ] with values in the restraint set Ω ⊂ Rn Assume:

(a) There exists a feedback control u0(η, x) in C1 ∈ Rn+n, which yields the unique point u0 in

Ω where:

H0(η, x) = max
u∈Ω

[−f0 + ηf ] = H(η, x, u0(η, x))

(b) Ω is either an open set or else the closure of an open set with C1 smooth boundary in Rn.

Then an optimal controller u∗(t) with response x∗(t) is necessarily associate with and adjoint

response η∗(t) that satisfies the Hamiltonian system

ẋi =
∂H

∂ηi
, η̇i =

∂H

∂xi
, i = 1, ..., n

with boundary conditions x∗(0) = x0, η∗(T ) = 0 and that maximal principle

H0(η∗(t), x∗(t)) = H(η∗(t), x∗(t), u∗(t))

holds almost everywhere in 0 ≤ t ≤ T.

Proof: We know that the optimal controller u∗(t) has response x∗(t) and η∗(t) satisfying:

ẋi =
∂H

∂ηi
(η, x, u∗(t)), η̇i = −∂H

∂xi
(η, x, u∗(t)) i = 1, ..., n.

Note that transversality conditions allow us to assume η∗ ≡ −1 and η(T ) = 0.

The maximal principle also holds:

H(u∗(t)) = max
u∈Ω

H(η∗(t), x∗(t), u) = H0(η∗(t), x∗(t)), a.e.

so u∗(t) = u0(η∗(t), x∗(t)).

We must show that (x∗(t), η∗(t)) is also a solution of the differential hamiltonian differential

system specified by the function H0(η, x). For this compute the derivatives

∂H

∂η
(η, x) =

∂H

∂η
(η, x, u0) +

∂H

∂u
(η, x, u0)

∂u0

∂η
(η, x)
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and
∂H

∂x
(η, x) =

∂H

∂x
(η, x, u0) +

∂H

∂u
(η, x, u0)

∂u0

∂x
(η, x)

If u∗(t) lies in the interior to Ω then (∂H/∂u) = 0 at (η∗(t), x∗(t), u) = (η∗, x∗, u0((η∗, x∗)),

thus the corollary is proved.

Suppose now that a point (η(t1), x(t1)) is a limit of points (η, x) in Rm+n at which u0(η, x)

lies in the interior of Ω then the corollary follows from the continuity considerations.

In other case, there exists a neighborhood N of (η(t1), x(t1)) such that for all point (η, x) in N

u0(η, x) lies in the boundary of Ω : In this case observe that ∂H
∂u (η, x, u0(η, x) is a normal vector

to the boundary of Ω. And the vectors ∂u0

∂η (η, x) and ∂u0

∂x (η, x) are tangent ro the boundary of Ω.

Then the corollary follows.

Remark 67 Under the hypotheses of the corollary , the search for an optimal control is reduced

to the solution of a nonlinear problem maxu∈ΩH(x, η, u) for each fixed value of x and η.

11.3 Sufficient condition for a locally optimal controller.

The sufficiency theorem for optimality will involve the second variation of the cost functional and

will yield a local rather than global optimal controller.

The maximal principle for an autonomous control process in Rn

ẋ = f(x, u).

with initial state x(0) = x0 and cost functional

C(u) =

∫ T

0
f0(x, u)dt

with admissible controllers u(t) ∈ Ω are bounded and measurable functions on the fixed time finite

interval 0 ≤ t ≤ T,

H(η∗(t), x∗(t), u∗(t)) = max
u∈Ω

H(η∗(t), x∗(t), u)

is a necessary condition for the optimality of u∗(t), where the responses x∗(t) and η∗(t) satisfy:

ẋ = ∂H
∂η (η, x, u∗(t))

η̇ = −∂H
∂x (η, x, u∗(t))

with x(0) = x0, η(T ) = 0. The hamiltonian function is here:

H(η∗(t), x∗(t), u∗(t)) = −f0(x, u) + ηf(x, u).
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As we have seen the maximal principle, together with some convexity conditions on f 0(x, u)

and f(x, u) yields a sufficient condition for an optimal controller u∗(t). We shall replace these

global conditions by local convexity conditions asserted in terms of second derivatives of f 0 and f

and the we shall seek a sufficient condition for a locally optimal controller.

Definition 68 A controller u∗(t) is locally optimal in case there exists an ε > 0 such that: for

every admissible controller u(t) with

|u∗(t) − u(t)| ≤ ε on 0 ≤ t ≤ T,

the cost is C(u) ≥ C(u∗).

Since we impose local convexity conditions, it is reasonable to assume that the candidate for

optimality u∗(t) lies everywhere in the interior of the restraint set Ω. Then the maximal principle

asserts that:
∂H

∂x
(η∗(t), x∗(t), u∗(t)) = 0.

Theorem 69 Sufficient conditions for optimal control. As we have seen the maximal prin-

ciple, together with some convexity hypotheses on f 0 and f yields a sufficient condition for an

optimal controller. In the next theorem we replace these global convexity hypotheses by local con-

vexity conditions, and we shall seek a sufficient condition for a locally optimal controller.

Consider the autonomous process in Rn,

ẋ = f(x, u)

with initial state x(0) = x0 and cost

C(u) =

∫ T

0
f0(x, u)dt

where f and f0 are in C2 in Rn+m. The admissible controllers are each bounded and measurable

functions u(t) on the fixed interval 0 ≤ t ≤ T Let u∗(t) be a controller interior to Ω and assume:

(1) ∂H
∂u (η∗(t), x∗(t), u∗(t)) = 0 almost always

where: H(η, x, u) = −f0(x, u) + ηf(x, u) and

(2) (η∗, x∗) the (n+ 1) vector η̄(t) = (ηα(t)) on 0 ≤ t ≤ T is the adjoint response, satisfy

ẋα = ∂H
∂ηα

= fα(x(t), u(t)), α = 0, 1, ..., n.

η̇α = − ∂H̄
∂xα = −η0

∂f0

∂xα (x, u(t)) − . . .− ηn
∂fn

∂xα (x, u(t))

x(0) = x0, η(T ) = 0.
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We define

(3)

f0
xxp

2 + 2f0
xupq + f0

uuq
2 ≥ c(p2 + q2)

for arbitrary real constant n and m-vectors p and q and for a fixed constant c > 0, where

these second partial derivatives are evaluated at almost every point (x∗(t), u∗(t)).

This implies that the symmetric matrix is positive definite

(

f0
xx f0

xu

f0
xu f0

uu

)

> 0

(4) Either of the following two conditions hold along (x∗(t), u∗(t))

(α)) f0
x = 0.

(α) fxx = fxu = fuu = 0

Then u∗(t) is a locally optimal controller.

Note that u(t) is called a maximal controller even though it yields a minimun cost.

Proof: Vary the controller u∗(t) to u(t) = u∗(t) + εθ(t), The response x(t) is then defined and

it is easy to compute |x∗(t) − x(t)| ≡ |∆x(t)| ≤ k1ε where k1 is a constant depending only on the

given data. Also:

∆x(t) =
∫ t
0

[

∂f
∂x (x∗, u∗)(x∗(s) − x(s)) + ∂f

∂u(x∗, u∗)εθ(s)
]

ds

+

∫ t

0

[

¯∂2f

∂x2)
∆x2 + 2

¯∂2f

∂x∂u
(∆x)(εθ) +

¯∂2f

∂u2
(εθ)2

]

ds.

Here the bar notation indicates that the second derivatives are evaluated at some point near

(x∗(s), u∗(s)).

If we define ψ(t) by:

ψ̇ =
∂f

∂x
(x∗, u∗)ψ +

∂f

∂u
(x∗, u∗)εθ(s)

with ψ(0) = 0, then

∆x− εψ(t) =

∫ t

0

[

∂f

∂x
(x∗, u∗)(∆x− εψ(s)) +

¯∂2f

∂x2)
∆x2 + 2

¯∂2f

∂x∂u
(∆x)(εθ) +

¯∂2f

∂u2
(εθ)2

]

ds.

Hence: ∆(x) = εψ(t) + k2(t)ε
2, where the function k2(t) ≤ k2.
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Now compute the variation in the cost integral due to the control variation θ(t).

∆C = C(u∗ + εθ) − C(u∗) =
∫ t
0

[

∂f0

∂x (x∗, u∗)(x∗(s) − x(s)) + ∂f0

∂u (x∗, u∗)εθ(s)
]

ds +

∫ t

0

[

¯∂2f0

∂x2)
∆x2 + 2

¯∂2f0

∂x∂u
(∆x)(εθ) +

¯∂2f0

∂u2
(εθ)2

]

ds.

The first variation of C(u∗) is (∆C up to terms of order ε)

δC = ε

∫ t

0

[

∂f0

∂x
(x∗, u∗)ψ(s) +

∂f0

∂u
(x∗, u∗)theta(s)

]

ds.

Use ∂f0/∂x = η̇∗ + η∗(∂f/∂x)(x+, u∗) and integrate by parts:

δC = ε

∫ T

0
−∂H
∂u

(η∗, x∗, u∗)θ(s)ds = 0

The hypothesis (3) asserts that:

¯∂2f0

∂x2)
∆x2 + 2

¯∂2f0

∂x∂u
(∆x)(εθ) +

¯∂2f0

∂u2
(εθ)2 ≥ c

2
(|∆x|2 + |εθ|2).

(α)) If f0
x = 0 on (x∗(t), u∗(t)) then

∆C ≥ c

2
ε2
∫ T

0
|θ(t)|2dt > 0

• In other case, there appears the extra complication in he second order terms of ∆x − εψ

arising in the simplifying of the expression for the first variation of δC.

(β)) In this case

∆C ≥ Tk2ε
2 +

c

2
ε2
∫ T

0
|θ(t)|2dt > 0

11.4 Examples

In order to clarify the nature of the maximal principle let us consider the statement of the principle

for autonomous linear control problem.

• ẋ = Ax+Bu for real constant n× n matrix A and n×m matrix B

• Initial point x0 and target T as the origin

• Compact convex restraint set Ω ⊂ Rn

• C(u) =
∫ t1
0 dt = t1 the time duration of control.
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In this case the Hamiltonian function is

H̄(η̄, x̄, u) = η0 + η[Ax+Bu] = η0 +H(x; η, u)

where η is an n-row vector, and η(Ax+Bu) = H. Then:

M̄(η̄, x̄) = η0 + ηAx+ max
u∈Ω

ηBu = η0 +M(η, x),

where M = maxu∈ΩH.

If u(t) on 0 ≤ t ≤ t1 is maximal, then the response x(t) and adjoint response η(t) satisfy:

ẋ = Ax+Bu
η̇ = −ηA,

and x0 = t, η0 = constant.

The maximal principle requires that:

η0 + η(t)Ax(t) + η(t)Bu(t) = η0 + η(t)Ax(t) + max
u∈Ω

η(t)Bu(t)

or

η(t)Bu(t) = max
u∈Ω

η(t)Bu(t)

almost everywhere on 0 ≤ t ≤ t1.

The second condition of the maximal principle asserts that:

η0 + η(t)Ax(t) + max
u∈Ω

η(t)Bu(t) = 0

everywhere.

If η(t) vanished at one point on 0 ≤ t ≤ t1 then it vanishes identically since its a solution of

the homogeneous linear system η̇ = −ηA.
But if n(t) vanished identically, then η0 = 0 and this contradicts the non-vanishing of the

(n+ 1) vector η̄.

Therefore η(t) is nowhere zero.

In this case, we can ignore the response components x0 and η0 = constant, and find the

maximal controller in terms of H(η, x, u) and M(η, x).

It is important to notice that the adjoint response η(t) satisfies the fixed differential system

η̇ = −ηA whose coefficient does not depend on the control u(t) or the response x(t). Thus η(t) is

entirely determined by its initial conditions.

Consider the important case in where Ω is the m-cube |uj | ≤ 1.
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Then

η(t)Bu(t) = max
u∈Ω

η(t)Bu(t)

means that each component of the maximal controller ui(t) should be chosen as +1 or −1

according to the sign of the corresponding component of the vector η(t)B. That is the maximal

controller must satisfy

u(t) = [sign(η(t)B)]T .

almost everywhere.

Example 70 Let A =

[

0 1
0 0

]

and B =

[

0 0
0 1

]

• ẋ = Ax+Bu→
{

ẋ1 = x2

ẋ2 = u

• η̇ = −ηA→
{

η̇1 = 0
η̇2 = −η1

• u(t) = sgn(η(t)B) = sgn(η2(t)).

The optimal response from x0 to the origin must describe an arc of solution of the extreme

differential system:

• u = 1 →
{

ẋ1 = x2

ẋ2 = −1
[A]

• u = −1 →
{

ẋ1 = x2

ẋ2 = 1
[B]

Since the extreme differential systems [A] and [B] are autonomous we can construct extreme

responses ending at the origin, using a process that shifts as t increases.

