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Abstract- In this paper, some general considerations are made on 

the stability of first-order integration algorithms for linear 

systems. An interesting result for· the error of an algorithm under 

constant input is obtained. A method to calculate the cr i ti cal 

stability time-step for the Euler algorithm is given. The 

step-response error for the Euler algorithm for one-dimension and 

two-dimension systems is also shown. 

I . I NTRODUCTJ:ON 

We are developing a circuit simulator, called SIMEEP, 

specially oriented to simulate Power Electronic circuits (PECs). 

When modelling a PEC, we suppose that i t can be represented by a 

set. of swi tches and a set of linear components. We define the 

Logic State (LS) of the circuit as a boolean vector that 

determines the position of the set of switches. For each LS, the 

PEC has an associated linear circuit, which will have a State 

Equation (SE) of the form: 

X =  A X +  B r(t) (SE)

where X is a vector of reals that identif ies the state of the 

linear. circuit, r(t) is the vector of inputs, and A and B are 

constant matrices of the adequate dimensions. We will call X "the 

Real State" (RS). 
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At any time, the LS determines the linear circuit that 

represents the PEC, and the RS determines the state of this linear 

circuit. Therefore, the state of the PEC can be determined by the 

pair of vectors (LS,RS). 

While the LS is constant (no commutations take place), we 

have a constant SE to integrate. When the LS switches to another 

value, we must find the new SE before continuing the integration. 

This type of simulator, that in fact simulates a chain of 

linear circuits, must have very robust algorithms, because the 

probability of a successful simulation is conditioned by the 

success of the simulation of each link of the chain. 

We are talking about circuits which have commutating 

components (e.g. diodes, thyristors, ... 1 .  We have modelled this 

type of components in such a way that the models themselves 

determine their logic state, taking into account the signals 

available at their terminals. The commutation condition is written 

as a linear combination of signals (at the components' terminals) 

which are linear combinations of the state variables. In order not 

to lose commutations, we must perfom the simulation with a 

time-step shorter than the shortest time-constant of the circuit. 

This time-step is in the order in which the Euler algorithm is 

effective. For this reason it w a s  w o r t h  studying this simple 

algorithm. 

11. THE DISCRETE SYSTEM 

W'e have to integrate a SE of the type: 

14 



Performing the integration on a time-step basis T, we obtain 

a sequence of X for the instants t = k T of the form: 

X o ,  Xi , .  . . . . . . . . .Xk,.  - .  . . . . 

where Xk is the RS f o r  the time t = k T. 

Supposing that the input is constant during each inteqration 

interval [ kT, (kt1)T 1, we obtain the next equation that we will 

call Discrete State Equation (DSE): 

Observe that at first sight we need the inverse of A, but the 

expression: 

is well defined, whether the inverse of A exists or not. 

The major problem in using the DSE is calculating e AT and 

[ eAT- I] A-i B. No matter which method is used, we always obtain 

an approximation to these matrices, that we will call M and N 

respectively. Then, in order to perform the time-step based 

integration, we have an Integration Algorithm (IA) of the form: 

This is a first-order algorithm, because Yk+i depends only 

of Yk and r k .  We choose Yk to note the IA state, to differenciate 

it from the DSE state Xk.  
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111. THE ERROR SYSTEM 

We define the error of the algorithm as the difference 

between the algorithm state and the discrete system state. 

Ek = Yk - Xk (Algorithm's Error) 

Substracting term by term the DSE to the IA, we obtain the 

Error State Equation (ESE), as follows: 

Ek-o-a = M Ek t AT )Xk t - [eAT- I )A-IB ] rk 
Def ininq the vector: 

Uk = M - e  AT ) Xk t E. - (e AT- I ]A '-'B ] rk 
as the ESE input, we have: 

Ek+i = M Ek t uk (ESE) 

From this equation we can conclude that, in order to obtain a 

bounded error f o r  bounded values of Xk and rk, we must guarantee 

that all the eigenvalues of M have modulus less than one. 

Observe that by conditioning M in this way, the stability of 

the IA is a l s o  guaranteed. 

