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Resumen. Se analizan los errores que cometen distintos sistemas de medida,
en la evaluacién del factor de potencia. En particular son estudiados: los
instrumentos analégicos basados en bobinas cruzadas, 1los sistemas de medida
que computan la potencia activa y reactiva tal como sucede en la facturacién
de empresas eléctricas, y 1los instrumentos electrénicos basados en 1la
deteccién de los cruces por cero de las ondas de voltaje y corriente.

Se concluye que muchos de estos sistemas de medida presentan grandes
errores cuando la corriente o la tensién no son sinusoidales. En particular,
los medidores electrénicos son los mds afectados por estas condiciones de
trabajo. Se propone el uso de filtros de manera de disminuir sus errores.

1. Introduction

The definition of the power factor PFa, also under nonsinusoidal
waveforms, is

PFa = —---—-mm- (1)
Vrms Irms

where P is the active power, and Vrms and Irms are the RMS values of the
voltage and current.

Different types of instruments have been proposed for the measurement
of PFa. Millar (1944) carefully studied the behaviour of the crossed-coil
meters under sinusoidal conditions. Most of the analog power-factor meters
are based on this principle.

There are a lot of papers on electronic phase meters for sinusoidal
signals. All of them are based on the use of zero-crossing detectors. A
good discussion about the errors of this kind of instrument 1is given by
McKinney (1967). He thoroughly analysed the errors caused by harmonic
distortion in the input signals.

The calculation of the cosine of the phase angle value is necessary for
calculating the power factor. Bombi et al (1971) have proposed an analog
method to do this calculation. This method uses the sinusoidal waveform of
the voltage.

Other kinds of instruments use the proper definition of the power
factor (see Corney et al. 1967 and Martinez et al. 1987). These
instruments measure the active power and the apparent power, and compute the
power factor according to equation (1).



We will calculate the errors produced by each of these kinds of
instruments when the current or voltage are nonsinusoidal functions. In
this error calculation we shall not consider instrument errors such as
friction, errors 1in the detection of zero crossings, limited frequency
response, etc. The consideration will be confined to the theoretical errors
produced by their operating principles.

2. Analysis under sinusoidal voltage and nonsinusoidal current

Laboratory tests and calibrations of power-factor meters are performed
with sinusoidal generators (see Oldham et al. 1981), but 1in industrial
applications they work under nonsinusoidal conditions. In some cases the
waveforms are very distorted such as in inverter or rectifier equipment.

For this analysis we will consider a distorted current i, but a
sinusoidal voltage v at the measurement location
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£ In.cos(nwt+W¥n) (2)
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= V.cos(wt) (3)

where In is the peak value of the nth harmonic of the current, Yn is its
phase angle, V 1is the peak value of the voltage and w is the angular
frequency. The sinusoidal-voltage supposition is used because power networks
have very low impedances, hence the distortion of the voltage waveform can
be neglected in many cases. In this condition the power factor PFa will be

PFa

cos\Y1 . (I11/v2)/Irms (4)

hence

2 %

PFa = cosY1 . (1-D ) (5)

where D is the harmonic distortion of the current

n 2 %
D=(% £In) / Irms (6)
n=2

A. Crossed-coil analog meters

It is easy to see that this kind of instrument measures the cosine of the

angle between the voltage and the fundamental component of the current (see
Appendix). Thus,the error is



- = - (7

where PFc is the value of the power factor shown by the crossed-coil meter.
The percentage error Ec is Ec=100(PFc/PFa-1). Fig. 1 shows the relation
between the percentage error and the distortion D. If D is lower than 10%,
the errors will be smaller than 0.5% . Only a large distortion
significantly affects this kind of power-factor meter.

The same error is produced by instruments that use a wattmeter to measure
the active power and reactive power (Q) and compute the power factor from
the relationship S2=P2+Q2, neglecting the distortion power (see Cox et al.
1989). This 1is the same case than the power utilities, where the power
factor is computed from a Watt-hour meter and a var-hour meter.

B. Electronic instruments based on zero-crossing detectors

Low distortion in the input waveforms produces large errors in the power
factor measured according to this method. In order to calculate the PF error
it 1is necessary to know the amplitude and phase angle for each harmonic
component. Generally, this information 1is not available, so this error
cannot be exactly computed. Notwithstanding, it is possible to limit it,
when the distortion of the current is not very  high, using the
following equation (see McKinney 1967)

1AW <

ne1s

(In/I1) (8)

n=2

where AY is the angular difference, in radians, between the angle measured
by the instrument and the angle Y1.