12 Controllability of non linear processes

Theorem 71 Consider the control process in Rn

ẋ = f(x, u) in C1 inRn+m,

with u = 0 in the interior of the restraint set Ω ⊂ Rm.

Assume that:

• (a) f(0, 0) = 0;
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• (b) rank[B,AB, ..., An−1B] = n, where A = fx(0, 0), B = fu(0, 0).

Then the domain of controllability C = Rn.

Proof: (Idea) Consider the time reversed differential system:

ẋ = −f(x, u),

and then it is possible to prove that the set of endpoints x(1) of responses of the time reversed

system initiating at x(0) = 0, covers an open neighborhood N about x = 0. Then, by reversing

the time sense again on each appropriate controller, we note that each point in N can be steered

to the origin along a solution of the original system. The proof is giving in [Lee, E.; Markus, L.]

pag. 366.

13 Some applications to economics: Intertemporal optimization

The tools of calculus of variations and optimal control theory have been used to analyze many

dynamic questions in economics. An early application of these tools to the topic of optimal

economic growth was due to Ramsey (1928). Then the problem was almost forgotten for some

time probably as a result of the Great Depression and the war. Then in 1950s there was a revival

of the problem, (Koopmans and Cass). In the early 1960s Cass formulated the problem in terms of

Pontriaguim’ s maximun principle. Solow have summarized more recently the work using modern

control theory.

Mathematically, optimal control theory is closely related with the calculus of variations, op-

timal control theory incorporates general constraints imposed on the problem in a direct and

natural way. Pontriaguin and his associates are chiefly responsible for this approach.

13.1 An illustrative example:

The optimal growth problem.

• The capital per unit of labor k(t) = K(t)/L(t).

• k̇(t) represents the rate of change in capital per unit of labor.

• The initial value of the capital K(0) = K0.

• The consumption per unit of labor c(t) = C(t)/L(t)

• Labor growths at the constant proportional rate n. So L(t) = L0e
nt.
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• The function of production is of the form Y (t) = F (K(t), L(t)) homogeneous of degree one.

• So, with the usual notation q(t) = f(k(t)).

• We suppose a depreciation proportional to the capital stock θK(t).

• The condition of equilibrium is Y (t) = C(t) + I(t) then it follows:

dK(t)

dt
= ˙K(t) = F (K(t), L(t)) − C(t) − θK(t).

As, k(t) = K(t)/L(t) substituting in the equilibrium condition, we obtain

k̇ = f(k(t)) − c(t) − λk(t)

where λ = θ + n.

• It is assumed that:

f ′(k(t)) > 0, f ′′(k(t)) < 0, f(0) = 0, f(∞) = ∞,

lim
k→0

f ′(k(t)) = ∞, lim
k→∞

f ′(k(t)) = 0.

The general optimal control problem with finite horizon is given by: Maximize the welfare

function

max
c

∫ T

0
u(c(t))e−δtdt

subject to:
k̇ = f(k(t)) − c(t) − λk(t) (a)

0 ≤ c(t) ≤ f(k(t)) (b)

k(0) = k0, k(T ) = kT k(t) ≥ 0, c(t) ≥ 0, (c)

(24)

where δ is a discount rate, and utility per unit of consumption is given by u(c(t)) u′(c) >

0, u′′(c) < 0, represent positive but diminishing marginal utility (concavity of the utility function).

Observe that in the above problem there appears joint with the initial condition (24 c), a new

equation (24 b)that restraint the set of possible solutions. The control variable C is confined to

every point of time to the control region [0, f(k)], which is just another way of saying that the

marginal propensity tu consume is restricted to the interval [0, 1].

By coincidence, it may happen that when we ignore this type of constraints and solve the given

problem as an unconstrained one, the optimal path lies entirely in the permissible area. In this
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event, the constraint is trivial. But we would expect the unconstrained path optimal to violate

the constraint.We shall consider this situation only further on when we consider the Hesteness’s

theorem.

We can consider this problem as a Control Optimal Problem; whose Hamiltonian function is

defined by:

H̄(k, c, t, η) = η0u(c(t))e
−δt + η(t) [f(k(t)) − c(t) − λk(t)]

The maximal principle implies

η0u(c(t))e
−δt + η(t)

[

f(k̄(t)) − c(t) − λk̄(t)
]

≤ η0u(c̄(t))e
−δt + η(t)

[

f(k̄(t)) − c̄(t) − λk̄(t)
]

for all c(t) ≥ 0, 0 ≤ t ≤ T.

(25)

Now if η0 = 0 (recall that η0 is a constant) then η(t)c(t) ≥ η(t)c̄(t) for all c(t) ≥ 0, 0 ≤ t ≤ T.

Since η0 and η(t) cannot vanish simultaneously, we obtain η(t) 6≡ 0.

• If η(t) > 0, it follows that c̄(t) ≤ c(t) for all admissible c(t). Set c(t) ≡ 0 then it follows that

c̄(t) ≡ 0.

• If we impose the Koopmans condition limx→0,x>0 u(x) = −∞ then c̄(t) = 0 ∀t cannot be

optimal. This assumptions means the existence of a strong incentive to avoid periods of very

low consumption as much as possible. If c(t) = 0 for any small time interval, the objective

integral diverges to −∞. In essence this condition guarantees an interior solution.

However we don’t need this condition to guarantee that c(t) ≡ 0 is not optimal. To see this

notice that from the conditions imposed to the production function it is possible to obtain

c(t) ≥ 0 and this path is better than c̄(t) ≡ 0.

• Alternatively we can justified this by means of the Inada condition: limx→0,x>0 u
′(x) = ∞

• If η(t) < 0, it follows that c̄(t) ≥ c(t); for all c(t) ≥ 0, thus we must consider as possible

optimal solution c̄(t) = f(k̄(t)) where k̄(t)) = k0e
−λt. If at t = T the equality kT =0 e−λT

follows then (c̄, k̄) is the optimal solution.

So, a solution obtained from η = 0 exists in very particular cases. By another part recall that we

are using a necessary condition for the an optimal controller, but non-sufficient. Observe that this

solution can be discarded if we do not impose the restraint (24 b). This kind of solutions suppose

that there is not investment in capital in the predicted term of the process.
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Let us now consider the case η0 > 0. We can choose η0 = 1 without loss of generality. The

inequality(25) can be rewritten as:

[u(c̄(t)) − u(c(t))] e−δt ≥ η(t)c̄(t) − η(t)c(t) (26)

this inequality and the Koopman’s condition implies that c̄(t) ≥ 0, ∀t, 0 ≤ t ≤ T. So that we

have an interior solution.

The inequality (26) means that the consumer maximize his satisfaction from the consumption

along the optimal path for each instant of time, over those consumptions whose values do not

exceed the value at implicit prices η(t) of the optimal consumption c̄(t) because we obtain that

[u(c̄(t)) − u(c(t))] ≥ 0

for all c(t) ≥ 0, 0 ≤ t ≤ T, such that η(t) [c̄(t) − c(t)] ≥ 0

And since

[u(c̄(t)) − u(c(t))] ≤ 0

for all c(t) ≥ 0, 0 ≤ t ≤ T, then η(t) [c̄(t) − c(t)] ≤ 0. Then it follows that the consumer minimizes

at each instant his expenditure over those consumption paths which would give him satisfaction,

that is higher or equal than the satisfaction obtained form ¯c(t).

In the above interpretations, it is clear that the Pontriaguin auxiliary variable, η(t) plays the

role of the implicit (or shadow) price.

The hamiltonian is seem to contain a hump, with its peak occurring at a c between c = 0 and

c = c1, where c1 is the solution of the equation f(k(t))− c(t)−λk(t) = 0 it follows that c1 < f(k).

Hence the maximun corresponds to a value of c in the interior of the control region [0, f(k)]. We

can acordingly find the maximun of H by setting

∂H

∂c
= u′(c)e−δt − η(t) = 0. (27)

From this we obtain the condition u′(c) = ηeδt which states that the optimal marginal utility of per-

capita consumption should be equal to the shadow price of capital amplified by the exponencial eδt.

The condition on the utility function guarantee the fact tha in this point H is indeed maximized.

The Hamiltonian system for the present problem is:

k̇ = f(k(t)) − (θ + n)k(t) − c(t)
(

= ∂H̄
∂η

)

η̇ = −η [f ′(k(t)) − λ]
(

= ∂H̄
∂k

)

And from the maximal principle: ∂H̄
∂c = 0 it follows:

η(t) = u′[c(t)]e−δt. (28)
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Since u′[x(t)] > 0 we obtain:

ċ = −u
′′(c)

u′(c)

[

∂f

∂k
(k(t)) − (θ + n+ δ)

]

Define

P (t) = η
[

f ′(k(t)) − λ
]

.

That is P (t) is the present value of the net marginal productivity at time t it verify η̇ = −P (t).

13.2 Transversality conditions

Now suppose that we alter the above problem in such a way that the end state k(T ) is not a priori

specified, but T is fixed. With this modification, the above analysis hold as it is, except for two

crucial points:

1. We do not have to prove that η0 > 0 since η0 = 1 for all t,and

2. the transversality condition on η(T ) = 0 (see theorem (69) ) implies u′(c(T ))e−δT = 0. As

long as T is finite the condition u′(c) > 0 (no satiation on consumption) should be modified.

See theorems (54) and (66).

However following, [Arrow, K.; Hurwitz, L.; Uzawa, H.] we can modify the objective functional

as follows:
∫ T

0
u(c(t))e−δtdt+ k(T )

and we maintain the no satiation condition.

The transversality condition in this case should be rewritten as:

η(T ) ≥ 0, and η(T )k(T ) = 0,

see section (13.2). So, u′(c(T ))e−ρt > 0 and u′(x(T ))k(T )e−ρt = 0.

Hence if we have u′(c(T )) > 0 for all x so that η(T ) > 0 we must have k(T ) = 0, this means

that is always better to eat up the capital to increase consumption for some period of time and

leave nothing after the planning horizon. Thus k(0) = k0 and k(T ) = 0 specifies the two boundary

conditions for the Hamiltonian system.

13.3 The Model with infinite horizon

Subsection (9.5) is the reference for the following application.
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Maximize the welfare function

max
c

∫ ∞

0
u(c(t))e−δtdt

subject to:
k̇ = f(k(t)) − c(t) − λk(t) (a)

0 ≤ c(t) ≤ f(k(t)) (b)

k(0) = k0, k(t) ≥ 0, c(t) ≥ 0, (c)

(29)

where δ is a discount rate, and utility per unit of consumption is given by u(c(t)) u′(c(t)) >

0, u′′(c(t)) < 0, represent positive but diminishing marginal utility (concavity of the utility func-

tion).

As long as we do not specify the terminal stock k(T ) when t → ∞, the problem is identical

with the usual growth problem, except in one important aspect: How should the transversality

condition be modified for the infinite horizon problem ? Observe that when T → ∞ the problem

of non satiation discussed above does not arise, since η(T ) = 0 when T → ∞.

Although the condition η(T ) → 0 as T → ∞ may appear to be a natural extension of the

transversality condition η(T ) = 0 for finite T, counterexamples can be shown where this is not

true. However this condition is necessary and sufficient for linear systems, see section(7.6)

The real question here is whether such a condition indeed constitutes a condition for optimality.

In general, appropriate conditions for the infinite horizon problem, which replace the transversality

conditions for the finite horizon problem, are not known.

The question we have to ask is What is a transversality condition at infinite ?

In [Arrow, K.; Hurwitz, L.; Uzawa, H.] is pointed out the following condition, as long as δ > 0 :

lim
T→∞

η(T ) ≥ 0, and lim
T→∞

η(T )k(T ) = 0.

However this condition is false when δ = 0 The condition limT→∞ u′(c(T ))k(T ) = 0 does not hold

in general. When δ = 0 the following condition is necessary:

lim
T→∞

u′(c(T )) = u′(c1) and lim
T→∞

k(T ) = k1, (30)

or

lim
T→∞

η(T ) = u(c1) and lim
T→∞

η(T )k(T ) = u′(c1)k1. (31)

Observe that condition 31 is a counterexample to the conjecture that the transversality con-

dition is simply extended to the infinite horizon problem by setting T → ∞
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13.4 The steady state

In a steady state we should have k̇ = 0. It follows that the capital per unit of labor will be constant

if k̇ = 0, this will be truth on a curve ct(k) = ft(k) + (θ + n)kt, so that ct(k) ≤ ft(k).

This curve has the following characteristics:

• It pass by the origin, k = c = 0, with infinite derivative, because limk→0f
′(k(t)) = ∞

• It has a maximun at k∗ where ∂f
∂k (k∗)− θ−n = 0, that corresponds to the Golden Ruler. At

this point the marginal productivity of capital equalizes the rate of the population growth

and a maximization of the consumption per unit of labor is reached.