Iv. STEADY STATE RESPONSE OF THE ESE 

UNDER CONSTANT INPUT 

Suppose that the SE's input zk is constant, i.e., Tk = roD for 

k = 0,1,2, .......... 
Considering that the SE is stable, we can calculate the value 

of X,L when k tends to infinite as: X = - A - ' B r  
(23 00 
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The i n p u t  of t h e  ESE, uk, t e n d s  t o :  

= [ N - [ M - I ]A-'B ] rm um 

I n  o r d e r  t o  have Ea = 0,  we need t h a t  ubo = 0, and t h i s  can be 

reached by m a k i n g :  

N - [ M - I ]A-'B = 0 

Then, c h o o s i n g :  

N = [ M - I ]A-'B 

we have a n u l l  s t e a d y  e r r o r  under  c o n s t a n t  i n p u t :  

Em = 0 

From t h i s  r e su l t , ,  we always choose  N = (M-I)A-'B, and t h e n ,  

ou r  a l g o r i t h m s  a r e  o n l y  determined by M. 

V. STABILITY 

We have j u s t  shown t h a t  i n  o r d e r  t o  have a s t a b l e  a l g o r i t h m  

(and  a s t a b l e  E r r o r ) ,  w e  m u s t  e n s u r e  t h a t  a l l  t h e  e i g e n v a l u e s  of M 

have modulus l ess  t h a n  one.  When M is a po lynomia l  of t h e  m a t r i x  

A, t h i s  s t a b i l i t y  cond l i t i on  c a n  be w r i t t e n  as a c o n d i t i o n  on t h e  

e i g e n v a l u e s  of A. 

Suppose t h a t :  

M = p ( A )  = b, Ak 

I f  X is a n  e i g e n v a l u e  of  A, t h e n ,  by d e f i n i t i o n ,  

Y X P 0 / A X = A X 

I t  is e a s y  t o  see t h a t :  

M X = p ( A )  X = p(X)  X 

17 



and therefore, p(A) is an eigenvalue of M.  

The transformation z = p ( s ) ,  transforms a reqion S of  the 

s-complex plane into the unit circle of the z-complex plane, 

Let hi, Az, As. . . ., An be the set of eiqenvalues o f  A, and 

Ci, Cz, Ca. . . ., Cn the set of eigenvalues of M. 
Adequately ordering these sets, we can write: 

C k  = p ( h k )  

Then, all the eigenvalues of M are in the unit circle if all 

the eigenvalues of A are in the S region. Therefore, the stability 

of the algorithm is guaranteed if all the eigenvalues of A are 

inside the S region corresponding to the algorithm. 

VI. THE EULER AL~ORITHM 

In the Euler algorithm, M = I + A T, where T is the 

t i me -s  t e p . 
The corresponding value for N is: N = B T 

The matrix M can be written as a polynomial of the matrix A, 

in the form: M = p(A), where the polynomial p ( s )  is : 

The region S is the set of s for which modulus of ~ ( 5 )  is 

less than one, i.e., 

The region S for a qiven time-step T is a circle with c e n t e r  

i n s = -  1 / T and radius 1 / T, as it is shown in Fig.1. 
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Fig. i. R e g i o n  ?&T) 

The region S ,  is) shown in reference [ll for the Euler and 

some other algorithms. 

It can be demonstrated the following: 

if T i  < T2 then S(Tz) c S(Ti) 

where S ( T a )  is the corresponding S region for the alqorithm MI = I 

+ A T i ,  and S(T2) is the corresponding one for Mz = I + A T a .  

Therefore, if the algorithm Mz is stable, then the algorithm 

Mi is also stable. 

Besides, if the !3E is stable (all the eiqenvalues of A have 

negative real part), taking T small enough, the corresponding S 

region will include all the eigenvalues of A, and then the 

algorithm M = I + A T will be s t a b l e .  

In this way, we can find a critical stability time-step 

(TcrLt) for which the algorithm: 

stable, when 0 < T < Tcrit 

unstable, when T > T c r i t  
M = I + A T  is { 

Therefore, building a function 'If (T)" that only changes its 

sign in T = Tcrit, it is easy to find Tcrit using conventional 

methods ( as the Bisection method)[21. 

In order to build1 f (T), we need the characteristic polynomial 

of A, which we calculalte usinq the Souriau ( or FaAeev - Frame)[31 
method, and which we call q ( s ) .  

