
  

  

    

TEST INSTRUMENTS 
  

The Temperature/Resistance 
Curve of NTC Thermistors 

NTC thermistors are the most commonly used 

temperature-sensing elements in modern electronic circuits. 

Using these sensors in temperature-measuring instruments requires 

accurately modeling their temperature/resistance curves. 

he temperature-sensing  ele- 
ment most often used in elec- 

tronic circuits is the Negative- 
Temperature-Coefficient (NTC) 
thermistor. NTC thermistors are 
electrically simple and physically 
rugged, have relatively large temp- 
erature coefficients at normal am- 
bient temperatures and are readily 
available in a range of resistances 
and packages. Their major draw- 
back is nonlinearity. In order to 
produce a temperature-measuring 
instrument of even modest accura- 
cy over a small dynamic range, 
designers must provide a means of 
correcting the nonlinearity of the 
thermistor's  temperature/resist- 
ance characteristic. 

Equation 1 is the simplest for- 
mula usually given for an NTC 
thermistor's resistance, assuming 
zero power dissipation: 

R= AjeB17 (1) 

Parameters 4, and B, depend on 
the thermistor's material and di- 
mensions, as well as the operating 
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conditions. T'is the absolute temp- 
erature. The actual resistance 
R¿(T) measured for a given ther- 
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mistor at a given temperature will 
differ from the resistance calcu- 
lated using Equation 1 or any other 
model. Equation 2 defines an error 
curve D,(T) that quantifies these 
errors in a way that allows compar- 

ison of results from a number of 
different thermistor types. 

100 [R(T) — R,(D)] 
Ra (1) 

The maximum resistance error £,, 
is the greatest absolute value of 
D,(T) when T varies in the selected 
range. 

Tables 1 and 2 show empirical 
resistance versus temperature data 
published by Steinhart and Hart 
(SH)' and two thermistor manu- 
facturers: Yellow Springs Instru- 
ments Co. (YSI) and Western 
Thermistor Co. (WT). Note that 
these tables show resistance at the 
measurement temperature scaled 
against the resistance measured at 
25"C (i.e., R(T)/R¿(25”) instead of 
R¿(T). Table 1 shows data for an 
extended temperature range while 
Table 2 covers a much smaller 
temperature range. The calcula- 
tions reported here used many 
more data points than Table 1 
shows; data points were separated 
by 5*”C. Table 2 shows all data 

D, (T) = Q) 

  

  YSI wWT-—— 
Thermistor Identification  44001A 44002A 44003A 44004 44006 44008 44011 44014 44015 2 3 
Estimated Uncertainty (%) 0.7 0.3 0:1 0.2 0.1 0.1 0.1 0.1 [0] OZ 1 

Temp (Degrees C) 

=60 40.66 56.43 66.78 140.5 84.59 75.69 49.1 
-40 13.74 11:33 19.64 33.65 23.98 29.49 33,96 2205 16,1 
— 20) 5.399 6.267 6.815 9.711 7.891 9.040 9.898 7.422 6.05 

0 2:392 2.592 2.701 3.266 2.949 3.166 3.331 3.627 3.9066 2.848 2.557 
+20 1.177 IL TIOS 1.206 1.250 1.226 1.243 1,255 M2 1.29% 1.218 M9 
+40 0.631 0.6046 05895 0.5329 05592 0.5383 0.5219 0.4980 0.4732 0.5727 0.604 
+60 0.364 0.3303 0.3119 0.2488 0.2760 0.2533 0.2365 0.2123 0.1891 0.2914 0.328 
+80 0.223 0.1930 0.1769 0.1255 0.1458 0.1281 0.1154 0.09783 0.08198 0.1592 0.189 

+100 0.143 0.1193 0.1064 0.06785 0.08168 0.06897 0.06005 0.04826  0.03820 0.0923 0.115 
+120 0.03894 0.04818 0.03920 0.03307 0.02531 001903 0.0565 
+150 0.01861 0.02370 0.01834 001481 001062 0.007447 
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points used in narrow-range calcu- 
lations. 

This report compares the results 
of six models for NTC thermistor 
temperature/resistance character- 
istics with these empirical results. 
The six models are: 

e Equation 1, 

e Becker, Green and Pearson 

(BGP),” 
e Bosson, Gutmann and Sim- 
mons (BGS),* 
e Steinhart and Hart (SH), 
e Cordella* and 
e Lagrange polynomial expres- 
sions of Equation 1. 