The condition of the stationary consumption per unite of labor ċ(t) = 0, is reached at the

point k̄ where
∂f

∂k
(k̄) = (θ + n+ δ),

this point corresponds to the modified Golden Rule .

• Consider the plans whose axes are k and c; the condition of the stationary evolution is

satisfied in the intersection of the vertical straightline trough k̄ and the curve given by

ct(k) = ft(k) − (θ + n)kt.

• For each k0 there exists a unique initial level c0 on the consumption, and an unique trajectory

that starting at this initial point, reaches the stationary point in an infinite time.

• A point like this is called a saddle-point, and the path is called the modified golden rule

path.

Note that since η(t) = u′[c(t)]e−δt ( the maximal principle) and specially u′′(c) < 0 it follows

that the demand function is

c̄(t) = g[p(t)]

where:

p(t) = η(t)eδt = u′(c̄(t)), g ≡ (u′)−1, g′ < 0, for all p.

The condition limx→0,x>0 u
′(x) = ∞ allows us to assert that the solution is an interior point,

that is: c̄(t) > 0 for all t.

We can rewrite the Hamiltonian system as

˙̄k(t) = f(k̄(t)) − λk̄(t) − g(p(t)) (32)

ṗ = −p(t)[f ′(K̄(t)) − (λ+ δ)] (33)
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13.5 The saddle path

For any positive initial level of k there is a unique initial level of c that is consistent with households’

intertemporal optimization. The function giving this initial c as a function of k is know as the

saddle path. For any starting values of k, the initial c must be the value on the saddle path. The

economy the moves along this saddle path to point. E..

A natural question is whether the equilibrium of this economy represents a desirable outcome.

The household’s optimization problem requires that paths where capital stock becomes negative

be ruled out, and also path that cause consumption to approach zero must be ruled out because

they do not maximize household’s utility. In short the solution is for the initial value of c to be

given by the value on the saddle path, and for c and k moving along the saddle path.

Once the economy has converged to the saddle point E capital, output, and consumption per

unit of labor are constant. Since y and c are constant, the saving rate (y − c)/y, is also constant.

The capital stock, total output and consumption growth at rate n. The effectiveness of labor

remains the only possible source of persistent growth in output per worker. We shall consider this

point further on. See section (13.8).

13.6 Halkin’s counterexample for the condition: limT→∞ η(T ) = 0.

In view of the importance of the problem, we show in this section that the condition that η(T ) = 0

as T → ∞ may fail to hold for the infinite horizon problem.

Consider a control problem which maximizes:
∫ ∞

0
[1 − y(t)]v(t)dt

subject to ẏ(t) = [1 − y(t)]v(t), −1 ≤ v(t) ≤ 1, and y(0) = 0.

Observe that
∫ ∞

0
[1 − y(t)]v(t)dt =

∫ ∞

0
ẏ(t)dt = lim

t→∞
y(t).

By direct integration y(t) = 1−e−V (t) where V (t) =
∫ T
0 v(τ)dτ. Hence y(t) < 1, ∀t. Hence any

election of v,−1 ≤ v ≤ 1 for which limt→∞ V (t) = ∞ is optimal. For example v(t) = v0(constat)

is optimal.

The Hamiltonian for this problem is:

H = [1 + η(t)][1 − y(t)]v(t).

The maximal principle implies ∂H/∂v = [1 + η(t)][1 − y(t)] = 0 Hence η(t) = −1 for all t since

y(t) < 1 for all t. Owing the continuity of η(t), limt→∞ η(t) = −1 and not 0.
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13.7 Optimal Growth with a linear objective function

Consider the objective integral defined as:

J =

∫ ∞

0
c(t)e−ρtdt, where ρ > 0.

The constraints, are: k̇ = f(k(t)) − λk(t) − c(t), and c(t) ≥ 0, k(t) ≥ 0.

Let s(t) be the propensity to save at time t :

s(t) =
y(t) − c(t)

y(t)
=
f(k(t)) − c(t)

f(k(t))

We rewrite the objective integral and the constraint as follows:

J =

∫ ∞

0
(1 − s(t))f(k(t))e−ρtdt,

k̇ = s(t)f(k(t)) − λk(t); 0 ≤ s(t) ≤ 1, k(t) ≥ 1.

In this way the control variable is s and the state variable k. The problem is to choose the

time path of s(t) so as to maximize J with a given k0.

The Hamiltonian for this problem is:

H[k(t), s(t), t, η(t)] = e−ρt(1 − s(t))f(k(t)) + η(t)[s(t)f(k(t)) − λk(t)]

The hamiltonian system consists of the following equations:

k̇ = s(t)f(k(t)) − λk(t)

η̇ = −e−ρt(1 − s(t))f ′′(k(t)) + η(t)[s(t)f(k(t)) − λ)]

and the transversality condition limt→∞η(t) = 0.

Observe that the Hamiltonian is a linear equation in the control. Following the Pontriaguin

maximal principle we obtain a corner solution given by:

s(t) = 1 if −e−ρt + η(t) > 0

s(t) = 0 if −e−ρt + η(t) < 0

Define p(t) = η(t)eρt then:
s(t) = 1 if p(t) > 1

s(t) = 0 if p(t) < 1
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Then η̇(t) = e−ρtṗ(t) − ρe−ρtp(t). Then from the adjoint equation we obtain:

ṗ(t) = (λ+ ρ)p(t) − π(t)f(k(t))

where π(t) = (1 − s(t)) + s(t)p(t).

In terms of p(t) the transversality condition can be rewritten as

lim
t→∞

p(t)e−ρt = 0

And the Hamiltonian can be rewritten as: H = e−ρt[π(t)f(k(t)) − λk(t)p(t)].

• (1) Case s(t) = 1. The Hamiltonian system in this case is:

k̇ = f(k) − λk

ṗ = −p[f ′(k) − λ− ρ]

Let k̄ and k∗ be respectively defined by the following equations:

f(k̄) = λk̄

f ′(k∗) = λ+ ρ

Assuming that the initial capital k0 is less than k∗, there exists a path (k(t), p(t)) which starts

in [k0, p(k0)] and reach in a finite time T the state: [k∗, 1]. Define now the path (k1(t), q1(t)) which

is the same as the above path for the period 0 ≤ t ≤ T, but is (k∗, 1) for t > T.

We may now examine when the path (k∗, 1) satisfies the Hamiltonian system.

• First note that along this path k̇ = ṗ = 0 then the Hamiltonian system is reduced to:

0 = stf(k∗) − λk∗ and 0 = (λ+ ρ) − f ′(k∗)

• The second equation is obviously satisfied by the definition of k∗. The first equation is verified

only if st takes the value:

st = s∗ =
λk∗

f(k∗)
for all t.

• Note that s∗ > 0 and that k∗ < k̄ implies s∗ < 1. Hence (k∗, 1) verifies the restrictions and

the equations of the problem.

• Then the path (k1(t), p1(t)) verifies all the conditions of the Pontriaguin Maximun Principle.
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• (2) Case s(t) = 0. The Hamiltonian system in this case is:

k̇ = λk

ṗ = p(λ+ ρ) − f ′(k)

If k0 > k∗ There exists a path (k(t), p(t)) starting at [k0, q(k0)] and reaching in a finite time

T ′ the state: [k∗, 1]. Define now the path (k2(t), q2(t)) which is the same as the above path for

the period 0 ≤ t ≤ T ′, but is (k∗, 1) for t > T ′. It is easy to see that this path verifies all three

conditions of the maximun principle including the transversal condition: limt→∞p(t)e
−ρt = 0.

Theorem 72 For the above model, given an arbitrary initial value of k, there is a unique optimal

attainable path which is characterized as follows:

1. k0 < k∗, s(t) = 1, and after k(t) reaches k∗, k(t) = k∗ for all such t.

2. k0 > k∗ ; s(t) = 0,and after k(t) reaches k∗, k(t) = k∗ for all such t.

3. k0 = k∗ : k(t) = k∗ for all t and s(t) = s∗ = λk∗

f(k∗) .

In other words, the optimal attainable path is the one that reaches the modified golden rule

path where c∗ = (1 − s∗)f(k∗), with a maximun speed and stays thereafter on it.

Thus the solution path is such that if k0 < k∗, the economy maximizes saving from current

income until time T, and after time T maintain a constant saving ratio s∗. Analogously in the

case k0 > k∗ the economies minimize saving from current income until time T ′ and after time T ′

maintain a constant saving ratio s∗.

Remark 73 It may be noted that even at the stationary point, the per-capita consumption becomes

constant, and its level cannot increased further over time.

• This is because a static production function Y = Y (K,L) is assumed on the model.

• To make possible a rising per-capita consumption, technological progress must be introduced.

13.8 Exogenous and endogenous technical progress

.

It is plausible that technological progress is the reason that more output can be produced today

from a given quantity of capital and labour than a century or two ago. To see this we introduce
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an explicit research and development or (R&D) sector. Following [Romer, D.] we consider a model

with four variables: labor (L), capital (K), technology (A) and output (Y). There are two sectors,

a goods production sector where output is produced and an R&D sector where additions to the

stock of knowledge are made.

The quantity of output produced at time t is: Y = F (K,L(t)), where Ẏ = dY/dt > 0,

• the positive sign of the derivative, shows that technological progress take place, but it offers

no explanation of how this progress comes in to being.

• An alternative is to introduce a technological variable explicitly.

Y = F (K,A(t)L(t)), η = AL

is referred to as effective labor where A(t) > 0, and YA > 0. So, we can write Y = F (k, η),

and kη = K
η , yη = Y

η and yη = φ(keta). Now if we consider η rather than L as the

relevant labor input variable, then Y = F (K, η) can be treated mathematically just as a

static production function.

The optimal control problem is formally the same than in the static case, the steady state in

which Y,K and η all grow at the same rate is the intersection of ċη = 0 and k̇η = 0.

• In the static model we had: c(t) = C/L constant in the steady state.

• Now we obtain: cη(t) = C
η which implies that C

L = cη(t)A

Thus as A increases as a result of technological progress, per-capita consumption C/L will

rise over time.

To understand the role that the technical progress and the scientific knowledge play in growth

theory, we shall consider two simplified models:

1. An exogenous growth model: following the spirit of the Solow model, where the saving rates

are taken as given, and

2. an endogenous growth model: where the saving behavior is modeld arising from the choices

of optimizing individuals.
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13.8.1 Exogenous growth model

This model has nothing to do with optimal control theory however, we consider that it plays an

important role to understand the value of the scientific knowledge and technology in the growth

over time in the standards of living. And on the other hand, it is a good introduction to the next

model that is straightforward application of the optimal control theory.

We make two other major simplifcations. First, both the R&D and good production functions

are assumed to be generalized Cobb-Douglas functions. Second in the spirit of the Solow model,

the model takes the fraction of output saved s and the fractions aL of the labor force and the

fraction of the capital stock used in the R&D are exogenous and constant.

The quantity of output produced at time t is thus:

Y (t) = [(1 − aK)K(t)]α[A(t)(1 − aL)L(t)]1−α, 0 < α < 1. (34)

The production of news ideas depends on the quantities of capital and labor engaged in research

and on level of technology:

Ȧ(t) = G(aKK(t), aLL(T ), A(t)). (35)

Under the assumption of generalized Cobb-Douglas production this becomes:

Ȧ(t) = B[aKK(t)]β [aLL(t)]γA(t)θ, B > 0, β ≥ 0, γ ≥ 0. (36)

We denote gA ≡ Ȧ(t)
A(t) .

The dynamics of knowledge and capital. Following our assumptions the expression for

capital accumulation yields:

K̇(t) = s(1 − aK)α(1 − aL)1−αK(t)αA(t)1−αL(t)1−α.

Dividing both sides by K(t) and defining cK = s(1 − aK)α(1 − aL)1−α gives us:

gK(t) ≡ K̇(t)

K(t)
= cK

[

A(t)L(t)

K(t)

]1−α

.

Thus whether gk is rising, falling, or holding steady depends on the behavior of AK/L. The growth

rate of this ratio is gA + n− gK . Thus gK is rising if this ratio is positive, falling if it is negative

and constant if it is zero.

The major forces governing the allocation of resources to the development of knowledge are:

1. Support for scientific research.
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2. Private incentives for R&D and innovation.

3. Alternative opportunities for talented individuals.

4. Learning by doing.

• Support for scientific research Basic scientific knowledge has traditionally been made

available relatively freely, the same is true of the results of research undertaken in such

institution as modern universities and medieval monasteries. Thus this research is not

motivated by the desire to earn private returns in the market. Instead it is supported by

governments, charities, and wealthy individuals and is pursued by individuals motivated by

this support, by desire for fame, and perhaps even by love of knowledge. Since it is given

away at zero cost and since it is useful in production, it has a positive externality. Thus its

production should be subsidized.