In order to evaluate f(T), we make the following change of 

variable: h(z) = q( (2-1) / TI. If all the roots of h(z1 are in 

the unit circle, then all the roots of q ( s )  are in the reqion 5 ,  
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and we take f(T) = 1. On the other hand, if any of the roots of 

h(z) are outside the unit circle, then we take f(T) = -1. We a p p l y  

the Jury criterion to the polynomial h(z) in order to determine 

how many roots h ( z )  h a s  outside t h e  unit circle. 

The following is a possible Pasca l  definition of  the function 

"f (TI" and the function ltFindTcrit?', included just to help 

understanding. 

function f( T: real): real; 

var h: Polynomial; 

begin 

ChangeVar( h ,  q, T ) ;  { h(z) = U( (2-1) / T) 1 

if Jury( h 1 > 0 then f:= - 1 
else f:= + 1 

end; { f 1 

function FindTcrit( A: matrix; Tmax: real ):real; 

var q: Polynomial; 

begin 

q := CaracteristicPolynomial( A 1; 

FindTcrit :=  Bisection( 0, Tmax, f ) ;  

end; f FindTcrit 1 

VI1 . RESPONSE OF THE ERROR SYSTEM TO THE STEP INPUT 

A .  One-dimension system. 
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Suppose t h e  f o l l o w i n g  s t a b l e  sys t em:  

f = -a x + b r ( t )  If System 

and t h e  c o r r e s p o n d i n g  a l g o r i t h m :  

= (1 - a T )  y, + bT r, f1 Algor i thm 'k+: 

I n s t e a d  of  a p p l y i n g  a p o s i t i v e  s t e p  i n  r ( t )  , we suppose  t h a t  

t h e  i n p u t  h a s  been c o n s t a n t  enough t i m e  t o  reach t h e  s t e a d y  s t a t e ,  

(remember t h a t  t h e  s t e a d y  s t a t e  e r r o r  is z e r o ) ,  and i n  t = 0 we 

a p p l y  a n e g a t i v e  s t e p  i n  r ( t )  dr iv incr  i t  t o  z e r o .  

rc, t < 0 

0,  t >= 0 
r ( t )  = 

I n i t i a l  c o n d i t i o n s :  

x ( 0 )  = xo = a-'b rc 
- Y ( 0 )  = Yo - xo 

The s t a t e  t r a j e c t o r i e s  a re :  
-at x ( t )  = e xo t o  t h e  sys t em,  and  

t o  t h e  a l g o r i t h m .  
xO 

y, = (1 - a T I k  

I n  t h e  s t a b i l i t y  a l g o r i t h m  c o n d i t i o n  

( I 1 - a T  I < 1 1 ,  we c a n  d i f f e r e n c i a t e  two cases: 

Case 1 :  0 < 1 - aiT < 1 

0 < 1 - a T < l  0 < a T < 1  

i f  0 < 1 - aT < 1 t h e n ,  3 /3/ e -/3T = (1 - a T )  , and 

t h e r e f o r e ,  t h e  a l g o r i t h m  r e s p o n s e  is . s imi l a r  t o  t h e  s y s t e m  

r e s p o n s e ,  w i t h  a t i m e  c o n s t a n t  /3 i n s t e a d  of a .  

The b i g g e s t  e r ro r :  .sk = x ( k T )  - y, t a k e s  p l a c e  f o r  k = 1 a n d  

its v a l u e  is:.  
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- 1 t aT ) xo E = x(T) - y, = ( e-aT 
i 

We 

P (  

define the r e l a t i v e  local error  as: 

ca i  e r r o r "  

For example, if we want a local error lower than 5%, we must 

take aT < 0 . 3 3 4 .  

Case 2 :  - 1 < 1 - aT < 0 

In the same way as in case 1, we define the local error: 

(aT) 
p(aT) = = ( e-aT - 1 + aT ) " Relative local error" 

xo 

Now aT E ( 1,2 1, and therefore, the relative error in this 

case is bigger than the one in case 1. 

Added to the big relative errors ( > 40% ) ,  exists an 

important difference between case i and case 2. In both cases, the 

error is exponentially decreased, but in case 2 it has 

alternatively sign t and sign - , whereas in case 1, the error has 

only one sign. 

The sign inversion that takes place in case 2, may cause 

spurious commutations of the circuit switches, and must be 

avoided. 

Fig. 2. shows the trajectories of the algorithm's state for T 

= Tcrit / Kdiv, taking Kdiv = 1, 3 ,  5, 7 and 9. 

