| mplementation of Adaptive Logic Networkson an FPGA board

Juan P. Olivef, André Fonseca de OliveifaJulio Pérez Aclé,
Roberto J. de la Vegba Rafael Canetft

% Instituto de Ingenierfa Eléctrica, Facultad de Ingenieria, Universidad de la Republica,
Montevideo - Uruguay
b GrupoAdqdat, Facultad de Ingenieria, Universidad Nacional del Centro,
Olavarria - Bs. As. - Argentina

ABSTRACT

Thiswork is part of a projed that studies the implementation of neural network agorithms in reconfigurable hardware & a
way to oltain a high performance neural procesor. The results for Adaptive Logic Network (ALN) type binary networks
with and without learning in hardware are presented.

The designs were made on a hardware platform consisting of a PC compatible a the host computer and an ALTERA
RIPPL0 remnfigurable board with nine FLEX8K FPGAs and 51KB RAM. The different designs were run on the same
hardware platform, taking advantage ofdtsfigurability.

A software tod was developed to automaticaly convert the ALN network description resulting from the training process
with the ATREE 2.7 for Windows Sftware padkage into a hardware description file. This approach enables the eay
generation of the hardware necessary to evaluate the very large combinatorial functions that results in an ALN.

In an on-board leaning version, an ALN basic node was designed ogtimizing it in the anourt of cdls per node used. Several
nodes conneded in a binary tree structure for ead output bit, together with a control block, form the ALN network. The
total amount of logic available on-board in the used patform limits the maximum size of the networks from a small to
medium range.

The performance was dudied in pattern recognition applications. The results are mmpared with the software simulation of
ALN networks.

Keywords: FPGAs,reconfigurable hardware, artificial neural networks, Adaptive Logical Networks (ALN).

1. INTRODUCTION

The use of programmable or remnfigurable logic to accéerate dgorithms of diverse type has been used with successfor
some yeas already % The gproach in thiswork is to use areconfigurable logic board working together with the CPU of a
personal computer. The remnfigurable logic caries out the heaviest part in a cetain agorithm, thus ealing wp its
execution.

Further author information -
J.P.O.: E-mailjpo@iie.edu.uy; WWWhttp:/Mww.iie.edu.uy*jpo
A.F.O.: E-mail:andre@iie.edu.uy; WWWhttp:/Mww.iie.edu.uy*andre
J.P.A.: E-mailjulio@iie.edu.uy; WWWhttp:/Aww.iie.edu.uy#julio
R.J.V.: E-mailrjdiv@fio.unicen.edu.ar
R.C.: E-mail:canetti@iie.edu.uy; WWWhttp:/Awww.iie.edu.uy*canetti

To be ale to increase the use of this technology to paential users applicaions it is necessary to narrow the gap between
development tools designed for specialists in the area of digital design and the final applications.

In this nse two hig tendencies appea: the development of high level languages and compil ers able to trandate and to
transfer automaticdly certain algorithms to reconfigurable hardware, and the mnstruction of reusable module libraries that
could be invoked by the gplications. The last approach was the one followed in this work, trying to simplify the use of
programmable logic by neural network users.

The focus of this work is the development of hardware libraries of Adaptive Logic Networks (ALN) from the final user's
point of view. In a library of C functions ssme ae substituted by their hardware version and the results obtained are
compared.

This paper is organized as follows: some comments about neural networks and their hardware implementation are given in
Sedion 2. Sedion 3 gives an introduction to Adaptive Logic Network (ALN). The hardware platform used is described in
Sedion 4. Sedion 5 shows an example with a previoudly trained ALN for the inverted pendulum control problem; and the
on-board training ALN implementation is presented in Sedion 6 with an example of pattern recognition. Finally, conclusions
are presented in Secti@n

2. ARTIFICIAL NEURONAL NETWORKS
The Artificial Neural Networks (ANNs) have multiple gplicaionsin the fields of control and pattern recognition * 557, In
these fields they have had a growing interest as an aternative and feasible toal to solve an enormous quantity of engineering
problems, espedally those where the mnventional procedures have severe limitations. Such is the cae, when making
dedsions in situations difficult to quantify, and therefore not very well defined analyticdly, is required. This fad is due to
the generali zation property of neural networks. That is, the adility to give well behaved answers based on previous leaning
with a representative pattern set, even when the current input pattern was not previously presented.