• Private incentives for R&D and innovation. Many innovations or small improvements

in existing goods receive little or no external support and are motivated almost entirely

by the desire of private gain. The modelling of these private R&D activities and their

implications for economic growth has been the subject of considerable recent research. See

for instance [Romer, P. M. 1997].

• Alternative opportunities for talented individuals.

Several authors observe that major innovations and advances in knowledge are often the

result of the work of extremely talented individuals. These observations suggest that the

economic incentives and social forces influencing the activity of highly talented individuals

may be important to the accumulation of knowledge.

• Learning by doing. In this point, the central idea is that as individuals produce goods, the

inevitably think of ways of improving the production process. For example see [Arrow, K.].

13.8.2 Endogenous technological progress

The analysis in the previous section, following the spirit of the Solow model, takes the saving

rate as given. But we sometimes want to model saving behavior as arising from the choices of

optimizing individuals, particularly if we are interested in welfare. This model has two state

variables, A an K and to control variables (α, and s). Obtain an explicit solution is not simple.

94



In this model the accumulation of knowledge explicitly depends on what amounts of resources

are devoted to inventive activity. If A(t) denotes the stock of knowledge:

Ȧ(t) = σα(t)Y (t) − βA(t) (0 < σ ≤ 1, 0 ≤ α ≤ 1, β ≥ 0) (37)

• where σ is the research success coefficient, α(t) denotes the fraction of output channelled

toward inventive activity at time t, and β is the rate of decay of technical knowledge.

Out of remaining resources, a part will be saved (and invested); then the variable K(t) changes

over time according to:

K̇(t) = s(t)[1 − α(t)]Y (t) − δK(t),

where s denotes the propensity to save and δ denotes the rate of depreciation.

If the government seeks to maximize social utility then there arises the optimal control problem:

maxα,s
∫∞
0 U [(1 − s)(1 − α)Y ]e−ρtdt

subject to Ȧ(t) = σα(t)Y (t) − βA(t)

K̇(t) = s(t)[1 − α(t)]Y (t) − δK(t)

and A(0) = A0, K(0) = K0.

(38)

Observe that the objective looks unfamiliar, but it is another way to express U(C)e−ρt, because

C = Y − αY − s(1 − α)Y = (1 − s)(1 − α)Y.

Example 74 Consider the following control problem with two state variables, A and K with and

two control variables, C and SA. We consider S as skill or skilled labor (human capital). S can

be used for the production of the final good, Y, or for improvement of technology A. We have:

S = SY + SA. Technology A, is not fixed. It can be create by engaging human capital SA as

follows:

Ȧ = σSAA,

where σ is the research success parameter. The production function is assumed to be of the Cobb-

Douglas type:

Y = (SYA)α(AL0)
βK1−α−β .

We assume that L is constant.

Consider the specific case were

U(C) =
C(t)1−θ

1 − θ
θ > 0.
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The control problem takes the form:

maxC,SA

∫∞
0

C(t)1θ

1−θ e−ρtdt

subject to Ȧ = σSAA

K̇ = (S0 − Sy)
αAα+βLβ

0K
1−α−β − C

and A(0) = A0, K(0) = K0.

Then we have the current value Hamiltonian:

Hc =
C(t)1θ

1 − θ
+ λA(σSAA) + λK(∆ − C),

where ∆ = (S0−Sy)
αAα+βL0)

βK1−α−β , Hc = Heρt, and λA = ηAe
ρt, λK = ηKe

ρt, are the shadow

prices of A and K.

We get the conditions:

∂Hc

∂C = C−θ − λK ⇒ C−θ = λK

∂Hc

∂SA
= λAσA− λKα(S0 − Sy)

−1∆ = 0
(39)

⇒ ∆ =
λAσA

λKα
(S0 − Sy).

In addition to the Ȧ and K̇ given in the problem statement, the P.M.P requires that :

λ̇A = ∂Hc

∂A + ρλA = −λAσSA − λKα(S0 − Sy)A
−1∆ + ρλA

λ̇K = ∂Hc

∂K + ρλk = −λK(1 − α− β)K−1∆ + ρλK .

(40)

The steady state

The basic feature is that the variables Y,K,A, and C al grow at the same rate:

Ẏ

Y
=
K̇

K
=
Ȧ

A
=
Ċ

C
= σSA.

We can calculate:
λ̇θ

λθ
= −θ Ċ

C
= −θσSA.

and
λ̇A

λA
= ρ− σ

(

(α+ β)

α
S0 −

β

α
SA

)
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Then it follows that in steady state SA is constant

SA =
σ(α+ β)S0 − αρ

σ(αθ + β)

Parametrically expressed steady state growth rate is

Ẏ

Y
=
K̇

K
=
Ȧ

A
=
Ċ

C
=
σ(α+ β)S0 − αρ

σ(αθ + β)
.

Visual inspection is sufficient to establish that human capital S= has a positive effect on the

growth rate, as does the research success parameter σ. But a negative effect is exerted by the

discount rate ρ. More formally the effects of the various parameters can be found taking the

partial derivatives in this expression.

13.9 The discounting rate and bifurcations

Consider the general multi-sector optimal growth problem formulated by [Benhabib, J.; Nishimura, K.]

maxy
∫∞
0 e−(δ−n)tU(c(y, k))dt

s.t. k̇i = yi − nki, i = 1, ..., n,

where y is the vector per-capita outputs yi in sector i k as the vector of per-capita stock of

capital, c is the consumption, U is the utility from consumption, δ is the discounting rate and n

as the population growth rate.

The Hamiltonian function of this problem is:

H(y, k, η) = e−(δ−n)tU(c(y, k)) + η(y − nk).

Then the current-value hamiltonian, denoted by Hc can be written as:

Hc(y, k, λ) = H(y, k, η)e(δ−n)t = U(c(y, k)) + λ(y − nk)

where λ = ηe(δ−n)t.

By the maximal principle:
∂U

∂c

∂c

∂yj
= −λj

and from the assumption of perfect competition:

∂U

∂c

∂c

∂kj
= wj
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where wj is the product of price and rental price of good j. It follows that:

k̇j = yj − nkj

λ̇j = −∂U
∂c

∂c
∂kj

+ δλj

λj = −∂U
∂c

∂c
∂yj

Consider the case U ′ = 1. It follows that:

k̇j = yj(k, p) − nkj

ṗj = −w(k, p) + δpj .

To find the stability of the stationary point, we consider the jacobian matrix of this system:

J =







∂y
∂k − nI ∂y

∂p

−∂w
∂k −∂w

∂p + δI







Exercise 10 Consider a Cobb-Douglas technology and assume perfect competition ( ∂w
∂k = 0),

1. Show that depending of the value of δ there exists the possibility of a Hopf bifurcation,

implying that closed orbits arise in a neighborhood of the fixed point ẏ = ṗ = 0.

2. Justify the following statement: the usual argument in justifying governmental interventions

into the markets processes point out in this case. To do this consider the possibility or a

political institution, influencing the discounting rate. f

3. Observe that, in spite of being considered fluctuations as non-optimal, it can appear naturally

like result of an optimization process.

13.10 Stationary equilibria and wealth distributions

The aim of this example is to analyze the effect of the initial wealth distribution on the dynamics of

equilibria in a continuous time model. A similar problem is considered in [Ghigliano, Ch.; Sorger, G.].

We consider a continuous-time model of one sector economy in which at time t ∈ [0,∞) output

is produced from capital K(t), and labor L(t) by the Cobb-Douglas technology

Y (t) = K(t)αL(t)1−α.

98



Output is the numerary good and we denote by r(t) and w(t) the rate of capital and the wage

rate at time t. At every instant t, the representative firm maximizes the profits:

Π(t) = Y (t) − r(t)K(t) − w(t)L(t).

Prices are taken as given.

We assume that there exist only two types of households and that the two types differ from

each other only in their initial wealth. The number of households of type i is ni, i = 1, 2. All

households have identical preferences described by the utility functional

J =

∫ ∞

0
e−ρtU(ci(t))dt,

we assume that the instantaneous utility function has the form:

U(c) =
c1−1/θ − 1

1 − 1/θ
+ βln(1 − l),

where θ > 0 and β > 0. We shall denote by δ > 0 the constant depreciation rate of capital, and by

r(t)− δ the interest rate. Let ki(t) be the wealth of type i households, and let ki0 the exogenously

given initial wealth of this household. With this notations the intertemporal budget constraint of

a type i household can be written as:

k̇i(t) = [r(t) − δ]ki(t) + w(t) − ci(t), ki(0) = ki0

lim
t→∞

e−
∫ t

0
(r(s)−δ)dski(t) = 0

whereby the first equation describe the wealth accumulation while the second one is a transversality

condition. The factor markets are in equilibrium if:

K(t) = n1k1(t) + n2k2(t), L(t) = n1l1(t) + n2l2(t). (41)

The output market is in equilibrium if:

Y (t) = K̇(t) + δK(t) + C(t). (42)

Profit maximization under perfect competition implies that capital and labor earn theirs

marginal products, this yields:

r(t) = αK(t)α−1L(t)1−α, w(t) = (1 − α)K(t)αL(t)−α

The first order optimality conditions for the optimization problem of a type i household are:

ci(t)[w(t)/β]θ[1 − li(t)]
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and
ċi(t)

ci(t)
= θ[r(t) − ρ− δ].

The condition of Pareto optimality, for this problem implies, following the Negishi approach,

see [Accinelli, E] . that c1/c2 = λ1/λ2 where λi is the welfare weight of corresponding to each

agent of type i.

The per-capita evolution of the capital stock is given by the equation:

k̇ = kα − c(t) − (n+ δ)k

where n denotes the rate of growth of the labor. The stationary state is given by:

k̇ = 0, and ċ = 0.

Let k̄i be the per-capita capital of type i households, so,

k̇ =
n1

˙̄k1 + n2
˙̄k2

n1 + n2

then in the stationary state we should have the following equality:

˙̄k1 =
n1

n2

˙̄k2, ∀t.

This implies that the initial distribution of wealth must satisfy this equation.

Now suppose that the government equalizes the wealth levels of all households by means of

a redistribution. Due to the fact that after the redistribution all households are identical, they

solve the same optimization problem. Since the utility is a strictly concave function, the solution

is unique, all households choose the same consumption path, this implies λ1 = λ2 = 1
2 , and make

the same same labor supply decisions. This implies that the economy is out of the stationary

state.

On the other hand stationarity implies that

c =
n1c1 + n2c2
n1 + n2

then, the welfare weights for the stationary equilibrium are λ1 = n1

n1+n2
and λ2 = n2

n1+n2

13.11 Appendix: The Solow growth model

Although this section has nothing to do with optimal control, we conisder that it plays an impor-

tant roll in the understanding of the neo-classical aggregate growth model that we have considered
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in previous sections. The Solow model focuses on three variables, output Y , capital K, and labor

L. The production function takes the form:

Y (t) = F (K(t), L(t))

were t denotes time.

The model’s critical assumption is that the production function has constant returns to scale

in its two arguments: F (cK(t), cL(t)) = cF (K(t), L(t)). So, we can write y(t) = f(k(t)) where

y = Y/L is the output per capita, and k = K/l is the capital per capita.

We define s as the fraction of the output devoted to investment, and if in addition existing

capital depreciates at rate λ the dynamic of the capital is given by:

K̇(t) = sY (t) − λK(t).

Observe that C(t) = (1 − s)Y (t) and in this model s is given exogenously.

Considering capital per capita we obtain the equation:

k̇(t) = sf(k(t) − (n+ λ)k(t)

where the population grows at rate n. If we consider k̇ as a function of k and if we consider k∗ as

the value of k such that k̇(k∗) = 0, we obtain that, if initial capital k(0) < k∗ then k̇ is positive

and k converges to k∗, and, if initial capital k(0) > k∗, then k̇ is negative, and remain constant

k(t) = k∗ if k(0) = k∗.

The parameter of the Solow modelmost likely to be affected by plicy is the saving rate s. Since

k converges to k∗, it is natural to ask how variations in this parameter affect the model.

1. The impact on capital. The increase of s shifts the actual line investment-capital, k̇(k)

upward, and so k∗ rises. But k does not immediately jump to the new value of k∗. Thus

k begin to rise until reaches the new value of k∗. A permanent increase in the saving rate

produces a temporary increase in the growth rate of capital per worker, k increase for a time

but eventaully it increases to the the new k∗.

