
Training Guidelines for Neural Networks to Estimate
Stability Regions

Enrique D. Ferreira Bruce H.Krogh1

Department of Electrical and Computer Engineering
Carnegie Mellon University

5000 Forbes Av., Pittsburgh, PA, 15213-3890 USA
edf@cmu.edu / krogh@ece.cmu.edu

Abstract

This paper presents new results on the use of neural net-
works to estimate stability regions for autonomous nonlin-
ear systems. In contrast to model-based analytical meth-
ods, this approach uses empirical data from the system to
train the neural network. A method is developed to generate
confidence intervals for the regions identified by the trained
neural network. The neural network results are compared
with estimates obtained by previously proposed methods for
a standard two-dimensional example.

1 Introduction

The estimation of regions of stability for autonomous non-
linear systems has been studied for many years [3, 10]. The
knowledge of regions of stability is essential to identify safe
operating states in applications such as power systems and
chemical reactors. In this paper we present further results
on a method reported in [4] to estimate the region of sta-
bility of a stable equilibrium for an autonomous nonlinear
system using a neural network. Notation is introduced and
the problem is formulated inx 2. x 3 describes the neural
network classifier and the main theoretical results are pre-
sented inx 4. x 5 deals with computational issues. The
method is applied to a simulation example and compared
with previously proposed methods inx 6.

2 Problem formulation

We consider a state-constrained nonlinear autonomous sys-
tem described by the discrete-time state equations

xk+1 = f(xk) (1)

with xk 2 D � <n
; andx = 0 being an asymptotically

stable equilibrium point. The nonlinear functionf is as-
sumed smooth on the constraint setD: The trajectory of the

1This research has been supported by CONICYT-IBD, OAS and
Carnegie-Mellon University.

system (1) with the initial statexo at time stepk = 0 is
denoted byxk(xo): The stability regionR for x = 0 is a
connected, invariant set defined as:

R = f xo : xk(xo) 2 D; 8k � 0; lim
k!1

xk(xo) = 0 g

The problem of interest is to design a classifier that deter-
mines whether a given state is inR: This classifier should
be conservative, but as accurate as possible, and fast enough
to be used on-line.

3 Stability region estimation

3.1 Neural network architecture
Fig. 1 shows the architecture of the proposed neural network
to estimate stability regions. A multilayer feedforward net-
work was selected for its capacity as an universal approx-
imator [2]. Two hidden layers plus a linear input-output
component is known to give robust approximations [7]. Let

W

1

3

W

2WWo

Inputs

Outputsy y21

x x x1 2 n

Hidden layer 1

Hidden layer 2

1

1

1

Figure 1: Multilayer neural network architecture.

N be the number of layers of units from input to output.
Each layerk is composed ofnk units. We useno to note
the number of inputs to the network. Letx 2 <no be the
vector of inputs to the neural network andy 2 <nN the



output vector. The output of thekth layer is given by

sk = �k(x) = �k(W
T
k sk�1); 1 � k < N

y = sN = W T
o �x+W T

NsN�1

whereWk 2 <
(nk�1+1)�nk ; sk 2 <

nk+1; and

�o(x) = �x = [1 x
T ]T

�Tk (x) = [1 �k;1(x1) : : : �k;nk (xnk )]:

The activation functions�k;i : < ! S � < are bounded,
monotonic, non-decreasing functions. All the units in the
same layer usually have the same activation functions but
they may differ with respect to other layers in the network.

Using this notation, the input-output relationship of the ar-
chitecture in Fig. 1 is expressed as

y = W T
o �x+W T

3 �2(x):

The activation functions for the hidden units of the neural
network are all chosen to be the hyperbolic tangent function.
The inputs to the neural network are the components of the
system state vector,x, and the output is a two-dimensional
vector,y. The ideal output values are(y1; y2) = (1;�1)
when x is in R and (y1; y2) = (�1; 1) when x is not in
R: This two-variable codification of the classes follows a
typical configuration which assigns as many output units as
classes to separate and sets up the ideal case with a different
unit active per class [2].

To make a conservative classification in the non-ideal case,
two positive parameters,� and�; are selected to implement
the following decision rules. Declarex belongs toR if:

1: y1(x) � y2(x) > �
2: krx(y1(x) � y2(x))k < �

(2)

whererx denotes the gradient with respect tox: The first
condition is a threshold rule. The second condition discards
x values in regions where the sensitivity of the outputs is
large, as is the case near the boundary ofR. The selection
of � and� is explained inx 4.

3.2 Training procedure
Training of the neural network is based on supervised and
reinforcement learning techniques. Three disjoint regions
A;B and C are defined as follows, based on a priori knowl-
edge of the autonomous system behavior.

1. Inner region A. A region which includes all the states
from which convergence to the origin is certain. This
region might be obtained from a local Lyapunov func-
tion derived from a linearized model.