The software redizaion of ANN demands a heavy processload to the CPU, becaise it is implemented in sequential form
(inherent of the general purpose computer architedure where the program is runring). This fad limits its use to off line
applicdions or red time gplications of very slow processes. Another limitation is that certain neural network adaptation
agorithms (or training) require extremely high computation time when the dimension of the network to be alapted is
relatively big. Althoughthe trained network could be used in a fast way, the necessary time for its training is $ high that it
makes its use impractical.

Although the use of neural networks as a tod for the solution of red problems of engineaing (and aher areas) is an
interesting alternative, the reasons exposed previously show a dea limitation for their use by means of sequential programs.
This makes it attradive to have asystem that all ows to implement neural networks in hardware, thus al owing to exploit the
potentiality of parallel calculation.

In the last yeas, the acaemy as well as the industry have worked uninterruptedly on implementing rets in hardware. Good
references on the existent works can be found in C. Lindsey's articles and T. Lindblad ’, J. N. H. Heemserk ° , J. A. Hegt *°
and I.Paolo and GKuhn ™.

This work is part of a projed that studies the implementation of neural network agorithms in reconfigurable hardware & a
way to oktain a high performance neural processor. The Adaptive Logic Network described in the next sedion was one of
the studied networks. It is a digital net that after training can be represented as a collection of logical gates.

3. ADAPTIVE LOGIC NETWORK

An ALN (Adaptive Logic Network) can be described as a set of binary trees with digital inputs (bits). The bits of the input
pattern are complemented forming a new pattern with double size Every input bit has random connedions with treeinputs,
as many times as possble until the complete mnnedion of the input layer (leases). This type of trees can carry out any type

of bodean function, being robust for small variations of the input patterns ** ** . The probability of having a successul
adaptation increases with the ratio between the quantity of leaves and the quantity of bits of the input pattern.

When the input patterns are represented in floating point
(red number), these should be @ded to hinary values for
their use with the ALN. Every node of ead treereceves
two logicd inputs and it produces alogicd output that can
be one of the following functions. AND, OR, LEFT or
RIGHT. Each treegives an output that corresponds to the
output of its root node. All output bits form the cded
output, that need to be processed by the decoder in order
to produce the final output of the network. The adlaptation
mechanism of these networks change the function caried
out by eat node: they can adapt to produce atree that
verifies the logicd function corresponding to the pattern's
input/output relationship. Figure 1 shows a basic outline of
this network.

Eadh node is a sequentia circuit that maintains its internal
state in two hbinary counters with saturation. The function

performed by the node (AND, OR, LEFT, RIGHT) binary inputs complemented inputs
depends on the value of these counters.
u T T

The alaptation is based on the notion of responsibility, Encoder
that is, the dependence of the network's output on the

current function in eadh node °. Each node, besides the inouts X
inputs fkl and fkr incoming from the lower layer, recdves P

from the parent node (higher layer) a responsibility isput

Fig. 1. AdaptiveLogic Network
Theleaningis caried out presenting an input pattern and
comparing the output obtained with the desired output.
Every node computes the responsibility of its children (sk
and skr) as a function of its inputs fkl and fkr, of the
desired output h, of its current internal state and of its own
responsibility input sk. The root node is aways
responsible. If the responsibility input of a node is a
logicd one (true), this node modifies its internal state

TRAINING

(counters). CIRCUIT AND
OR

COUNTER [P
Adaptation begins once the evaluation of the output LEFT

corresponding to the pattern presented at the input has
been completed. In the first step the root of ead tree
change its counters and evaluates the responsibiliti es of his
two children nodes (second layer). The process continues
for every layer urtil the base of the tree is readed. In
some caes, afinal comparison between the output of the
tree with the desired output is performed, and a second
adaptation is carried out.

‘* RIGHT

skl fkl skr fkl
Several agorithms exist for the determination of the

responsibiliti es and for how to move on the @urnters . Fig. 2ALN Node

The dgorithm used in thiswork is the same used in the library Atreeversion 2.7 for Windows. In this application, Atreg aC
library developed at the University of Alberta, Canada that simulates this type of nets was used (the versions used were
Atree 2.0 forUnix andAtree 2.7 for Windows?).

From the point of view of their implementation it isimportant to consider that if the leaningis carried out off-line, the final
size of the trees can significantly decrease, pruning the unused descendent sub-trees in each Left or Right node.