2. The impact on consumption. Consider now the impact on consumption. Since:

c∗ = f(k∗(t) − (λ− n)k∗(t),

thus
∂c∗

∂s
= f ′(k∗(s, n, λ) − (n+ λ)

∂k∗(s, n, λ)

∂s
. (43)
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We know that the increase in s raises k∗. Thus whether the increase raises or lowers con-

sumption in the long run depends on whether the marginal product of capital f ′(k∗(s, n, λ))

is more or less than n+ λ.

3. Impact on output. The long run effect of a rise in saving on output is given by:

∂y∗

∂s
= f ′(k∗)

∂k∗(s, n, λ)

∂s
. (44)

From the condition k̇(k∗) = 0 we obtain:

sf(k∗(s, n, λ) = (n+ λ)k∗(s, n, λ)

taking derivatives it follow that:

∂k∗

∂s
=

f(k∗)

(n+ λ) + sf ′(k∗)

Multiplying both sides of (44 ) by s/y∗ and from these equalities we obtain that

s

y∗
∂y∗

∂s
=

αk(k
∗)

1 − αk(k∗)

where αk(k
∗) = k∗f ′(k∗)f(k∗).

If markets are competitive and there are no externalities, capital earns its marginal product.

In this case, the total amount received by capital on the balanced growth path is k∗f ′(k∗)

and if capital earns its marginal product, the share of total income that capital earn is αk.

In most countries, the share of income paid to capital is above one-third. It follows that the

elasticity of output with respect to the saving rate is one half. For example, a 10 percent of

increase in saving rate (from 20 to 22 percent for instance) raises output per worker in the

long run about 5 percent. So the impact of a substantial change in saving rate on output

is modest. Then the main differences in output per worker between different countries on

time in one country, have not its origin in the saving rate. The Solow model identifies two

possible sources of variation;

• Capital per worker K/L and

• effectiveness of labor.

Following [Romer, D.], it is not possible to explain these differences in income between countries

on the basis of differences in capital. The requires differences in capital are far too large, and
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there is not evidence of such differences in capital stocks, Then the only possibility is to consider

differences in effectiveness of labor. This is represented by a new variable A in the model, this

variable can be interpreted as the education and skills of labor forces. Now the production function

takes the form Y = F (K,A(t)L(t)). Attributing differences in standards of living to differences in

the effectiveness of labor does not require huge differences in capital or in rates of return.

14 The proof of the Pontriaguin M.P.

In this section we prove the maximal principle for the general case of nonlinear autonomous control

system with moving targets and finite or infinite time horizon. We shall give the prove of theorem

(54). The PMP is a necessary condition for an extremal controller and as we have shown in section

(9 ), the maximal principle, together with the transversality conditions, is a necessary criterion

satisfied by an optimal controller.

As we saw in some cases the attainable set is a convex set, but unfortunately this is not true

in general. This is the main difficulty to obtain a necessary condition for an extremal controller.

Essentially what needs to be proved is that there is a supporting hyperplane for this set. To

overcome this difficulty, this set is replaced by a cone W with nonempty interior which is a subset

of K(t). Then we prove the PMP considering an hyperplane π in the vertex of this cone.

We start considering the basic geometric properties of the set of attainability. Next we prove

that all extremal control satisfies the maximal principle (we shall show only an sketch of the

proof), and finally we shall give the proof of the P.M.P.

Let us consider a non linear process defined by a differential system in Rn

ẋ = f(x, t, u), (L) (45)

where f is in C1 in Rn+1+m. The admissible controllers on the specified interval t0 ≤ t ≤ T, is a

family F of measurable m−vector functions. The initial point x0 lies in a compact set X0 ∈ Rn

and we assume that each response x(t, x0, t0) = x(t) for u(t) ∈ F exists on the interval t0 ≤ t ≤ T.

Suppose for each u(t) ∈ F there is a bound

|x(t, x0, t0)| < b, and |f(x, t, u(t))| +
∣

∣

∣

∣

∂f

∂x
(x, t, u(t))

∣

∣

∣

∣

< m(t),

with
∫ T
t0
m(t)dt < ∞. Then there exists an unique response x(t, x0, t0). In this case we say that

the control u(t) admits a bound for the response. If the bound B and the integrable function

m(t) can be chosen independently of the controller u, then the problem {(L), x0,F , t0, T} has a

uniform bound.
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14.1 Geometric properties of the attainable set

1. If {(L), x0,F , t0, T} has a uniform bound, then ¯K(t) is a compact, continuously varying set

in Rn for t0 ≤ t ≤ T.

2. If there exists an uniform bound b such that |x(t, x0, t0)| < b, for all responses. and the set

V (x, t) = {F (x, t, u(: u ∈ Ω)} , the set of velocity vectors is convex, then: ¯k(t)) is a compact,

continuously varying set in Rn for t0 ≤ t ≤ T. Here Ω is a compact set.

See [Lee, E.; Markus, L.] 243 .

We define regular point of a control u, as a point τ at which:
∫ τ

τ−ε
|f(x(t), u(t)) − f(x(τ), u(τ))|dt = o(ε)

so,
∫ τ

τ−ε
f(x(t), u(t))dt = f(x(τ), u(τ))ε+ o(ε).

Almost all points are regular. If the reader prefers to avoid meassure theory, he can assume

piecewise constant controls, and use non-jump points as regular points.

For convenience we first prove the maximal principle for an autonomous system in Rn, ẋ =

f(x, u), the set of controllers Ω is not necessarily compact.

14.2 Displacement of tangent spaces along x̄(t)

Let ū(t) be an admissible control with response x̄(t) on 0 ≤ t ≤ T. Along the flow ẋ(t) = f(x, ū(t))

there is a transport or displacement vector v along x̄(t):

v̇ =
∂f

∂x
(x̄(t), ū(t))v.

Let η(t1) be the direction of the normal to the hyperplane πt1 at x(t1) defines the solution η(t)

of the adjoint system: η̇ = −η ∂f
∂x (x̄(t), ū(t)) where η(t1)vt1 = 0.

Then η(t)v(t) = 0 for all v(t) ∈ πt, since

d

dt
[η(t)v(t)] = η̇v + ηv̇ = 0

Thus each nontrivial solution η(t) of the adjoint system define a parallel displacement of the

hyperplane πt along x̄(t), and every such parallel field πt arises in this way.

A tangent vector x1 in Rn is determined by a differentiable curve x = φ(ε) with φ(0) = x1. Let

v1 = φ̇(0) be the components of this tangent vector. (Actually, a tangent vector can be defined

as a class of differentiable curves all of which have the same tangent components, v1 at x1.)
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Let x(t, z) be the solution of ẋ(t) = f(x, ū(t)) such that x(t1, z) = z.

If φ(ε) = x(t1, φ(ε)) describes a tangent vector at x1 = x̄(t1), we define the displacedAt2t1φ(ε) =

x(t2, φ(ε). And we define the displacement of v1, the tangent vector of this curve at x(t1) as:

v2 = At2t1v1 =
d

dε
[At2t1φ(ε)]|ε=0 =

∂x

∂z
(t2, z)|ε=0φ̇(0).

Thus the real n-dimensional tangent space based at x1 = x̄(t1) is displaced onto the tangent

space based at x2 = x(t2) by the linear transformation At2t1 , which is described by the matrix
∂x
∂z |(t2, x1). But:

d

dt

∂x

∂z
|t,x1

=
∂

∂z
f(x(t1, z)ū(t)|z=x1

=
∂

∂x
f(x(t1, z)ū(t))|x=x(t1,x1)

∂

∂z
x(t1, z)|z=x1

and so (∂x/∂z)(t, x1) is the fundamental matrix solution of the variational differential system

v̇ = ∂f
∂x (x̄(t), ū(t))v with (∂x/∂z)(t1, x1) = I.

Therefore the displaced vector v(t) = Att1 φ̇(0) is the solution of the variational equation

v̇ = ∂f
∂x (x̄(t), ū(t))v with v(t1) = φ̇(0).

14.3 The perturbation cone

The key idea is to perturb a basic control ū(.) by changing its value to an admissible vector u over

any small time interval.

We pick a time 0 < t1 < T, and near this time we perturb the controller u(t) changing its

value to some constat u1 ∈ Ω. For t1 − εl1 < t < t1 change the control from the optimal u∗ to

another admissible control u1. Here l1 is a non negative constants. After t = t1 we return back to

the optimal control u.

uε =

{

u∗(t), t 6∈ [t1 − εl1, t1]
u1 t 6∈ [t1 − εl1, t1]

Here the perturbation data are π1 = {t1, l1, u1} for 0 < t1 < T, l1 ≥ 0, and v1 ∈ Ω.

Select now a distinct set of times t1 < ... < ts an a set of elementary transformation πi =

{ti, λli, ui}, i = 1, ...s. Where the perturbed function uπi
(t, ε) is a well defined admissible controller

with response xπi
(t, ε) initiating at xπi

(0, ε) = x0. Moreover, it is easy to see that :

lim
ε→0

xπi
(t, ε) = x∗(t),

uniformly on 0 ≤ t ≤ T.

The next step is to transfer a convex combination of these elementary perturbations along the

trajectory x̄(t) from the starting point at time t1 to another time t using the control ū for both

of them.
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In order to appreciate the nature of this process, We shall do the following considerations.

Let uπi
(t, ε) be an elementary perturbation of u∗(t) at πi = {ti, li, ui}. Then the corresponding

response xπi
(t, ε) defines a tangent vector at ti by the curve φ(ε) = xπi

(ti, ε). Namely,

φ̇(0) = lim
ε→0

[xπi
(t, ε) − x(ti)] = f(x∗(ti), ui) − f(x∗(ti), u

∗(ti)]li.

This follows from the estimate:

xπi
(tiε) = x∗(ti − lε) +

∫ ti

ti−liε
f(xπi

(t, ε), ui)dt,

or

xπi
(ti, ε) = x∗(ti) − f(x∗(ti), ui)l1ε+ f(x∗(ti), u

∗(ti)]liε+ o(ε).7

The tangent vector at x̄(ti),

vπi
(ti) = [f(x∗(ti), ui) − f(x∗i (ti), ū(ti))]li

is called the elementary perturbation vector for the data πi = left{ti, li, ui). Note that the data

{ti, λli, ui} for λ ≥ 0 yield a perturbation vector λvπ1
(t1), and hence the elementary perturbation

vectors fill a cone in the tangent space at x(ti), that is, with each point of the cone the entire ray

trough that point also lies in the cone. As we saw before, the law by which this perturbation is

transferred along the trajectory x̄(t) is given bay v̇π = Att1vπ where: A = fx(x̄, ū).

Until now, we have considered a single perturbation from the optimal solution. We can find

other perturbations by changing the value of the perturbed control u1 and time t at which we

make the perturbation.

If we select a distinct set of times ti : t0 < t1 < ... < tp < T and perturb u∗(.) near each ti by

ui as described above, then for any t > tp the resulting response can be written:

(∗) xπ(t, ε) = +ε(λ1v1 + λ2v2 + ...+ λnvn) + o(ε)

The fundamental perturbation formula (*) shows that any convex combination of elementary

perturbations vectors (at distinct times) define a point x̄(t̄) + εvπ, which lies in the set of attain-

ability K(t̄) within an error of o(ε). Where vπ =
∑

λivπi
(t) is a convex combination of elementary

perturbation. Here πi = {ti, li, ui} with 0 ≤ ti ≤ t̄, li > 0.

7This follows from:

xπ(t, ε) = x(ti − liε) +

∫ t

ti−liε

f(xπ(t, ε), uπ)dt, and x(t, ε) = x(ti − liε) +

∫ t

ti−liε

f(x̄(t, ε), ū)dt,

then

xπ(t, ε) − x(t, ε) =

∫ t

ti−liε

[f(xπ, uπ) − f(x̄, ū)dt] = [f(xπ, uπ) − f(x̄, ū)dt].
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Let Kt be the tangent perturbation cone at any 0 ≤ t ≤ T, it is the smallest closed convex

cone in the tangent space at x̄(t) containing all parallel displacements of elementary perturbation

vectors form Lebesgue (regular) times t1 on 0 ≤ t1 ≤ t.

Note that At̄tKt ⊂ Kt̄ for t < t̄, and Kt̄ = ∪0<t<t̄At̄tKt in particular for the final limit cone

where

t̄ = T = KT = ∪0<t<TATtKt

Definition 75 Let v1, ..., vn be independent vectors in Kt, each arising as a convex combination of

elementary perturbation vectors vπi
(t̄) i = 1, 2...πs. An elementary simplex cone, C consists

of all convex combination of vector v1, ..., vn.

The fundamental perturbation formula (*) asserts the existence of a response

x(t, ε, λ) = x∗(t) + ε(λ1v1 + ...+ λnvn) ∈ C.

Lemma 76 Let v be a vector interior to Kt ( the attainable set at t). Then there exists an

elementary simplex cone C which contains v in its interior.