Temperature/ 

Resistance-Curve Models 

Equation 1 has two parame- 
ters, 4, and B,, so that two data 
points, (R,,T'¡) and (R,T), from 
the empirical-data tables are 
enough to calculate these param- 
eters” values. Equations 3a and 
3b give the formulas needed to 
compute the parameters for 
Equation 1: 

— IM(R/R) 
(ME LIT) 

By =Rgerrn 

B, Ga) 

The error will be zero at tempera- 
tures T, and 7). These are the 
zero-error points. 

The BGP model includes a po- 
tential factor, T”: 

R= A)T"eb2T 4 

Equations 5a, 5b and 5c are for- 

mulas for the three parameters 
A», B> and n in the BGP model. 
These three formulas derive from 

' applying the model to three zero- 
error points: 

_ ajn(R/R3) — Biln(R/R3) 
= Sa 

de ajln(T,/T;3) a Biin(T,/T;) ( ) 

3, = MTVTI)" R/Ry (Sb) 
2 1/T, - 1/T; 

R 

%= Tp am ES 
where 

a; = 1/T, — 1/T, and (6) 

Bj = 1/T, an 1/T; 

Equation 7 gives the empirical 
model due to BGS: 

R = Ajets/T+0 (7) 
Evaluating the three parameters 
A3, B3 and 8 requires plugging 
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  SsH 
Thermistor Identification T3 T4 

Estimated Uncertainty % 0.03 0.02 

Temp*C  R/R (25) Temp?C  R/R (25) 

-0.0046 2.8447  -0.0070 2.6809 
2.1856 2.5794 2.4845 2.4140 

3.7905 2.4028 6.9282 2.0089 
3.9970 2.3811 9.0130 1.8463 

4.2675 2.3530  11.0004 1.7052 
44715 2.3320 16.9169 1.3536 

5.0174 2.2770 23.5792 1.0536 

6.8358 2.1043  30.2011 .82912 
7.0747 2.0827  34.9111 .70315 

  

empirical results at three zero- 
error points into the model yield- 
ing Equations 8a, 8b and 8c: 

E =(T¿B3 = Tia y) (Sa) 

B3- a; 

IT, + 0) — 1/(T,+ 0) 

R 
As = TT (80) 
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where 

(M3 = (T; => T>)In(R/R;) and (9) 

B3 NN (T; = T¡)In(R/R5) 

The SH model is another em- 
pirical three-parameter formula 
shown in Equation 10: 

R= e(13N-FI+EJ1/3-(F1+F2)1/3) (10) 

where 

F,= (27/2/(44 — 1/T) (L1a) 
1 Ca 

F, = (3/2IV3 x (110) 
  

V27[(As — 1/T)/CyP? + 4(Bs/C,)” 
Equations 12a, 12b and 12c give 
the parameters A4, B¿ and C, from 

empirical results at three zero-er- 
ror points: 

  

C,= (12a) 

LT, — UT) — LÁY/T) — 1/T,) 

EE, => E4Lo 

B, = (1/T, — 1/T) — CiL, (12b) 

E, 
Ás — 

1/T, - BalnR) E Cy(In Rj) (2) 

where 

L, — (In R,) (In R5) and (13a) 

L, = (In Ra)? —(In RP 

L; = In(R/R5) and (13b) 

Ls = In(R¡/R3) 

Steinhart and Hart originally 
proposed their equation in the 
form T=T(R). : 

Recently, Cordella proposed 
the heuristic model in Equation 
14: 

R= RA TIT Jasé2377s) (14) 

where the two parameters, As and 
B;, depend on two zero-error 
points, with R;,T, being the third 
zero-error point: 
B;= (5%) 

T; _ T, 

j parretaro In(Ry/R3) In(T/T;) 
In(R¡/Ry) As = ATAN TT) “o 

Other approximations may be 
obtained by using the Lagrange 
polynomial expressions from 
Equation 1. Developing the actu- 
al function InR = f(1/T) as a 
second degree polynomial pro- 
duces Equation 16: 

R = el46(1/T)2+B5(1/T)+C6] (16) 

Evaluating the three coefficients,  



  

        

| 
As, Bs and C, requires three zero- 
error points: 

  

  

  

  

  