4. HARDWARE PLATFORM

The designs were made on a hardware platform consisting of a PC compatible a the host computer and an ALTERA
RIPP10reconfigurable board with nine FLEX8RPGAs and 512KB RAM.

The Reconfigurable Interconned Peripheral Processor (RIPPLO) board is provided by the Altera’ s Programmable Hardware
Development Prograr.

The RIPPLO bard has a highly interconneded array of 8 FLEX81188FPGA chips with a total of 8064 Logic Cells. Each
chip is conneded with four of its neighbors through 32 kit private buses (the “colored buses’). A 36 kit global bus provides
broadcest access from a FLEX8452 chip that makes the ISA bus interface There is also a 4 hit fast bus reserved for
clocking.

There ae four sockets for RAM chips. Each RAM is accessed from a pair of 81188chips. The global bus can aso be
accessd from abuffered 40 pn external interface ontrolled by the 8452interface tip. The RAM and the external interface
were not used in the work presented here.

Both the aray and the interface dips are programmable through the ISA bus. The “bodstrap” process sarts loading the
interface ¢ip with a drcuit that allows loading the aray chips. Following this, the aray chips are programmed one & atime
through the global bus. Finally, if needed, a hew design is loaded on the interface chip for the application.

The RIPPLO bard presents sveral advantages and d sadvantages from this projed’s point of view. The RIPPLO provides a
very flexible platform that allowed us to easily try different solutions for a given problem. The anount of avail able logic
cdlsisvery large and the board has a high number of interconnedion paths between chips. The simplicity of the ISA busis
an advantage whilgrototyping.

On the other hand this platform has ome drawbadks if compared with newer boards. Thereis no way to partialy reconfigure
the aray. The only way is to clea al the dhips at once and then load the eght new circuits. This is a Slow process that
severely limits the ability to time multiplexing different circuits on the RIPPLO. The speed and bandwidth of the ISA bus
nowadays has been improved by the PCI interface.

5. BUILDING HARDWARE FROM THE PREVIOUSLY ALN TRAINED SYSTEM

As it has been seen previously a trained ALN is a binary tree where eat node caries out one of the following logicd
functions: AND, OR, LEFT or RIGHT. That is, the necessary circuit to implement a trained ALN treeis a combinatorial
function. For red problems this combinatorial function has a grea quantity of nodes. When using ALN for red applicaions
the employment of trees of several thousands of nodes is common, athough as it was mentioned (Sedion 3) the number of
inputs to the system is always much smaller that the number of leares. In the gplicaion chosen as example the number of
leaves is 2048, which implies a total of 2047 nodes organizedlayéfs, and the amount of inputs of the system is 60.

The network product of the training processis gored in text files with the format used by Atreethat consists of the functions
of ead tree represented in postfix notation. The charaders © &', ‘—, ‘L’, ‘R’ represent the node functions AND, OR,
LEFT, RIGHT respedively. Leaves are stored as a number, representing the bit index, preceded by a‘l’ to denote negation
when needed.

A tod cdled “AtreeToHardware” (A2H) was developed. It automaticdly converts the fil es of the trees generated by Atreeto
a hardware description language. A2H, besides carrying out the process of trandation, simplifies the network since the

logicd functionsthat it generates don't contain LEFT or RIGHT type nodes, that is, the treeis only made up of AND and OR
nodes.

The language used was Altera Hardware Description Language (AHDL), but A2H can be aapted easily to cther hardware
description langueges. The AHDL sources generated with A2H are mmpiled later with Max+Plus Il. This generates a
logicd function for ead tree of the network. The Max+Plus Il caries out a minimization of these logicd functions,
therefore it is possible to map large networks in the chips of the RIPP10.

The developed software is generic, and it allows to automate the trandation to hardware of this type of trained networks.
This fadlit ates the final design of applicaions, reducing the time needed for the hardware system development of a spedfic
application.

In this phase of the projed the design is not completely automatic, therefore there ae some relatively simple manual tasks,
that consists of adapting sizes of parametrized functions previously developed, and then making the final compil ations for
each array chip.

A C function which is the user’s interfaceto the whole hardware network implementation was developed. This function
caries out the evaluation of the group of trees, and its interfaceis identicd to the one included in the Atree library
(atree_eval).