The difference between cos W1 and PFa must be added to obtain the
total error. Equation (7) gives this last amount. The percentage error in
the power factor will be Ee=100(PFe/PFa-1), where PFe is the power factor
shown by this kind of instrument. The value of the ratio PFe/PFa is

pFe cos (Y1 +AY) 1
e ————— (9)

Fig. 2 shows the relation between the error Ee and PFa, for currents with
10% (curve b) and 30% (curve a) of harmonic distortion. The errors can be
as large as 18% for 10% distortion and PFa=0.5. This shows that these
meters cannot be used in measurements where there is some distortion.

Some of the references mentioned the use of low-pass filters 1in the



inputs to avoid these problems, but the effects of filtering have
not been analysed.

C. Instruments based on the measurement of active and apparent power

This type of instrument is generally a multipurpose meter. It can
measure active and apparent power, voltage and current, and power factor.
The power-factor value is computed using (1), so the error generated by its
operating principle 1is zero. Notwithstanding, instruments of this type
with small errors in the PF measurement when the waveforms are very
distorted, are expensive and difficult to drive in field uses.

3. Analysis under nonsinusoidal current and nonsinusoidal voltage

In order to evaluate the errors of power-factor meters when both waveforms
are distorted, it is necessary to know the harmonic content of current and
voltage. For the current we will use the general expression shown in (2),
but for the voltage we will calculate the harmonic content using a
particular Thevenin model of the power network. Fig. 3 shows the proposed
model. The resistor R and the inductor L represent the internal-serial
impedance of the source. More complex models that take into account the
harmonic distortion of the voltage source are refered (see Saleh et al.
1987), but we do not use them because with these conditions it 1is not
possible to arrive to any general conclusion. On the other hand, this
harmonic content is usually low.

The harmonic components of the output voltage vo are

In

[-- (En.cos nwt + Fn.sin nwt)]} (10)
1 I1

vo = V {cos wt +

nems

n

The values of the coefficients En and Fn are

-R nwL

En = =-=—- cos\Vn + -—-- sin*/n (11)
V/I1 V/I1
R nwL

Fn = ---- sin¥n + ---- cosYn (12)
V/11 V/I1

The RMS values of vo and i do not differ to much than the values of V and
I1. For the most distorted waveform used (#3, Table 1) the ratios are:



V/vrms = 0.97 and I1/Irms = 0.92. Thus, the per unit values of R and L
[R/(Vrms/Irms) and wL/(Vrms/Irms)] practically coincide with R/(V/I1) and
wL/(V/I1). For this study we assume R/(V/I1) = 0.03 and WwL/(V/I1) = 0.07
which are common values in our distribution networks.

A. Crossed-coil meters

The error produced by this meter is calculated for different shapes of
distorted waveforms using (25) which is developed in the Appendix. Table 1
shows the analytical expressions of the current waveforms used. Table 2
shows an extract of the computed percentage errors, with the second column
referring to the sinusoidal voltage and the third column to the distorted
voltage. The harmonic distortion of the voltage vo is 6% for the waveforms
#1 and #2, and 8% for the waveform #3. We may conclude that the error
variation caused by the distortion in the voltage waveform can be neglected.

Some meters possess an auxiliary moving coil and a capacitor in the

voltage branch to extend the frequency range. This modification increases
the errors at low power factors.

B. Zero-crossing meters

The error increase produced by the voltage distortion 1is given by an
equation similar to (8), but changing In/I1 for Vn/Vl. For the waveforms
analysed this amount is much smaller than the errors shown in Fig. 2, so it
can be neglected. Notwithstanding, waveforms generated by inverters have
another cause of error generation due to the very fast wvariation of the
current. This variation - generates large peaks superposed to the voltage
waveform. Electronic power-factor meters that use the voltage waveform to
calculate the cosine, are affected by these peaks. On the other hand, the

errors generated in the cosine computation may be neglected if the voltage
distortion is low.