2. Study region B. The region on which the training pro-
cedure is going to be conducted.

3. Unsafe region C. The bounding region in which the
system is either known to be unstable or the state is
outside the operating region of interest.

Data are selected from regionsA andC and supervised
training is applied to generate a first approximation toR:
Then, experiments are performed with the system starting
at states belonging to regionB: For each experiment, rein-
forcement learning techniques are used because we do not
know whether the current state belongs toR beforehand. A
temporal differences method (TD�) [9] is applied to gener-
ate a prediction of the desired outputs for the network. The
update equation for the network weightsW at stepk is

�Wk = �(Pk+1 � Pk):
Pk

i=1 �
k�irwPi; k = 1; : : : ; N

Pk = yk; k = 1; : : : ; N: PN+1 � y
�

whereyk is the network output at step k andy� is the de-
sired value. This algorithm is faster than waiting until the
end of an experiment to get precise data to train the network
[11]. At the end of each experiment, the new data points can
be added to the supervised training set.

This procedure is carried out initially using off-line data,
but training can continue on line as the system operates.
The initial values of the weights are randomly distributed.
Weight decay and early stopping with a test data set is used
to prevent overtraining. A pruning algorithm is run to opti-
mize the size of the network.

The next issue to consider is how to select the initial data
points to be used in the training procedure described above.
In a sense, we are trying to train the neural network to ap-
proximate the characteristic function forR. This approxi-
mation is defined on a compact setD rather than the whole
state-space<n

: For this situation, Sanner and Slotine [8]
showed that it is possible to uniformly approximate the
function with known bounds on the number of required grid
points and the error in the approximation. Their result is
based on the sampling theorem and the smoothness of the
nonlinear system functionf in (1). As experiments con-
tinue, the network estimation of the characteristic function
can be improved by selecting training patterns close to the
current estimated boundary ofR.

4 Estimation properties

4.1 Guidelines for grid design
Applying results on the sensitivity of discrete-time system
trajectories we can use the data we can get from experiments
more efficiently to guarantee a conservative estimation of
R. First, we state a well known result on the sensitivity of a
discrete-time system trajectory to initial conditions.

Theorem 4.1 [1] Consider the dynamical system given by

xk+1 � xk = F (k;xk) (3)

with F continuous and satisfying

kF (k;x)� F (k;y)k � g(k; kx� yk) (4)



with g : Z �< ! <; such that g(k,r) is nondecreasing in
r for all k. Letx1o;x

2
o 2 <

n be two different state vectors
such thatkx1o � x

2
ok � zo; thenkxk(x1o) � xk(x

2
o)k � zk

wherezk+1 � zk = g(k; zk):

The system form used in Theorem 4.1 is slightly different
from the form we have adopted. However, we can translate
(3) to (1) by definingf(xk) = F (k;xk)+xk : The following
proposition applies Theorem 4.1 rather directly.

Proposition 4.2 Consider the dynamical system given by
(1) satisfying the conditions of Theorem 4.1 withf(xk) =
F (k;xk) +xk : Assume there exists� > 0 such that the ball
B(xf ; �) � R for somexf 2 D: If there exists a trajectory
xk(xo) of (3) with xN = xf then the ballB(xo; zo) � R,
wherezo is computed from the equations

zk+1 � zk = g(k; zk); zN = � (5)

If our initial statexo lies in the regionB and the system
trajectory goes to regionA as defined inx 3.2, by apply-
ing Prop. 4.2 we can compute the radiuszo of a ball around
xo of states which also belong toR: Therefore,zo is an es-
timate for the separation between points aroundxo in the
training set leading to a non-uniform grid. To findzo we
have to solve (5) backwards in time. Another use is to esti-
mate a local bound on the norm of the gradient of the neural
network aroundxo: Since the neural network gives a contin-
uous function, in order to reach the threshold right outside
B(xo; zo) we should have

zo � krx(y1 � y2)k � j(y1 � y2)� �j:

Similar conclusions can be applied if the experiments leads
to regionC: It is worth noting that it is not necessary to
know the system (1) exactly. A bound on the functionf is
all that we need to apply the result for on-line experiments.

4.2 Confidence intervals
Since it is not possible to have noise-free data, we have to
establish confidence intervals for the values obtained from
the neural network and use them in our conservative deci-
sion.