For Kdiv = 1, T = TcrLt and the alsorithm has a non-damped 

trajectory. As Kdiv increases, the trajectory tends to the damped 

exponential e 

Observe that the trajectories for Kdiv = 7 and Kdiv = 9 are 
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almost the same. 

Fig. 2. O n e  d i m e n m i o n  a y e t e m .  K d i v  = A ,  3, 5, 7, 9 

B. Two-dimension system 

In this section, we analyse the transient response of a 

second-order system with a pair of complex conjugated eiqenvalues. 

Making the necessary coordinated transformation, the system 

can be written as: 

where - a 5 j o are the two eiqenvalues. 

I - I t  cos ot -sen ut 

sen ot cos ot 

- U  

= e  
[ 

e 

The correspondinq algorithm is: 

1 - UT 
WT 

] Y, = M Y, 
1 - aT yk+A = [ 

M can be written as a rotation-contraction, where the 

contracting constant is: 

cos WIT - sen u l T  

sen o'T cos  o'T 
and the rotation matrix: 
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I and 1 - aT where: cos o'T = 

(1 - aT)' t ( wT 1 '  

UT sen u'T = 

2 (1 - CXT) + ( WT 

As in the one-dimension system, we apply a negative step 

after a long-time constant input. 

We define two local errors: 

1-Contraction local error: 

e - otT - -/(I.- c ~ T ) ~  + ( UT ) *  

2-Rotation local error: 

2 2 J .(cos UT - cos o'T) + (sen wT - sen u'T) 

To have both errors in small values, it is necessary that: 

( aT l 2  t ( UT )' <<  1. 

In order to ensure the stability of the algorithm and have 

small errors, we can find Tcrit and t a k e  as integration s t e p  T = 

Tcrit / Kdiv, where Kdiv is a constant that we determine in an 

empirical way in order to solve the erro-r-speed compromise. A qood 

value is Kdiv = 1% 

In Fiqs 3 ,  4 and 5 ,  we show the trajectories of a second 
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*r dimension system, taking as initial state Xo = [ 2, 2 1 f o r  a <<  

w (Fig.3.1, a = w (Fig.4.) and a > w (Fig.5. I .  As in the case of 

the one-dimension system the multiple traces correspond to Kdiv = 

1, 3 ,  5, 7 and 9 .  

In the three figures, the non-damped trajectory corresponds 

to Kdiv = 1. Observe that here, too, the trajectories for Kdiv = 7 

and Kdiv = 9 are almost the same. 

Fig.9.  W = i , 01 = 0 . i  

Fig.4.  = i , = i 

F i g . 5 .  w = i , a = 2 

VI I I . CONCLUSION 

The application of the proposed method (automatically findinq 

an integration time-step for the Eular  algorithm f o r  each logic 

state during the simulation) to the simulation of many circuits, 

has shown an important decrease of the total time spent in the 

simulations, compared with simulations performed with a constant 

time-step. 

Due to the characteristics of the switched circuits, it is 

difficult to think about performing a filterinq of the SE in order 

to be able to set a longer time-step for the simulation, because 

we run the risk of losing a commutation and consequently having 

qualitative differences between the simulator's output and the 

circuit behavior. 

As a future work we are thinking in the possibillity of  

performing changes of the state variables in order to uncouple the 
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SE i n  s e t s  of e q u a t i o n s  t h a t  need d i f f e r e n t  t ime- s t eps ,  and  t h e n  

p e r f o r m  t h e  i n t e g r a t i o n  w i t h  d i f f e r e n t  t i m e - s t e p  f o r  e a c h  s e t .  

However, i t  w i l l  be n e c e s s a r y  t o  e v a l u a t e ,  ( d e p e n d i n q  on t h e  

number of i n p u t s ,  o u t p u t s ,  and  s t a t e  v a r i a b l e s ) ,  how much t i m e  i s  

r e a l l y  saved, b e c a u s e  t h e  o u t p u t s  and  some of t h e  s t a t e  v a r i a b l e s  

w i l l  s t i l l  have  t o  be c a l c u l a t e d  w i t h  t h e  s h o r t e s t  t i m e - s t e p .  
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Fig. 2. O n e  d i m o n a i o n  s y s t e m .  Kdiv = i, 8, 5. 7,  P 

Fig .3 .  0 = i , U = 0 . i  
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