This result of approximation can be founded in [Lee, E.; Markus, L.] 251.

Lemma 77 Let v be a nonzero vector interior to Kt. Then there exists an elementary simplex

cone C in Kt such that:

1. C contains v in its interior.

2. C lies interior to K(t) as a macroscopic cone (that is, a truncation of C minus its vertex lies

interior to K(t) near x̄(t).)

14.4 The proof of the maximal principle.

In this section we prove that all extremal controller verify the maximal principle. That is a

response end points belongs to the boundary of the attainable set only if maximal condition

holds.

To prove the theorem, we proceed as follows. First we establish the effects of perturbations of a

control on the end points of the corresponding trajectory. Certain convex sets of perturbations are

then considered and it is shown that, to first order, the end points of the perturbed trajectories

generate a cone. As a consequence of the optimality assumptions, this cone is separated from

certain hyperplane. The analytic consequences of this separation constitue theoreme (54).
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14.5 Existence of extremal controller without magnitude restraints

We begin with an arbitrary control restraints u(t) ∈ Ω which need not be compact, and there

are neither state constraints nor on target constraints . If ū(t) is extremal, then there exists a

nontrivial adjoint response such that ū(t) satisfies the maximal principle.

Theorem 78 Consider the autonomous control process in Rn

ẋ = f(x, u) (S)

with f(x, u) and ∂f/∂x(x, u) continuous in Rn+m. Let F be the family of all measurable controllers

u(t) on 0 ≤ t ≤ T that satisfy the restraint u(t) ∈ Ω ⊂ Rm and admit a bound for the response

x(t, x0) initiating at t he point x0. Let ū(t) ∈ F have a response x̄(t) with x̄(T ) on the boundary

of the set of attainability K(T ). Then there exists a non trivial adjoint response η̄(t) of

η̇ = −η∂f
∂x

(x̄(t), ū(t)) (A)

such that the maximal principle obtains, that is:

H̄(η̄, x̄, ū) = M(η̄, x̄).

Further, if ū(t) is bounded M(η̄∗, x̄) is constant everywhere.

Here the Hamiltonian function is:

H(η, x, u) = ηf(x, u) = η1f1(x, u) + ...+ ηnfn(x, u)

and

M(η̄, x̄) = max
u∈Ω

H̄(η̄, x̄, ū)

Proof:

• Since x̄(T ) lies on the boundary of K(T ), there is a sequence of points {Pn} outside K(T )

such that Pn → x̄(T ) and the unit vectors along the segments x̄(T ) to Pn approach a limit

unit vector w(T ) at x̄(T ).

• Now w(T ) cannot be an interior vector in the perturbation cone KT ; this cone minus its

vertex lies in the interior of K(T ) (see 76), and this contradicts the assumption that all Pn

lie outside K(T ).
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• Thus there exists a hyperplane π(T ) at x̄(T ) such that π(T ) separates w(T ) from KT . Let

η̄(T ) be the exterior unit normal to π(T ) at x̄(T ) and define η̄(t) as a solution of nonlinear

system A.

Then η̄(T )ξ(T ) ≤ 0. Since ξ(t) verifies ξ̇ = ∂
∂xf(x, u)ξ (is a parallel displacement) it follows

that

η̄(T )ξ(T ) = η̄(t)ξ(t) ≤ 0, for all t ≤ T,

Suppose that the maximal principle fails, ,that is

H̄(η̄(t), x̄(t), ū(t)) < H̄(η̄(t), x̄(t), u1(t))

for some u1 ∈ Ω on some duration of positive measure on 0 ≤ t ≤ T. Let t1 on 0 < t1T be a

Lebesgue time for f(x̄(t), η̄(t)) when

η̄(t1)f(x̄(t1), ū(t1)) < η̄(t1)f(x̄(t1), u1)).

Consider the elementary perturbation vector

v(t1) = [f(x̄(t1), u1) − f(x̄(t1), ūt1)].

Then the denial of the maximal principle yields: η̄(t1)v(t1) > 0, which contradicts the assertion

that η̄(t)v(t) > 0, for all t and all v(t) ∈ Kt.

The final result that we have to establish is that the Hamiltonian is constant along the optimal

trajectory.

• When there is no restriction on the magnitude of the controllers and the optimal control is

regular the maximal principle shows that along the optimal trajectory: ∂H
∂u = 0.

It follows that
dH

dt
=
∂H

∂x
ẋ+

∂H

∂η
η̇ = 0

where we have used the state and coestate equations:

ẋ =
∂H

∂η
, and η̇ = −∂H

∂x
.

However, we know that the optimal control is often discontinuous, therefore we need a more

refined argument.

• The general case. We show that M(η̄(t), x̄(t)) has a zero derivative everywhere on 0 ≤ t ≤ T.
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Here we assume that ū(t) is bounded, that is |ū(t)| ≤ β on 0 ≤ t ≤ T. Let:

m(η, x) = max
|u|≤β,u∈Ω

H(η, x, u),

so M(η, x) ≥ m(η, x) but M(η̄(t), x̄(t)) = m(η̄(t), x̄(t)) almost everywhere on 0 ≤ t ≤ T.

We first show that m(η̄(t), x̄(t)) is constant on 0 ≤ t ≤ T. For (η, x) is a compact set Q in

Rn ×Rn ×RM containing (η̄(t), x̄(t)) and all |u| ≤ β. We obtain for any two points (η, x, u) and

(η′, x′, u),

|H(η, x, u) −H(η′, x′, u)| ≤ kd

where d = |η− η′|+ |x−x′| and k is a Lipschitz constant majorizing |f(x, u)| and |η ∂f
∂x (x, u)| in Q

Let u and u′ in Ω with |u| ≤ β, |u′| ≤ β be selected so that:

m(η, x) = H(η, x, u) and m(η′, x′) = H(η′, x′, u′),

Then

H(η, x, u′) ≤ H(η, x, u) andH(η′, x′, u) ≤ H(η′, x′, u′).

Therefore, we compute on Q

−kd ≤ H(η, x, u′) −H(η′, x′, u′) ≤ H(η, x, u) −H(η′, x′, u′) ≤ H(η, x, u)H(η′, x′, u′) ≤ kd

and

|m(η, x) −m(η, x′)| ≤ kd.

Hence m(η, x) is Lipschitz continuous in Q and so m(t) = m((̄η)(t), x̄(t)) absolutely continuous

on 0 ≤ t ≤ T. (See Appendix below).

Let 0 ≤ τ ≤ T be a point at which m(t) and x̄(t) and η̄(t) all have derivatives. For

t′ > τ we compute: m(t′) ≥ H(η̄(t′), x̄(t′), ē(τ)) and: m(t′) − m(τ) ≥ H(η̄(t′), x̄(t′), ē(τ)) −
H(η̄(t′), x̄(τ), ū(τ))

+H(η̄(t′), x̄(τ), ū(τ)) −H(η̄(τ), x̄(τ), ū(τ)),

then

lim
t′→τ

m(t′) −m(τ)

t′ − τ
=
dm

dt
|t=τ ≥ ∂H

∂x
ẋ+

∂H

∂η
η̇|t=τ = 0

Using t′ ≤ τ we compute dm
dt |t=τ ≤ 0 so dm

dt |t=τ = 0 almost everywhere. Since m((̄η)(t), x̄(t))

is absolutely continuous on 0 ≤ t ≤ T with a zero derivative, then it is a constant m everywhere

on 0 ≤ t ≤ T.

The reader should note that the PMP is valid for any extremal solution, that is any solution

that lies on the boundary of attainable set at time t1, in the extended state space. For linear
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processes a controller satisfies the maximal principle if and only if u(t) is extremal. For nonlinear

process the maximal principle does not guarantee that u(t) steers x(t) to the boundary of the

set of attainability. Here the concept of frontier of K(t) as developed for linear process is not

significant. The frontier can not be convex, nor even simply connected. For an example where a

point (x, u) satisfies the PMP but is not extremal see [Lee, E.; Markus, L.] 257.

14.6 Appendix: Definitions and theorems

The following definitions and theorems were considered in the proofs of the PMP.

Definition 79 Let a, b ∈ R, a < b. A function f : [a, b] → R is called absolutely continuous in

[a, b] if for each ε > 0 there exists δ > 0 such that for all finite partition {(xi, yi)} i = 1n of [a, b]

such that
n
∑

i=1

(yi − xi) < δ,

we have that:
n
∑

i=1

|f(yi) − f(xi)| < ε.

Definition 80 Let f(t) a real function t ∈ [a, b], define the total variation

varf(t) = sup
k
∑

j=0

f(t′j+1) − f(t′j)|

where t′0 < t′1, ..., t
′
k is an arbitrary finite set of points, the supremun is computed over all such finite

sequences in [a, b]. We say that the function f(t) is of bounded variation in [a, b] if varf(t) <∞.

Theorem 81 If f : [a, b] → R if an absolutely continuous function, then f is of bounded variation.

Corollary 82 All absolutely continuous function f(t) on [a, b] have a derivative almost every-

where.

Theorem 83 Every Lipschitz continuous function an [a, b] is absolutely continuous on this inter-

val.

15 Variational Calculus and its relations with Control Theory.

In this section we investigate the relationship between the maximal principle and the first order

conditions in the calculus of variations. The calculus of variations, like ordinary calculus, requires
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for its applicability the differentiability of the functions that enter in the problem. More important

only interior solutions can be handled. We begin showing some typical problems of the variational

calculus and giving the main rules to solve them. In spite of being less general than the optimal

control one, this approach has value from itself . This approach allows us to solve in an efficient

way difficult problems of optimization, provided that we do not need to obtain the control. Also

in this section we examine the optimal control problem from the point of classical calculus of

variations and converselly, in the last subsection of this section, we show how the classical first

order necessary conditions in the calculus of variations can be obtained from the maximal principle.

On the other hand, if the set of controllers is not restricted, and the target is not a specified

point x(tf ), we can obtain from this approach necessary conditions for an extremal. In other case

the geometrical development is more general an completely correct in all mathematical details

For instance, the following simplfied version of the isoperimetric problem is a characteristic

problem that can be solved using variational methods. We shall show this problem farther on.

15.1 Example: A typical variational problem

For instance consider the problem of inding an extremum (maximum or minimum) in the space

of C1([t0, t1]) function to the following functional:

V B(x) =

∫ t1

t0
L(t, x(t), ẋ(t))dt+ l(x(t0)) + l(x(t1))

in a finite interval [t0, t1], where L : Ω → R, and such that the derivatives

Lẋ(t) =
∂L

∂ẋ
(t, x(t), ẋ(t))

and

Lx(t) =
∂L

∂ẋ
(t, x(t), ẋ(t))

are continuous in [t0, t1], and Ω ⊆ R3.

A rule for the resolution: If a function x̄ is an extremum then it solves:

1. The Euler equations

− d

dt
L̄ẋ(t) + L̄x(t) = 0

2. The Transversality Conditions

L̄ẋ(t0) = l̄x0
, L̄ẋ(t1) = l̄x1

3. To find the admissible extremals solve this equations:
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4. Show that one of these extremals is the solution of the problem.

Example 84 The length of an arc through (x0, y0) and (x1, y1) is given by: l[y(x)] =
∫ x1

x0

√

1 + y′2dx.

The extremal arc is a stright line y = C1x+C2 where the constants C1 and C − 2 are determined

from the initial and final conditions.

Example 85 The time that a point describing an arc y(x), joining the points A(x0, y0) and

B(x1, y1) whith velocity v(y′) = ds
dt depends only on y′, is given by the equation

t[y(x)] =

∫ x1

x0

√

1 + y′2

v(y′)
dx.

The extremal curve is an straight line.

Example 86 Show that there exists a minimun but not a maximun to the following extremal

problem:

B(x) =

∫ 1

0
((ẋ(t))2 − x(t))dt+ x2(1)

The necessary conditions are:

1. − d
dt L̄ẋ + L̄x = 0, ↔ 2 d

dt ẋ+ 1 = 0.

2.
L̄ẋ(t0) = l̄x0

, ↔ ẋ(0) = 0

L̄ẋ(t1) = l̄x1
, ↔ ẋ(1) = −x(1).

3. There is only one extremal: x̄(t) = − t2

4 + 3
4 .

4. We shall show now, that this extremal is a local minimum.

Consider h ∈ C1([t0, t1]) and: B(x̄+ h) − B(x̄) =

∫ 1

0
2 ˙̄xḣdt+

∫ 1

0
ḣ2dt−

∫ 1

0
hdt+ 2x̄(1)h(1) + h2(1).

Then we integrate by parts and since x̄(t) = − t2

4 + 3
4 , it follows that:

B(x̄+ h) − B(x̄) =

∫ 1

0
ḣ2dth2(1) ≥ O.