WAVEFORM NUMBER ANALYTICAL EXPRESSION

1 cos(wt) + 0.3 cos(3wt)
2 cos(wt+n/2) + 0.3 cos(3wt)
3 cos(wt) + 0.3 cos(2wt) + 0.3 cos(3wt)

Table 1
CURRENT PERCENTAGE ERROR PERCENTAGE ERROR
WAVEFORM (Sinusoidal voltage) (Distorted voltage)
1 4.4 4.9
2 4.4 4.0
3 8.6 95
Table 2



4, New power-factor meter

The first improvement that can be made on zero-crossing meters consists in
using two low-pass filters at the inputs. The filters remove the harmonic

components of the input voltage and current so the value displayed by this
instrument PFf is

PFf = cos‘f1 (13)

were Y1 is the angle between the fundamental components of voltage and
current. Equation (13) shows that under sinusoidal voltage this meter has
equal errors than the analog meter. This improvement represents a 100
times error reduction at PF=0.2. Also with distorted voltage we will show
that the wuse of filters significantly improve the behaviour of the =zero-
crossing meters.

Another error reduction can be achieved measuring the input and output
signals on the filters and computing the power factor according to

PFp = gog W1 —=—-—ueem (14)
Vrms Irms

where PFp is the value displayed by this meter, Vrms and Irms are the RMS
values of the input voltage and current, and V1 and Il are the peak values
of the fundamental components. Fig. 4 shows the block diagram of this
instrument. The low-pass filters remove the harmonic components of v(t) and
i(t). The instrument measures Vrms, Irms, V1 and Il. Finally a conventional
phase meter measures the phase angle between the sinusoidal waveforms.

Also a digital instrument based on FFT can compute (14). Jain et al.
(1979) propose an algorithm to achieve high accuracy measurements of
amplitude and phase of the fundamental waves, and RMS values. With this
system all measurements and calculations can be done in a digital form.

From (14) and the power-source model proposed in Fig. 3, we will
calculate the error produced by this system, when both current and voltage
are distorted. The value of power P from the source model to the load is

2 n 2
P=%¥VIlcosWl-%RI1 -%R £ In (15)
n=2

The 2 first terms evaluate the power related to the fundamental waves of
voltage and current. The third term only contents harmonic components (n22).
On the other hand, the value of the active power consumed by the load,
related to the fundamental components of voltage and current, is
%.Vl.Il.cos Y1. The generated and consumed power related to fundamental
components, at the same point (load terminals) must be equal, hence

2
%V iIlcosWl-%RTI1 =%Vl Il cosf1 (16)

-6~



From (1), (14), (15) and (16) we conclude that the value of the error
produced by this measuring system is

PFp - PFa = k¥ ---------- (117)

Hence

PFp - PFa = r D (18)

where r=R/(Vrms/Irms) is the per unit value of R. This error is zero if r=0.
In this case the voltage can be distorted due to the inductor L. Obviously,
if r=0 and L=0 the error is zero. This case corresponds to sinusoidal
voltage. The value PFp is always greater than or equal to the actual power
factor. The current distortion D is the only parameter of the waveform upon
which the error depends.

To compare with the errors produced by the other kinds of instruments, we
assume r=0.03, as was established previously. The percentage error Ep of the
proposed meter is [Ep=100(PFp/PFa-1)]. Fig. 5 shows the calculated error
values for 2 current distortions: 10% (curve b) and 30% (curve a).

Fig. 1 shows that crossed-coil meters have an error of 5% if D=30%
Under these conditions the proposed meter has errors between 0.3% and 3%
when the PF varies between 1 and 0.1 respectively. This represents an error
decrease of between 17 and 1.7 times.

The ratio between PFf and PFp is

PFf Vrms Irms

R (19)
PFp k V1 Il
If Dv is the voltage harmonic distortion
PFf 1 \% 1 \¥%
e BT B I (20)
PFp 2 2
1-D 1-Dv

The value of the last term, for the most distorted waveform analysed (#3,
Table 1) 1is 1.003. This shows that in the zero-crossing meter with filters,

previously mentioned, the error increase due to the voltage distortion can
be neglected.