Approx. Equation (1) 
Material q As = a+ Bo + yo (17a) 440014 3.4 0.7 05 0.3 va 05 44002A 4 0.8 0.4 0.2 1.0 0.4 Bs = =1/T,+ UT Ja, UTA 44003A 5 0.9 0.5 0.2 0.9 04 LT)Bs= (UT, + LT )ys (110) 44004 10 ES 0.8 0.2 y 0.6 44006 13 18 0.6 0.1 14 01 A Y6 a 44008 10 1 0.3 0.1 08 0.0 6 q 44011 12 1.4 0.5 0.2 0.6 0.1 LE 10 1 44014 7 0.7 0.3 0.1 0.2 0.1 where 44015 8 08 04 0.3 0.1 0.2 E 2 10 18 1.0 0.6 0.5 0.9 AE In R, a] 3 8 1 0 1 1 0 a 13 0.028 0.002 0.002 0002 0002 0002 (VE VEJAVE > 1) S4 080. . 00%: 002-002. 002.002 E A 

Bas In R, (180) 

(12 =UTJA, =17T) 
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The Luxtron Model / 
four-channel fiberoptic 
measurement system for industrial and 
scientific applications in the range of 
=200* to +450%C. 

Its inert fiberoptic sensor makes possible 
contact or remote measurements in hostile 
environments. 

Let's discuss your difficult application, or 
Just ask for more information and application 
notes. Contact Luxtron at 1060 Terra Bella 
Ave., Mountain View, CA 94043 or (415) 
962-8110. 

LU2<TRON 

FOR MORE INFORMATION, CIRCLE 59 

-d termining thermal characteristics of 
operating electronic components 

- —controlling wafer temperatures during 
plasma etching 

—making safe measurements in explosive 
environments 

—directly measuring the temperatures of 
power transformer windings 
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QT, = UT) (1/T, = 17T,) 

Evaluating the Models 
Tables 3 and 4 show the maxi- 
mum resistance error E,, ex- 
pressed as percentages. Table 3 
uses all the temperature values 
for all the materials shown in 
Tables 1 and 2. Table 4 covers a 
more limited temperature range 
extending between —10"C and 
100*C. Calculations for materials 
that have a limited intrinsic 
temperature range covered only 
those limited ranges. 

These results show that the ex- 
ponential approximation (Equa- 
tion 1) makes errors that are ap- 
proximately ten times greater 
than errors made by the other 
models. Over the small tempera- 
ture spread that Table 4 covers, 
all three parameter approxima- 
tions yield similar errors. In the 
very small ranges covered by T, 
and S, materials, the errors pro- 
duced by all three parameter 
models are equal to within the 
estimated uncertainty. Only over 
large temperature ranges do sig- 
nificant differences emerge. The 
SH and Lagrange polynomial 
models prove best for most of the 
thermistor materials analyzed, 
with errors being on the order of 
the estimated uncertainty. The 
differences between resistance er- 
rors in calculations using the var- 
¡0us three-parameter approxima- 
tions are not great. 

Thermistor-based instruments 
normally infer temperature from 
measurements of the thermistor's 
resistance, implying the need to 
view resistance as the indepen- 
dent variable and evaluate the 
temperature-measurement errors 
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induced by relying on the differ- 
ent models to convert resistance 
measurements to temperature 
readings. Equation 19 defines the 
error curve as a function of resis- 
tance, rather than of tempera- 

Y OO(T(R) — TRI] 
D((R) = T(R) 

Where T(R) is the inverse func- 
tion of R(T), and T.¿(R) is the 
inverse table of the R,(T) table 
(1.e., Tables 1 and 2). The maxi- 
mum temperature errors that 
arise from using the six approxi- 
mations presented here are be- 
tween 10 and 20 times smaller 

(19) 

than the corresponding resistance 
errors in Tables 3 and 4. 
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Specifically, a constant 
temperature bath with 

stability to 

.0005"C 
the stability thatis now the 
trademark of Hart 

Scientific baths. 

We have baths for 

almost any applica- 
tion. Our baths 

have temperature 

ranges from -100C 
to + 400 C, stainless 

steel tanks, and a 
unique lock-in 

amplifier design 
controller. 

   
    

  

We know that our specifications are hard to 
believe, but for the past seven years 

2 we have been making believers out of 

the best in the industry. 
Customers like: 

+ National Bureau of 

Standards 

+ Keystone Carbon 

IBM 

+» Honeywell 
- Dupont 

+ Dow Chemical 

- Monsanto Research 

  
  

» McDonnell Douglas 
*- Thermometrics 

+ United States Air Force 

When the who's who of 
metrology look for 

constant temperature 

baths, to whom do they 
turn? Hart Scientific Inc. 

Our baths cost a little 
more, but they are worthit. 
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