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ABSTRACT 

In this paper we describe a system that is being used for the 
segmentation of neurons in images obtained from electronic 
microscopy. These images are extremely noisy, and ordi- 
nary active contours techniques detect spurious objects and 
fail to detect the neuron boundaries. The algorithm here 
described is based on combining robust anisotropic diffu- 
sion with minimal weighted-path computations. After the 
image is regularized via anisotropic diffusion, the user clicks 
points on the boundary of the desired object, and the algo- 
rithm completes the boundary between those points. This 
tracing is based on computing paths of minimal weighted 
distance, where the weight is given by the image edge con- 
tent. Thanks to advanced numerical algorithms, the algo- 
rithm is very fast and accurate. We compare our results 
with those obtained with Picturelt, a commercially avail- 
able general purpose image processing package developed 
by Microsoft. 
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fusion, weighted distances, geometric tracing, segmenta- 
tion, curve evolution. 

1. INTRODUCTION 

Figure 1 shows an image of a neuron from the central ner- 
vous system. This image was obtained via electronic mi- 
croscopy (EM). After the neuron is identified, it is marked 
via the injection of a color fluid. Then, a portion of the 
tissue is extracted, and after some processing, it is cut into 
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thin slices and observed and captured via the EM system. 
The figure shows the output of the EM after some sim- 
ple post-processing, mainly composed by contrast enhance- 
ment. The goal of the biologist is to obtain a three dimen- 
sional reconstruction of this neuron. As we observe from 
the example in Figure 1, the image is very noisy, and the 
boundaries of the neuron are difficult to identify. Segment- 
ing the neuron is then a difficult task. In this paper we 
describe a semi-automatic system to obtain fast and accu- 
rate segmentations of the 2D slices. From these, the 3D 
neuron can be reconstructed. 

One of the most commonly used approaches to segment 
objects as the neuron in Figure 1 are active contours or 
snakes [7,18]. This technique is based on deforming a curve 
toward the minimization of a given energy. This energy is 
mainly composed by two terms, one attracting the curve 
to the objects boundaries, and the other one addressing 
regularization properties of the deforming curve. In [4, 51, 
it was shown that a re-interpretation of the classical snakes 
model leads to the formulation of the segmentation problem 
as the minimization of a weighted length given by 

l ( s ( l l  V(1) ID +a)+ (1) 

where cy 6 [0,1], C : R -+ R2 is the deforming curve, 
Z : IR2 + R the image, ds stands for the curve arc-length 
( 1 1  dC/ds I\= l), V(.) stands for the gradient, and g(.)  is 
such that g ( r )  t 0 while r + DC) (the “edge detector”). 
This model means that finding the object boundaries is 
equivalent to computing a path of minimal weighted dis- 
tance, a geodesic curve, with weight given by g( . )  (see also 
[9, 17, 201). This model not only improves classical snakes, 
but also provides a formal mathematical framework that 
connects between previous models (e.g., between [7] and 
[lo]); see [ 5 ]  for details. 
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There are two main techniques to find the geodesic 
curve, that is, the minimizer of (1): 

Compute the gradient descent of ( l ) ,  and starting 
from a closed ciirve either inside or outside the ob- 
ject, deform it toward the (possibly local) minima, 
finding a geodesic curve. This approach gives a curve 
evolution flow, based on curvature motion, leading to 
very efficient solutions for a large number of applica- 
tions. This was the approach followed in [5], where 
the model was first introduced. This model gives a 
completely automatic segmentation procedure (mod- 
ulo initialization). When tested with images like the 
one in Figure 1, we found two major drawbacks [2]. 
First, due to the large amount of noise, spurious ob- 
jects are detected, and is left to the user to manually 
eliminate them. Second, due to the fact that the 
boundary of the real neuron is very weak, this is not 
always detected. An initialization very close to the 
goal is then required. 

Connect between a few points marked by the user on 
the neuron's boundary, while keeping the weighted 
length (1) to a minimum. This was developed in [6], 
and it is the approach we follow in this work. In 
contrast with the technique described above, this ap- 
proach always needs user intervention to mark the 
initial points. On the other hand, for images like the 
one in Figure 1, it permits a better handling of the 
noise. In the rest of this paper we will briefly de- 
scribe this technique and the additions incorporated 
to address our specific problem. 

2. C O M P U T I N G  THE MINIMAL GEODESIC 

We now describe the algorithm used to compute the mini- 
mal weighted path between points on the objects boundary. 
That is, given a set of boundary points {P}Kt ' ,  and fol- 
lowing (l), we have to find the N curves that minimize 
(PiVi.1 E P1) 

Pi+l 
d( l (Pi ) ,  I(Pi+l)) := Li (9(11 vz II +@W. (2) 

The algorithm is composed of three main steps: 1- Im- 
age regularization, 2- Computation of equal distance con- 
tours, 3- Back propagation. We briefly describe each one of 
these steps now. For details on the first step, see [3]. For 
details on the other steps, see [6]. 