5.1 A control application example

An ALN trained to control an inverted pendulum, result of a
previous work already caried aut in the Eledricd Department 0
of the Universidad de la Reptblica ** *° was chosen to be
implemented in hardware. The inputs of the mntrol system are
X, 6, dx/dt, dg/dt, and the output is the aurrent of the DC motor
that moves the cart of the pendulum. _

+

o
The 4 input variables are red, coded in 15 Hts ead one, I I
conforming a total of 60 input bits. o Bl QD
The @ntrol output is made up of ared variable coded in 6 hits.
Eacd one of these 6 autput bits is cdculated with a redundancy "
fador of three (3 votes, mgority dedsion), thus needing 18 >
binary trees. DC Motor
Ead one of these trees has 2048leares, being their connedions Fig. 3 Inverted Pendulum

with the input bits and their inverted values at random.

This network was previously trained using the Atree 2.7 library for Windows. The input patterns used were generated by a
feedback state controller designed earlier for the given system.

The files, product of this training, were processed with A2H and later compiled with Max+Plus IlI. The three trees

corresponding to the majority dedsion of an output were located in the same cip of the aray. In this way, 6 chips of the
array were used to carry out the 18 trees.

To complete the design some more modules are added:

« Alogical function that takes the majority decision between the 3 votes was built to generate one output bit per chip.
e The shift registers to store the inputs are adapted to the 60 input bits.

Finaly for the deded applicaion, in which 18 trees are programmed with 2048leaves ead one, the dhips usage is sown in
the following table:

CHIP | LCELLS | % used
ul 541 53 %
u2 576 57 %
u3 539 53 %
u4 542 53 %
us 479 47 %
u6b 509 50 %
u7 not used 0 %
u8 not used 0 %

Table 1: Number of Logic Cells
As it can be appreciated in the table, the chips of the array (EPF81188) have about 45% of free cells.

System inputs are written in successve 16 ht transfers to the ISA port. The 6 output bits, generated by the trees, are read
simultaneously in a single input transfer. In both cases data passes through the board’s global bus and the interface chip.

5.2 Results

To perform a speed comparison, three versions of a program to evaluate 4096 pitterns were compiled with different
evaluation functions. All functions have the same C interface One of them makes the evaluation in hardware and the other
two are from the originahtree code.

The exeaution times listed in Table 2 are from afinal applicaion point of view, that is, they include the whole program loop
to evaluate dl the input patterns. They do not include initiali zation overheads like the anfiguration of the FPGA chipsin the
hardware version and the data structure creation and initialization in the software only versions.

Computer atree_eval(] atree_fast_eval()| atree_ripp_eval()
Time[ms] Time[ms] Time[ms]
Pentium 200 MHz 10934 3626 27
Pentium 90 MHz 23077 7692
486DX2 66 MHz 59286 17473
386SX 25MHz 298407 86264 192

Table 2: Speed Comparison

atree_eval() - software evaluation of one tree stored in the standard tree structure in RAM.
atree_fast_eval(} same asatree_eval, except that works over a preprocessed tree that accelerates software execution
atree_ripp_eval() tree evaluatiomising hardware (RIPP10)

As can be observed in Table 2, the hardware version evaluation time deaeases sgnificantly between a 3865X 25MHz and a
Pentium 200MHz, athoughthe RIPPLO clock frequency is the same (ISA bus clock). Thisindicaes that the main part of the
evaluation time is spent by the software overhead that speeds up in the faster PC.

In the hardware evaluation version, alower bound to the exeaution time can be derived from the 1/0 interfacelimitations. A
total of five 16 kit ISA bus cycles (4 WR and 1 RD cycle) are needed for ead pattern evaluation. Each 16 kit ISA 1/0 cycles
takes three 8.33MHz bus clock periods making a total of 1800 ns per pattern. The lower limit for the evaluation of 4096
patterns is then about 7.4ms. As can be seen, athough the hardware evaluation version runring on a Pentium 200 PC with
the RIPP10 board still has a considerable overhead, it is getting closer to the theoretical limit.

Simulating the drcuit with Max+Plus Timing Analysis toal, a minimum cycle time of 300ns to evaluate apattern is derived.

This cycle includes the load of the 4 input words through the global bus, the combinatorial circuit delay and the output
transfer through the global bus. This shows that the throughput is bounded by the ISA bus interface.

6. ON-BOARD LEARNING ALN

A library of parameterized modules was developed to construct Adaptive Logic Networks with al the logic necessary for on-
board learning.