We generalize the results on confidence intervals presented
in [2] by introducing uncertainty in the measurements. We
would like to approximate a functionh(x) using a known
parametric estimation function�(x;W ) that depends on
a set of parametersW; andNp input-output data values
(xi; yi) perturbed by gaussian noise. We assume there ex-
ists a particular setW � that perfectly models the unknown
functionh(x): The problem can be formulated with the fol-
lowing expressions,

y� = h(x�) = �(x�;W �)
yi = �(x�i ;W

�) + ei; i = 1; : : : ; Np

xi = x
�
i + vi

ŷi = �(xi; Ŵ )

(6)

with the pair(x�; y�) representing the true input-output val-
ues andŴ the estimated parameters. The input noisevi and
output errorei are assumed to be uncorrelated gaussian ran-
dom vectors with

vi � N (0; �2vI); ei � N (0; �2e ) (7)

The output error has two components due to the modeling
error between the functionh and the family of functions�
and a measurement error. Under these assumptions we show
that the posterior output distribution can be approximated
by a gaussian distribution. Its variance can be used as a
confidence interval.

Using (6) and (7), we can express the input-output condi-
tional density function as

p(y;xjx�;W ) � N (�(x�;W ); �2e ) N (x�; �2vI):

Assuming the input-output noisy patternsTi = (xi; yi) are
independent of each other, the conditional density function
for the pattern setT = fT1; : : : g is

p(T jX�;W ) =

NpY
i=1

p(yi;xijx
�
i ;W ) (8)

with X� = fx�1; : : : g: Applying Bayes’ formula we get the
a posteriori probability distribution of the weights

p(W jX�; T ) = p(T jX�;W )p(W jX�)
p(T jX�) � exp(�S(W ))

S(W ) = �
PNp

i=1(�(x
�
i ;W )� yi)

2 + �
PNw

i=1W
2
i

whereS(W ) is the squared error over the target data. If the
neural network is trained,̂W minimizesS(W ) and

S(W ) ' S(Ŵ ) +
1

2
(W � Ŵ )THw(W � Ŵ )

�(x�;W ) ' ŷ + yTx ~x+ yTw
~W

in a neighborhood of the optimum valueW �: Using the a
posteriori conditional density function for the weights we
can find the output conditional density function for given
input and training data:

p(yjx; T ) =

Z
p(y;x�jx;W )p(W jX�; T ) dWdx�

'

Z
exp

�
�1

2�2e
(y � �(x�;W ))2

�
1

2�2v
~xT ~x�

1

2
~W THw

~W

�
dWdx�

Completing squares inW in the integrand and integrating
first in the variableW we get

p(yjx; T ) ' N (�(x; Ŵ ); �2y) (9)

�2y = �2w + �2v r
T
x � rx� (10)

�2w = �2e +rT
w� H

�1
w rw�

Hw =
@2S(W )

@W 2

����
Ŵ



Given the training set and a proposed threshold value�, the
probability of error in the decision rules (2) can be com-
puted from (9). Therefore, for a given� > 0 we define

� 2 (�1(�); �2(�))

�1(�) = max
x2T;x=2R

�1(x; �)

�2(�) = min
x2T;x2R

�2(x; �) (11)

�1(x; �) = min
#
f# j p((y1 � y2) > #jx; T ) � �g

�2(x; �) = max
#
f# j p((y1 � y2) < #jx; T ) � �g

The result in (9) also shows the influence of the derivative
of the output with respect to the input for the confidence
interval, which confirms the usefulness of rule two. In fact,
the expression of�2y in (10) can be used to set up an estimate
for �:

5 Computational issues

Computation costs in neural networks are measured in terms
of the number of weightsNw in the network and the number
of patternsNp used for training. For the network architec-
ture defined inx 3.1 we have

Nw = (no + n2 + 1)(n3 + n1) + n2:

The computational complexity of the supervised learning
using the backpropagation algorithm to compute the deriva-
tives isO(NwNp) [2].

The confidence intervals introduced inx 4.2 require the
computation of the Hessian of the sum of the squared errors
for the patterns with respect to the weights of the neural net-
work. This computation has a complexity ofO(N2

w): This is
not significant, however, since the computation is performed
only after the network has been trained. We have used an
optimized algorithm developed by Hassibi and Stork [5] and
based on the outer product approximation [6] to compute
the inverse of the Hessian matrix directly.

6 A two-dimensional example and comparison

In this section we apply the proposed method to the Van der
Pol equation and compare the results to estimates obtained
with the methods developed in [3, 10]. Since the Van der
Pol equation is a continuous time system, an object-oriented
tool was developed to simulate sampled-data systems and
generate the neural network estimate for the stability region.
Further analysis and display was done using MATLABTM.

The state equations for this example are:

_x1 = �x2

_x2 = x1 � x2 + x21x2

The regions for training were taken as:

A = f(x1; x2) 2 <
2 j jx1j � 0:5 and jx2j � 0:5g

C = f(x1; x2) 2 <
2 j jx1j � 2:5 or jx2j � 3:0g

B = Ac \ Cc

where the superscriptc refers to the complement set. The
sample time used wasT = 0:01: The error values and pa-
rameters were averaged over five runs. Table 1 shows the
results of the proposed method. Fig. 2 shows the estima-
tion of that region according to the three methods. The net-
work approximation is closer toR than the other methods.