Then the admissible extremal is a minimum, Smin = B(x̄) = − 8
12 and it is easy to see that

Smax = ∞.
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The elemental isoperimetric problem consists is finding the curve enclosing the greatest

area among all closed curves of a given length. (Isoperimetric means with the same perimeter).

This symbolic expression is:

maxS(x, y) =

∫ t1

t0
xydt,

with the initial and terminal conditions :

xs(ts) = xs, y(xs) = ys s = 1, 2;

and the isoperimetric equation:
∫ t1

t0

√

ẋ2 + ẏ2 = l.

The most elemental isoperimetric problem is to solve the maximun for S =
∫ t1
t0
ydx, y(x0) =

y0 y(x1) = y1, with the isoperimetric equation
∫ t1
t0

√

1 + ẏ2dx = l, and given initial and final

conditions.

We can solve this problem using the auxiliar functional:

L(x0, x1, y, λ) =

∫ t1

t0
y + λ

√

1 + ẏ2dx.

and using the Euler equation Fy − ∂
∂xF

′
y = 0.

15.2 A classical variational approach for the maximal principle

In this section we examine the optimal control problem from the point of view of the classical

calculus of variations and without any discussion of continuity or differentiability. Consider the

control process in Rn ( x is a real n-vector):

ẋ = f(x, u), x(0) = x0.

with controller u(t) ∈ Rm, on 0 ≤ t ≤ 1, and with fixed initial state x(0) = x0, and with cost:

C(u) =

∫ 1

0
h(x, u)dt.

We impose no restraint on u(t) or x(t). If the controller u(t) is restricted in magnitude, or

the target X(1) is specified, the variational techniques become much more complicated both from

a formal viewpoint and from a technical viewpoint. For these reasons we shall not follow the

classical calculus of variations.

Let u∗(t) be an optimal controller minimizing C(u) and let x∗(t) be the corresponding optimal

response.
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Let u(t, ε) = u∗(t) + εδu(t) be a one parameter family of perturbations, with corresponding

responses: x(t, ε) = x∗(t) + εδx(t) + o(ε), δx(0) = 0.

Note that
u(t, 0) = u∗(t) and ∂u

∂ε (t, 0) = δu(t)

x(t, 0) = x∗(t) and ∂x
∂ε (t, 0) = δx(t)

The variation in cost is:

∂C

∂ε
= δC =

∫ 1

0

[

∂h(t)

∂x
δx(t) +

∂h(t)

∂u
δu(t)

]

dt.

Since C(u(·, ε)) is minimized at ε = 0 we obtain: δC(u∗) ≡ 0, for all variations δu(t). This

necessary condition for the optimal controller will now be clarified.

The variation δu(t) yields the response variation δx(t), which satisfies the variational differen-

tial equation:

δẋ =
∂f(t)

∂x
δx(t) +

∂f(t)

∂u
δu(t), δx(0) = 0. (46)

From (46) it follow that

δx(t) =

∫ t

0
Φ(t)Φ−1(s)

∂f(s)

∂u
δu(s)ds.

where the fundamental matrix satisfies:

Φ̇ =
∂f(t)

∂x
Φ, Φ(0) = I.

Then

δC =

∫ 1

0

[

∂h(t)

∂x

∫ t

0
Φ(t)Φ−1(s)

∂f(s)

∂u
δu(s)ds+

∂h(t)

∂u
δu(t)

]

dt. (47)

We introduce the notation:

η∗(t) = −η0Φ
−1(t) +

∫ t

0

∂h(s)

∂x
Φ(s)Φ−1(t)ds,

with the constant vector ηo so chosen that:

η∗(1) = −η0Φ
−1(1) +

∫ 1

0

∂h(s)

∂x
Φ(s)Φ−1(1)ds = 0,

This means that η∗(t) is the unique solution of the adjoint variational differential equation

η̇ = −η∂f
∂x

+
∂h

∂x
, η(1) = 0.

Now defining the Hamiltonian function of 2n+m real variables:

H(η, x, u) = ηf(x, u) − h(x, u),
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it follows that
η̇ = −∂H

∂x , η(1) = 0

ẋ = ∂H
∂η , x(0) = x0,

are satisfied by η∗(t) and x∗(t), when u = u∗(t).

Using this notation we obtain:

δC =

∫ 1

0
−
[

η∗
∂f(t)

∂u
− ∂h(t)

∂u

]

δu(t)dt.

Since δC ≡ 0 for all variation δu(t) about the optimal u∗(t), we find that

−η∗(t)∂f(t)

∂u
− ∂h(t)

∂u
= 0

or
∂H

∂u
(η∗(t), x∗(t), u∗(t)) ≡ 0.

A more detailed study of the variations about the minimizing controller u∗(t) shows that

u = u∗(t) is a maximun rather than an arbitrary critical point of H(η, x, u). That is

H(η∗(t), x∗(t), u∗(t)) = max
u∈Rm

H(η∗(t), x∗(t), u(t))

this is the maximal principle. The system of equations

ẋ =
∂H

∂η
, η̇ = −∂H

∂x
,
∂H

∂u
= 0

are the Euler-Lagrange equations.

Remark 87 If the controller is restricted in magnitude, or the target x(1) is specified, the varia-

tional techniques become more complicated, for this reason we do not follow this viewpoint in our

presentation.

15.3 The Ramsey Model of Economic Growth

We consider here an economy in which a single homogeneous good is produced with the aid of

capital K(t) which may depend on time t, and labor L; the total output Y (t) is either consumed

or invested. Thus C(t) is the total consumption. We have Y (t) = C(t) + K ′(t). It is assumed

that there is not deterioration or depreciation of capital, and the production Y (t) is a known

function Y = Φ(K) of capital. We shall require that C ≥ 0,Φ(K) ≥ 0, while K ′ may be positive

or negative. Since there is no depreciation or deterioration, the capital can be consumed. In order
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to produce its consumption goods, society incurs disutility of labor D(L), with nondecreasing

marginal utility D′′(L) ≥ 0. The net social utility at time t is therefore; U(C) −D(L).

We assume that the objective of any planing concerns the standard of living, that is we should

try to maximize the global utility function

W =

∫ t2

t1
[U(C(t)) −D(L)]dt (48)

here C(t) = Y (t) − K ′(t) and Y (t) = Φ(K(t), L). The time interval is finite, but we need not

exclude t2 = +∞, infinite horizon. We assume that U(C) is a smooth, positive nondecreasing

function of C for C ≥ 0.

However observe that the improper integral, for infinite time interval, does not contain a

discount factor. This omission is not the result of neglect, it stems from the Ramsey’s view that it

is ethically undesirable for the current generation to discount utility of future generation. While

this may be plausible on moral grounds, the absence of a discount factor implies difficulties for

the convergence of the integral.

To overcome this difficulty in this case, Ramsey replaces (48) with the following substitute

problem:
minimize

∫∞
t1

[B − U(C(t)) +D(L)]dt

subject to K(t1) = K1,

(49)

where B (for Bliss) is a postulate maximun attainable level of net utility. Intuitively, an optimal

plan should either take society to Bliss, or lead it to approach Bliss asymptotically. This substi-

tution of (48) for (49) is referred as the Ramsey device, and is widely accepted as sufficient for

convergence.

The solution of the model in a finite time interval [t1, t2] :

Replacing C(t) = Y (t) − K ′(t) in (48) we have the problem of variations concerning the

maximun of

W =

∫ t2

t1
U(Φ(K(t), L) −K ′(t)) −D(L)dt

We consider the two obvious constraints, K(t) ≥ 0 and K ′ ≤ Φ(K(t)). However, neither of

both cases K = 0 and K ′ = Φ(K,L) should be taken into consideration. We shall see that an

optimal solution will be in the interior of the domain.

Here we shall consider that the labor input is constant reducing the production function to

Φ(K). We have a free problem of calculus of variation with:

f0(K,K
′) = U(Φ(K) −K ′) f0K′ = −U ′(Φ(K) −K ′),
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and the Euler equation for this case, f0 +K ′f0K′ = c becomes

U(Φ(K,L) −K ′) −K ′U ′(Φ(K,L) −K ′) = c, (50)

where c is a constant.

If we consider the particular choice for the function U(C) = U ∗ − α(C − C∗)2. for =≤ C ≤
C∗, α > 0 and U(C) = U∗ for C ≥ C∗ (it can be said that the utility function U saturates at

C = C∗.) Also we assume that the economy is bellow the point of saturation: 0 ≤ C(t) < C∗ for

t1 ≤ t ≤ t2. We shall choose for the production a linear function: Y = Φ(K) = βK, where β is

a positive constant. The value of U ∗ is not relevant for the case on finite time interval, and we

choose U∗ = 0

Equation (50) becomes

−α(βK −K ′ − C∗)2 − 2αK ′U ′(Φ(K) −K ′) = c

or, with γ = c/α

K ′2 − (βK − C∗)2 = γ. (51)

This equation can be solved for K ′ as soon as the arbitrary constant on the right-hand side

can be assigned a specific value. Note that this constant is to hold for all t including t→ ∞. The

convergence of the improper integral (49 ) implies that: βK −K ′ − C∗ tend to zero, this means

that γ = 0. The by integration K(t) = K∗ −Dexp(−βt) where K∗ = C∗/β and D is a constant.

For fixed K(t1) = K1 we obtain:

K(t) = K∗ − (k − k∗)exp(−βt−t1), t1 ≤ t <∞

But if we consider only cases where the time interval is finite, γ is a positive constant, in

the phase plane (K,K ′) the set of optimal solutions represent a family of hyperboles with center

k′ = 0,K = K∗ = C∗/β and asymptotes K ′ = ±(βK − C∗).

We take y = K − C∗/β = K −K∗, γ = β2H2 and equation (51) becomes y′2 = β2(H2 + y∗)

Hence y(t) = −H sinhβ(t∗ − t) and the arc of trajectory is given by:

K(t) = K∗ −H sinhβ(t∗ − t) t1 ≤ t ≤ t∗,

where H = γ1/2β−1 and t∗.

Exercise 11 Discuss Ramsey’s model with Φ(K) = βK and U(C) = −U0e
−αc, α constant.
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15.4 A control formulation of a classical problem of variational calculus

In this subsection we will obtain the classical Euler equation (the first order condition) from an

optimal formulation of a simple problem of the variational calculus.

The general simple problem in the calculus of variations V can be written as a control problem

by relabelling ẋ as u. ( Recall that u denotes the control variable). Then this problem of the

variational calculus becomes the following control problem. Minimize:

C(u) =

∫ t1

t0
L(t, x(t), u(t)(t))dt+ l(x(t0)) + l(x(t1))

subject to the state equations:

ẋ = u(t)

The function H in the present case is given by the formula

H(t, x, u, η) = η0f0(t, x, u) + ηu.

Let x∗ the solution of the variational problem, then (x∗, u∗) = (x∗, ẋ∗) is a solution of the

corresponding control problem.

Observe that the pair (x∗, u∗) satisfies the maximal principle: There exists η̄∗(t) =
{

η0∗, η∗(t)
} 6=

0 for all t ∈ [t0, t1] and such that for a.e. t ∈ [t0, t1]

ẋ(t) = Hη(t, x
∗, u∗, η̄∗) = u∗(t) (a)

η̇ = −Hx(t, x∗, u∗, η̄) = −η0∗ ∂f0

∂x (t, x∗, (t)u∗(t)) (b)

(52)

and H(t, x, u, η) = η0f0(t, x, u) + ηu is maximized with respect to u at (x∗, u∗).

We assert that η0 6= 0, because in other case η∗(t)u∗(t) ≥ η∗(t)u for al u ∈ Ω. It follows that

in this case λ(t) = 0, which can not be. Since η0 6= −1.

Since the mapping u→H̄(t, x, u, η̄) is differentiable it follows:

Hu(t, x∗(t), u∗(t), ,−1, η̄) = 0.

and therefore

η∗(t),= f0(t, x∗(t), u∗(t), ) ∀t ∈ [t0, t1].

From this equation and from the adjoint equation we obtain the Euler equation:

∂f0

∂u
(t, x∗(t), ẋ∗(t)) =

∫ t1

t0

∂f0

∂x
(s, x∗(s)), ẋ∗(s))ds

or
∂f0

∂x
(t, x∗(t), ẋ∗(t)) − d

dt
[
∂f0

∂ẋ∗
(t, x∗(t), ẋ∗(t))].

For more details see [Berkovitz, L.D.].
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15.5 Optimal control formulation of the Bolza problem

The problem of Bolza in the calculus of variations differs from the simple problem in that in

addition to classical variational equations, new restraint conditions are required.