5. Experimental evaluation

An instrument was developed according to the proposed system. Fig. 6
shows its block diagram. It is similar to the diagram shown in Fig. 4, but
it only has one filter and one voltmeter. The 2 filters of Fig. 4 must have
equal performance 1in the pass band. Also the 2 voltmeters and 2 ammeters
should be of high precision. . These conditions are difficult to achieve and
imply high costs. On the other hand, the system shown in Fig. 6 uses only
one filter and one voltmeter, which must be changed between the input and
output port of the filter. The voltmeter error and the errors due to the
filter are greatly cancelled with this system. The phase shift produced by
the filter 1is the same for both channels, so it does not change the
measured angle‘Pl. The voltmeter error affects in a similar way the input
and output voltages of the filter, so the voltage and current ratios shown
in (14) remain unchanged. ‘

As an angular reference, it uses the voltage input signal. The commutation
of the switches and the computation of the measured values can be done
automatically. This is easy to achieve if the phase meter has a
microprocessor. However, for evaluating the proposed system we used manual
commutation and calculation. With S1 in the upper position the voltmeter
measures Vrms when S2 is in the left side, and V1/v2 when it is in the right
side. With S2 in the lower position the voltmeter measures a proportional
value of Irms and I1/v2 when 82 1is 1in the 1left and right sides,
respectively. The angle 1 results as the difference between the 2 angles
measured by the phasemeter.

The filter wused is a 6th order Tchebyscheff type with a 70 Hz cut-off
frequency. The attenuation at the 3rd harmonic (150 Hz) is 200 times. The
voltmeter used is an RMS-responding 4 %-digit instrument. The phase meter
used has 0.01 deqree of precision.

For the comparison, a <class 1 crossed-coil meter, a zero-crossing
electronic power-factor meter, the same meter but with filters 1in the
inputs, and the proposed system were tested. We also measured the active
power, voltage and current to compute the actual value of PF. We used a 0.05
class digital wattmeter and digital voltmeter and ammeter with errors
smaller than 0.03% . To be sure about the errors that this set of
instruments has under nonsinusoidal waveforms, we compared the calculated PF
with the PF measured by an AC-DC thermal transfer instrument (see Goffin et
al. 1946). Unfortunately the measurement technique with this system is very
cumbersome. We have used this method only to be sure that the measurement
system composed of a wattmeter, voltmeter and ammeter has errors smaller
than 0.1% .

A microprocessor-based waveform generator produces the nonsinusoidal
waveforms, which are amplified to drive the current circuits of the meters
under test. A sinusoidal source synchronized with the current generator acts
as the sinusoidal voltage source. The synchronism circuit can change the
power factor wvalue. The circuit shown in Fig. 7 was used to obtain a
distorted voltage source. This circuit simulates the voltage waveform vo
produced by the circuit of Fig. 3.

Tables 3 and 4 show the measured percentage errors, generated by the
crossed-coil meter (Ec), the zero-crossing meter (Ee), the =zero-crossing
meter with filters (Ef), and the proposed PF meter (Ep). These errors are
related to the current waveforms shown in Table 1, for power factors varying
from 0.1 to 1. Table 3 refers to a sinusoidal voltage and Table 4 to a
distorted voltage. The measured values are in accordance with the previous
theoretical conclusions. In this way, the percentage error of crossed-coil



meters 1is practically independent of the PF value, according to (7) and
Table 2. Only around PF=0.1 is this value slightly increased, because the
actual percentage error of the instrument increases as the power factor
approaches to zero. There are no significant differences using sinusoidal or
distorted voltages. This fact supports the conclusions of Section 3.

CURRENT PF Ec Ee Ef Ep
WAVEFORM % % % %
1 0.15 7.2 -60 5.5 0.7
1 0.3 4.0 =27 5.0 0.2
1 0.5 3.8 =9 4.9 0.1
1 0.8 3.7 =2 4.8 0.0
1 1 4.2 2 4.7 -0,1
2 0.1 51 220 6.0 1.2
2 0.2 3.1 120 5.5 0.7
2 0.5 3.9 40 5.1 0.3
2 0.8 4.4 19 4.9 0.1
2 1 4.3 3 4.8 0.0
3 0.15 8.6 360 8.17 -0.4
3 0.3 8.2 190 955 0.4
3 0.5 7.6 80 9.4 0.3
3 0.8 8.1 -3 9.2 0.1
3 1 8.5 -4 9.0 -0.1
Table 3