The ideas developed inx 4.1 were not necessary for this

Training/Testing samples: 3721 / 961
Units in each layer: 2 - 10 - 2 - 2
Training/Test set MSE: 0.105 / 0.152

Table 1: Estimation results.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2: Van der Pol: Estimates comparison.

solid: actual stability region.
dotted: Vannelli and Vidyasagar method

dashed: Davison and Kurak method
dash-dotted: neural network estimation.

small simulation example as satisfactory results were ob-
tained with the use of a uniform grid. However, if we try
to design the value of� by applying the results ofx 4.2 and
use equations (11) directly, we come up with no solution
for an error� of five percent or less. Examining the results
we note that the confidence intervals are greatly affected at
some points in state space for which there is a large deriva-
tive of the output of the network with respect to the input.
Therefore, the second condition in (2) was checked first and
the remaining points were only tested to determine the value
for �: Furthermore, if we select

� = 0:01 �v = 0:05

�2e =
1

Np �Nw

NpX
i=1

(yi � �(xi; Ŵ ))2

we find a good trade-off for� = 1:0 and� = 4:2. Fig. 3



0 500 1000 1500 2000 2500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

# pattern

θ ε1(x,  )

θ ε(x,  )2

ε = 1%

Figure 3: Confidence bounds for� for the training set.

shows the values obtained for�1 and�2 for the training pat-
terns. We observe that the maximum value of�1 is larger
than the minimum of�2; implying a solution that correctly
classifies all the patterns with a one percent accuracy is not
possible. However, if we take� = �1; to assure� = 0:01
accuracy on the classification forx =2 R; the percentage of
patterns wrongly classified as not inR is small. Finally,
Fig. 4 displays the contour plots of both rules and relative to
the real stability boundary. In this case the derivative con-

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Figure 4: Confidence interval contours.

solid: actual stability region.
dashed: contour for rule one (� = 1:0 ).

dash-dotted: contour for rule two (� = 4:2 ).

dition is the most conservative. Actually, the contour for
the threshold condition and the real boundary lie inside the
band set up by the derivative rule.

7 Discussion

A new method to estimate the stability region of an au-
tonomous nonlinear system using neural networks is pre-

sented. Confidence intervals are computed to make a con-
servative classification. The model of the system is not used
directly. However, any a priori knowledge should be used
for training. For example, the knowledge of bounds on the
dynamic equation function may lead to a better design of the
grid to train the neural network. Experiments are necessary
to accurately estimate the region of stability, but actual data
from the system operation can be used as off-line training
data for the network.

In applications, if we think of a nonlinear autonomous sys-
tem as a closed-loop system with state and input constraints,
a stability region estimation may allow us to make a deci-
sion to shutdown the system or change controllers if the tra-
jectory goes out of the stable region.

References

[1] Ravi P. Agarwal. Difference equations and inequal-
ities : theory, methods, and applications. M. Dekker, New
York, 1992.

[2] Christopher M. Bishop. Neural Networks for Pat-
tern Recognition. Oxford University Press, Oxford, Great
Britain, 1995.

[3] E.J. Davison and E.M. Kurak. A computational
method for determining quadratic lyapunov functions for
nonlinear systems.Automatica, 7:627–636, 1971.

[4] E. Ferreira and B. Krogh. Using neural networks
to estimate regions of stability. InProc. of 1997 Ameri-
can Control Conference, volume 3, pages 1989–93, Albu-
querque, NM, Jun. 1997.

[5] B. Hassibi and D.G. Stork. Second order derivatives
for network pruning: optical brain surgeon. In S.J. Hanson,
J.D. Cowan, and C.L. Giles, editors,Advances in Neural
Information Processing Systems, volume 5, pages 164–71.
Morgan Kaufmann, san Mateo, CA, 1993.

[6] D.W. Marquardt. An algorithm for least squares esti-
mation of nonlinear parameters.SIAM Journal, 11(2):431–
41, Feb 1963.

[7] P.M. Mills, A.Y. Zomaya, and M.O. Tade.Neuro-
Adaptive Process Control. John Wiley & Sons Ltd., 1996.

[8] R.M. Sanner and J-J. E. Slotine. Gaussian networks
for direct adaptive control. IEEE Trans. on Neural Net-
works, 3(6):837–863, 1992.

[9] R.S. Sutton. Learning to predict by the method of
temporal differences.Machine Learning, 3:9–44, 1988.

[10] A. Vannelli and M. Vidyasagar. Maximal lyapunov
functions and domains of attraction for autonomous nonlin-
ear systems.Automatica, 21:69–80, Jan 1985.

[11] P. Werbos. A menu of designs in reinforcement learn-
ing over time. In W.T. Miller III, R.S. Sutton, and P. Werbos,
editors,Neural Networks for Control. MIT Press, 1991.