The problem to be considered is that of minimizing the function:

I0 = g0(b) +

∫ t2

t1
L0(t, x(t), u(t), b)dt, (53)

satisfying a system of differential equations:

ẋi(t) = fi(t, x(t), u(t), b), (54)

φα(t, x(t), u(t), b) ≤ 0, 1 ≤ α ≤ m′,

φα(t, x(t), u(t), b) = 0, m′ < α ≤ m,
(55)

a set of initial and terminal conditions:

ts = T (bs), xi(ts) = Xis(b) (56)

and a set of isoperimetric relations:
Iγ ≤ 0
Iγ = 0

(57)

where

Iγ = gγ(b) =

∫ t2

t1
Lγ(t, x(t), u(t), b)dt. (58)

We assume:

(A1) All functions are continuously differentiable on a setX of points in the (x, u, b, t)−space. The

set X0 of all elements in X satisfying (55) will be called the set of admissible elements.

(A2) The matrix
(

∂φ
∂u , δijφj

)

has rank m at each element (x(t), u(t), b, t) ∈ X0, where δij is the

Kroneker’s delta, and ∂φ/∂u is the jacobian matrix of φ evaluated at (x(t), u(t), b, t)

If these conditions are satisfied, a complicate dependence of the response x(t) and the con-

trollers u(t) can be determined trough a dynamical differential equations, and the variational

problem becomes a control problem. For details see [Berkovitz, L.D.].
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16 The Hestenes’ Theorem.

Suppose that the arc x0(t), u0(t), b0, t1 ≤ t ≤ t2 affords a minimun to I0 Then there exist

multipliers:

λ0 ≤ 0, λγ , pi(t), µα(t), γ = 1, ..., p; i = 1, ..., n;α = 1, ...,m;

not vanishing simultaneously on t1 ≤ t ≤ t2 and functions:

H(t, x, u, b, p, µ) = pifi − λ0L0 − λγLγ − µαφα

g(b) = λ0g0 + λγgγ

such that the following relations hold:

• (1)The multipliers λγ are constant and λγ ≥ 0 with λγ = 0 in case Iγ < 0.

• (2)The multipliers µα(t) are piecewise continuous and are continuous at each point of con-

tinuity of u0(t). Moreover for each α ≤ m′ the relation µα(t) ≥ 0 holds and the equation

µα(t)φα(t, x0(t), u0(t), b0) = 0 (59)

holds on t1 ≤ t ≤ t2.

• (3) The multipliers pi(t) are continuous and have piecewise continuous derivatives. In fact

there are constants, ci, c such that the relations

pi = −
∫ t2

t1
Hxds+ ci, H = −

∫ t2

t1
Htds+ c, Huk

= 0, (60)

hold along x0.

• (4) The transversality condition:

−λ0
∂G

∂bj
−
[

H
∂T s

∂bj
+

n
∑

i=1

pi(T
s)
∂xs

i

∂bj

]

−
∫ t2

t1

∂Hs
i

∂bj
dt = 0, (61)

Where j = 1, 2, ..., α, s = 1, 2, these are identities in b, on x0.

• (5) The inequality

H(t, x0(t), u, b0, p(t), 0) ≤ H(t, x0(t), u0(t), b0, p(t), 0), (62)

holds whenever (t, x0(t), u, b0) ∈ X0.
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Equation (60) are equivalent to the statements that pi, H are continuous along x0 and that

on each sub arc on which u0(t) is continuous we have,

dpi

dt
= −Hxi

,
dH

dt
=
∂h

∂t
.

In the inequality (62) we have set µα = 0. If one wish to retain µα = µα(t) we shall write

the inequality:

H(t, x0(t), u, b0, p(t), µ) + µαφα(t, x0(t), u, b0) ≤

≤ H(t, x0(t), u0(t), b0, p(t), µ)

17 Some applications

In this section we consider three important applications of the control theory. By means of the first

example we illustrate the Hestenes’ theorem. We again consider the problem of optimal growth

because familiarity with this subject will help the reader to understand the theory developed in

the last section. The second example is an application of the optimal control to differential game

theory, and the last is the well know isoperimetric problem

17.1 Optimal growth once again

We begin discussing again, the optimal growth problem with explicit consideration to inequality

constraints.

Following the considerations that we did in 13.1, we can write the problem as follows:

Maximize the welfare function

max
c,i

∫ ∞

0
u(c(t))e−δtdt

subject to:
k̇ = f(k(t)) − c(t) − λk(t) (a)

0 ≤ f(k(t)) − c(t) − i(t) (b)

k(0) = k0, k(t) ≥ 0, c(t) ≥ 0, (c)

(63)

where δ is a discount rate, and utility per unit of consumption is given by u(c(t)) u′(c) >

0, u′′(c) < 0, represent positive but diminishing marginal utility (concavity of the utility function).

We first proceed without explicit consideration of the state variable constraint (63, c). Intro-

ducing the multipliers η(t), r(t) and ν(t) we define the function L as follows:

L ≡ L[k(t), c(t), i(t), t, η(t), r(t), ν(t)] = (64)
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u(c)t)e−δt + η(t)(i(t) − λk(t)) + r(t)(f(k(t)) − c(t) − i(t)) + ν(t)c(t).

Note that the rank constraint qualification (condition A2 in 15.5 )is trivially satisfied:
∣

∣

∣

∣

∣

∂
∂x [f(k) − c(t) − i(t)] ∂

∂i [f(k) − c(t) − i(t)]
∂x
∂x

∂i
∂x

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−1 −1
1 0

∣

∣

∣

∣

∣

= 1 6= 0.

Then in view of the Hestenss Theorem the solution (k∗, c∗, i∗) of the above problem must

satisfy

• (i) the following conditions:

k̇(t) =
∂L∗(t)

∂η(t)
, η̇(t) = −∂L̄(t)

∂k(t)
(65)

∂L ∗ (t)

∂c(t)
= 0

∂L∗(t)

∂i(t)
= 0, where L̄ = L(k∗(t), c∗(t), i∗(t), t, η(t), r(t), ν(t)). (66)

• (ii) The relations:
r(t) ≥ 0 rt(f(k∗(t)) − c(t) − i(t))

ν(t) ≥ 0 ν(t)c(t) = 0.
(67)

• (iii)

H(k∗(t), c∗(t), i∗(t), t, η(t)) ≥ H(k∗(t), c(t), i(t)t, η(t))

for all k∗(t), c(t), i(t) which satisfy f(k∗(t)) − c(t) − i(t) ≥ 0 and c(t) ≥ 0, where

H(k(t), c(t), i(t)t, ηt)) = u(c(t))e−δt + η(t)(it − λk(t))

• (iv) The right hand end-point condition

lim
t→∞

p(t) ≥ 0, and lim
t→∞

p(t)k∗(t) = 0, (68)

must hold.

These condition can be rewritten

1. (65) as: k̇(t) = i(t) − λk(t) and η̇(t) = λp(t) − r(t)f ′(k∗(t))

2. (66) as: u′(c∗(t))e−δt − r(t) + ν(t) = 0, and η(t) − r(t) = 0.

From item (3) and nonsatiation we obtain η(t) ≥ u′(c∗(t))e−δt > 0. Then r(t) ≥ 0 follows and

then f(k∗(t))− c∗(t)− i(t) = 0. It is important to note that the equality constraint is obtained as

a result of the nonsatiation assumption.

If we assume that c(t) > 0, then we must have ν(t) = 0, so we obtain: ηe−δt = u′(c(t).

The rest of the analysis is the same as that in (13.1).
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17.2 Differential games and dynamic optimization. Pursuit Games

The most important class of two-person zero-sum differential games is the pursuit games, , in which

player 1 is a pursuer and player 2 an evader. The games ends when the pursuer is sufficiently close

to the evader, at which point the pursuer is said to capture the evader, the time to capture being

the duration of the game. If the pursuer never comes sufficiently close to the evader to capture

him, then the evader escapes, and the time to capture is infinite. This description of the pursuit

game is general enough to cover diverse situations: pursuit of the runner in a football game or the

pursuit of a missile by an antimissile.

The simplest case is that of pursuit in the plane. The players are located at two points in the

plane and move at fixed velocities, the velocity of the pursuer exceeding the velocity of the evader.

The control variables are the directions in which the players move.

Line L is the reference direction, and line M passes trough the coordinates of both players at

any time. The state variable are chosen as those in the moving reference system:

x1 = distance between player 1 and player 2.

x2 = angle between L and M.

The control variables are the directions of movement:

u1 = angle between velocity vector of player 1 and L.

u2 = angle between velocity vector of player 2 and L.

where player 1 (pursuer) moves with speed s1, player 2 (evader) moves with speed s2 (s1 > s2)

and: 0 ≤ u1 < 2π, 0 ≤ u2 < 2π.

The equations of motion are:

ẋ1 = −s1 cos(u1 − x2) + s1 cos(u2 − x2)

ẋ2 = −s1 sin(u1−x2) + s1 sin(u2−x2)
x1

(69)

Terminal time t1 is free, it is the time at which the distance between the players is reduced to

a given distance D, such that x(t1) = D at which time the pursuer captures the evader.

The payoff of the pursuer is

J = −
∫ t1

t0
dt = −(t1 − t2).
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The Hamiltonian is therefore:

−1 + η1(−s1 cos(u1 − x2) + s1 cos(u2 − x2)) + η2
−s1 sin(u1 − x2) + s1 sin(u2 − x2)

x1
. (70)

By the PMP, the Hamiltonian should be maximized with respect to u1 and minimized with

respect to u2. The first order conditions are:

∂H
∂u1

= η1s1 sin(u1 − x2) − η2

x1
s1 cos(u1 − x2) = 0

∂H
∂u2

= η1s2 sin(u2 − x2) − η2

x1
s2 cos(u2 − x2) = 0

(71)

Implying:

tan(u1 − x2) = tan(u2 − x2) =
η2

η1x1
. (72)

The adjoint system is:

η̇1 = − ∂H
∂x1

= − η2

x2

1

(−s1 sin(u1 − x2) + s2 sin(u2 − x2))

η̇2 = − ∂H
∂x2

= −η1 (−s1 sin(u1 − x2) + s2 sin(u2 − x2)) +

η2

x1
(s1 sin(u1 − x2) − s2 cos(u2 − x2)) .

(73)

From (72) y (73) it follows η̇2 = 0; i:e y2 is constant through time. Also as there is no constraint

on the terminal value x2 we obtain that η2(t1) = 0 and then η2(t) = 0 t0 ≤ t ≤ t1.

So substituting in (71) it follows that:

u1 = x1 and u2 = x2.

This is the case in which the pursuer moves directly toward the evader, ,and the evader directly

away from the pursuer. In this case the distance between the players follows from the differential

equation ẋ1 = s2 − s1 so:

x(t) = (s1 − s2)(t0 − t) + x(t0).

By definition of t1 :

t1 = t0 −
(

l − x1(t0)

s1 − s2

)

.

And the value of the game is:

J∗ = −(t1 − t) =

(

l − x1(t0)

s1 − s2

)

.

If for instance, the evader moves away from the pursuer forming a (non-null) angle with the

direction of straight line M, the pursuer catches the evader in a shorter time.
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17.3 The Isoperimetric problem from a Control Theory point of view

Suppose that we impose the following additional constraint on admissible pairs (u, x)

∫ t1

t0
hi(t, x(t), u(t))dt

=ci i = 1, ..., r

where h = (h1, ..., hr) as the same properties as f (53), and c = (c1, ..., cr) is a given vector. Let

H̄(t, x̄, u, η̄, λ) = H̄(t, x̄, u, η̄) + λh(x, t, u).

Exercise 12 Show that if g ≡ 0 and if (u∗, x∗) is an optimal pair in the interval [t0, t1], for the

isoperimetric problem just formulated, then the following maximal principle holds:

There exist a constant η∗0 ≤ 0, an absolutely continuous vector functions η∗ = (η∗1(t), ..., η
∗
n(t))

and a constant vector λ∗ ∈ Rr such that the following hold:

1. The vector (η∗0, η
∗, λ∗) is never zero on [t0, t1].

2. For a.e t on [t0, t1],
ẋ(t) = ∂

∂η H̄(t, x̄∗, u∗, η̄∗, λ∗)

η̇∗(t) = − ∂
∂xH̄(t, x̄∗, u∗, η̄∗, λ∗).

3. For any admissible u defined on [t0, t1],

∫ t1

t0
H̄(t, x̄∗(t), u∗(t), η̄∗(t), λ∗)dt ≥

∫ t1

t0
H̄(t, x̄(t), u(t), η̄(t), λ∗)dt

4. If t → (f̄(t, x(t), u(t)), h(t, x(t), u(t)) is continuous then the following transversality condi-

tions are satisfied:

(H̄(ti, x̄(ti), u
∗(ti), η̄

∗(ti), λ),−η̄(ti))

is orthogonal to the tangent hyperplane πi at Xi, i = 0, 1.
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