CURRENT PF Ec Ef Ep

WAVEFORM % % %

1 0.15 8.2 7.4 2:1

1 0.3 4.1 6.2 0.9

1 0.5 4.0 5.9 0.6

1 0.8 4.1 5.7 0.4

i 1 4.4 547 0.4

2 0.15 4.8 7.8 2.5

2 0.3 3.2 6.5 1.2

2 0.5 5.0 6.0 0.7

2 0.8 4.8 5.8 0.5

2 1 4.6 5.1 0.4

3 0.15 6.6 15 5ed

3 0.3 7.1 13 2.6

3 0.5 8.5 11 1.6

3 0.8 9.1 11 0.9

3 1 8.8 10 0.6

Table 4



The zero-crossing meters have huge errors in the examples shown. For the
current waveform #2 of Table 3 (worse case for D=30%), the measured errors
are similar to those calculated, shown in Fig. 2 (curve a). These errors are
so large that there is no interest in evaluating them under nonsinusoidal
voltage.

The errors of zero-crossing meters with filters (Ef) are practically the
same as the analog-meter errors under sinusoidal voltage (Table 3) and
slightly greater when the voltage is distorted (Table 4).

The proposed system has very small errors under sinusoidal voltage. Also
with distorted voltage the errors are about 10 times smaller than crossed-
coil meters at PF=1. This agrees very well with the theoretical error
reduction, considering the actual errors of these instruments.

6. Conclusions

Crossed-coil meters have errors of 0.5% when the current harmonic
distortion 1is 10% . This shows that only high distortion significantly
affects this kind of PF meter.

The electronic =zero-crossing meters have huge errors even at low
distortion levels. With a 10% distortion, the error can be as large as 20%
around PF=0.5 . This shows that this meter cannot be used in measurements
where there is some harmonic distortion.

A great improvement is achieved using low-pass filters in the inputs. Such
an instrument has errors similar to analog meters.

To diminish the errors coming from the cancellation of the harmonic
components, it 1is proposed to measure the RMS and the peak values in the
input and output ports of the filter and computes these values according to
(14). The error of this measuring system is zero when the voltage |is
sinusoidal. Under nonsinusoidal voltage the error is about 100 times smaller
than conventional electronic-zero-crossing meters and about 10 times smaller

than crossed-coil meters.
Appendix

Fig. 8 shows the diagram of a single phase crossed-coil meter. © is the
deflection angle. ia, ib and i are the instantaneous values of the currents

of each coil. The values of the average torques [1] of each coil Ta and Tb
are
1 1 T
Ta = Ka sin 8 --- --- i vadt (21)
Ra T 0
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1 1 t
Tb = Kb sin(6+a) --- --- i v dt) dt (22)
to

where Ka and Kb are constants that depend on the physical confiquration of
the coils. The integral between the parenthesis, in (22), must have an
average value of zero, thus "to" must be fixed according to this criterion.
The value of the angle @« between coils is 90 degrees in most cases.

The two torques must be equal, thus

1 t
- i(] v dt) dt
-Kb Ra T JO to

tq @ = ——— == —————————————————— (23)
Ka Lb 1
= ITi v dt
T J0 ‘

Generally, the ratio between the constants of this meter may be expressed by
the following equation

Kb wlLb
s T (24)
Ka Ra
Where w is the angular frequency of period T. Thus
1 t
= ITi ([ v dt) dt
T JO to
£l B & =l seseenie = (25)
1T
= I ivadt
T JO

It is easy to see that when the current i and voltage v are sinusoidal
functions, the value of the second term of (25) is equal to the tangent of
the angle between those magnitudes.

This equation permits the calculation of 8 for any current and voltage
waveforms. We will calculate this angle, supposing a distorted current and
sinusoidal voltage according to (2) and (3). The numerator of (25) is

1 t 1l v n
- i(I v dt)dt = -| - sin(wt){Il cos(wt+Y1l)+ £ [In cos(nwt+¥Yn)]}dt (26)
T| w n=2

-11-



Only the fundamental component will have influence on the integral because
the integral value of the other terms is zero. Hence

1 t -1 I1V
-1 i( vat)dt=-----— sin¥1 (27)
T Jo to 2w

On the other hand, the denominator of (25) represents the active power.
Its value is

1 fT
-Iivdt=%11Vcos‘i’1 (28)
0

Finally, the value of tg 8 is
tg 8 = tg¥1 (29)

This equation shows that only the fundamental component of the current has

influence on this kind of instrument, when distorted current and sinusoidal
voltage are applied.
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