2.1. Image regularisation 

In order to reduce the noise on the images obtained from 
EM, we perform the following two steps: 

1. ' Subsampling. 
We use a 7 x 7, symmetric and separable filter, ap- 
proximating a Gaussian function, to smooth the im- 
age before a 2 x 2 subsampling is performed. This not 
only removes noise and regularizes the neuron border, 
but also gives a smaller image to work with, thereby 
accelerating the algorithm by a factor of 4. That is, 
we will work on the sub-sampled image (although the 

2. 

user marks the end points on the original image), and 
only after the segmentation is computed, the result 
is extrapolated to the original size image. Further 
subsampling was found to already produce not very 
accurate results. The result from this step is then an 
image Z z X z  which is one quarter of the original image 
z. 
Robust anisotropic diffusion. 
In order to further reduce noise in the image, we 
smooth it with an anisotropic diffusion technique, 
hereby preserving the edges. The denoising flow is 
obtained from the gradient descent of 

which is given by 

where p is the Tukey's biweight robust function. This 
flow is an extension of the anisotropic diffusion tech- 
nique introduced by Perona and Malik [12]. We also 
found that the algorithm in [l] can be used here. 

At theAend of the pre-processing stage we then obtain 
an image Z 2 x 2  which is the result of the subsampling of 1 
followed by edge-preserving noise removal. Although the 
user marks the points { P } E l  on the original image 1, the 
algorithm makes all the computations on 2 z X 2  and then 
extrapolates and displays them on 1. 

2.2. Equal  distance contours computation 

After the imege f z X 2  is ̂ computed, we have to compute, for 
every point Pi, where Pi is the point in Z z X 2  correspond- 
ing to the point Pi in Z (coordinates divided by two), the 
weighted distance map, according to the weighted distance 
d. That is, we have to compute the function 

or in woTds, the weighted distance between the pair of image 
points Pi and (x,y). 

There are basically two ways of making this computa- 
tion, computing equal distance contours, or directly com- 
puting Vi. We briefly describe each one of these now. 

Equal distance contours Ci are curves such that all the 
points on the contour have the same distance d to Pi. That 
is, the curves Ci are the level-sets or isophotes of Di. It 
is easy to see, [6], that following the definition of d, these 
contours are obtained as the solution of the curve evolution 
%ow 

where 3 is the outer unit normal to Ci(z,y,t). This type 
of flow should be implemented using the standard level-sets 
method [ll]. 
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A different approach is based on the fact that the dis- 
tance function ’Di holds the following Hamilton-Jacobi equa- 
tion [8, 16, 191: 

Optimal numerical techniques have been proposed to  
solve this static Hamilton-Jacobi equation [8, 16, 191. Due 
to this optimality, this is the approach we follow in our 
algorithm. At the end of this step, we have Vi for each 
point Pi. We should note that we do not need to compute 
Di for all the image plane. I t  is actually enough to stop the 
computations when the value at  Pi+l is obtained. 

2.3. Back propagation 

After the distance functions vi are compted ,  we have to  
trace the actual minimal path between Pi and Pi+l that 
minimizes d. Once again it is easy to show (see for example 
[8, IS]), that this path should be perpendicular to the level- 
curves C; of Di, and thereforentangent to VV;. The path is 
then computed backing from Pi+l, in the gradient direction, 
until we return to the point Pi. This back propagation is 
of course guaranteed to converge to the point Pi, and then 
gives the path of minimal weighted distance. 

3. EXAMPLES 

We present now a number of examples of the algorithm de- 
scribed above. We compare our results with those obtained 
with PictureIt, a commercially available general purpose 
image processing package developed by Microsoft. As 
in our algorithm, this software allows for the user to click 
a few points on the object’s boundary, while the program 
automatically completes the rest of it. Three to five points 
are used for each one of the examples. The points are usu- 
ally marked at  extrema of curvature or at  areas where the 
user, after some experience, predicts possible segmentation 
difficulties. The same points were marked in our algorithm 
and in PictureIt. The results are shown in figures 2, 3, and 
4. We observe that our technique outperforms PictureIt. 
Moreover, we found PictureIt to be extremely sensible to 
the exact position of the marked points, a difference of one 
or two pixels can cause a very large difference in the seg- 
mentation results. Our algorithm is very robust to the exact 
position of the points marked by the user. 

4. CONCLUDING REMARKS 

We have described a system that is being used to segment 
images from electronic microscopy. The performance of this 
system was compared with that of PictureIt, a general pur- 
pose image processing package developed by Microsoft. Fol- 
lowing the framework in [13, 141, we are now working on the 
extension of this technique to color and texture data, to deal 
with cropping and re-touching of natural images [15]. 

‘To the best of our knowledge, the exact algorithm used by 
this product was not published. 
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Figure 1: Example of an EM image of a neuron (one slice). 

Figure 2: Comparison of our results with those obtained 
with the commercial software PictureIt. The original image 
is  shown on the top, the result of our algorithm (green line) 
on the bottom-left, and the result of PictureIt on the bottom- 
right. For this last, the area segmented by the algorithm is 
shown brighter. (This is a color figure.) 
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Figure 3: Same as Figure 2 for an additional image. (This 
is a color figure.) 

Figure 4: Same as Figure 2 for an additional image. (This 
is a color figure.) 
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