The basic module of thislibrary isasingle ALN node (seeFig. 2), this node includes the training circuit, two counters that
give the state of the node, and the logic combinatorial function of the node: AND, OR, LEFT, RIGHT (seleded acordingto
the state). The register width in the munters can be determined during compilation by a parameter value. The node is a
synchronous circuit with an input that enables the training in one clock period.

The treemodule interconneds nodes in a binary tree structure. The number of layersin the treg (and as a result the number
of leaves and hinary inputs as well) is parameterized. To load the initial value of ead node's counters and to oltain the final
values after training, the wunters are aranged as a shift register conneding all the nodes in the tree"in-order" (left subtree
first, then the node and right subtreelast). This allows to load and insped the binary treein a natural way with reaursive
functions, greatly simplifying the software.

System inputs are broadcasted to the aray chips one word at atime. Each input at atreeled is driven by one system input,
either diredly or inverted. A configurable shuffle module was developed so that the connedion order of the system inputsto
the treeinputs can be mnfigured during initializaion from the host. The @nfigurable shuffle onsists of a multiplexer for
ead led, to seled which system input is conneded to the tree input, and to invert the signa if it is needed. When the
number of system inputs is high the anfigurable shuffle can become too expensive in logic cdls. So if the design is limited
by the anount of logic cdls available, the shuffle module must be implemented as a fixed interconnedion module
determined at compilation time.

The control machine module generates control pulses to trigger the training adions in ead layer, one & atime starting with
the upper layer as needed by the ALN training algorithm (see Sedion 3). The module is parameterized in the number of
layers.

Thelogic cdl count for the modulesis simmarized in the table below for a counter of 6 bits width, this counter width is used
by the software package. One array chip can comfortably hold a 4 layer tree with the necessary 1/O registers.

A 7 layer /] 128leaves treewas implemented using all the chipsin the aray to test the library. This treewas constructed with
one 4 layer treein ead array chip for the lower layers and additional nodes manually mapped, distributed into the aray
chips to form the upper layers.

The control machine was mapped in the interface @ip. The ntrol pulses generated to trigger training in ead layer, are
broadcasted through the global bus to the nodes in the array chips.

To train the network, ead pattern is loaded in the aray with 16 kit transfers from the I SA bus, passng throughthe interface
chip and the global bus. Subsequently the desired output h is loaded. This transfer starts the control machine in the interface
chip. The training processfor this pattern takes 1 or 2 passes generating one dock period pulses to enable one layer at a
time. This processconsumes at most 2 x (number of layers) clock periods during which ead node state is adjusted acording
to the ALN training algorithm.

The output of the tree ca then be read from the host to compare it with the desired output in order to colled statistics to
decide when the network is trained enough and stop the whole training.

The 7 layer treewas used in a sample pattern recognition application. The network was trained to recognize caital letters
represented in a 5x5 bladk and white pixel matrix. One network can be trained to evaluate if a given 5x5 matrix represents or
not a given letter. Five networks were trained for each of the vowel capital letters.

The logic cdl count for several designs is resumed in Table 3. Cell count is highly dependent on the logic synthesis gyle
chosen in Max+Plus. In the basic ALN tree node, for example, cdl count varies between 33 to 56 LCs. Even though the
FAST synthesis tyle generates gnaller circuits, the resulting designs are harder to route and a four layer tree ould not be
fitted in a chip of the array.

Logic Synthesis Stylg Module | # Logic Cells
FAST node 33
NORMAL node 56
NORMAL 4 layer tree 817

(15 nodes)
NORMAL 5 layer tree 1539

(31 nodes)

Table 3: Number of Logic Cells

Asin the drealy trained ALN case seen in the previous fdion, a new version of some functions in the Atreelibrary was
written preserving the function interfaces. A program that trains the network with 120 petterns, presenting them 1000times
to the network (1000epochs in Atreejargon) was compil ed in the two versions. The resulting exeaution times are presented
in Table 4.

Computer atree_train()| atree_ripp_train()
Time[s] Time[s]

Pentium 200 MHz 26.5 0.93

Pentium 90 MHz 58.5

386SX 25MHz 817.0 10.0

Table4: Training Speed Comparison

A total of four ISA 1/O cycles are neaded for ead pattern trained: two WR cycles for the 25 kit inputs, one WR cycle for the
desired output and one RD cycle to real the treeoutput. So, the lower bound for a pattern training time is 12 I SA bus clock
periods or about 115, and the bound for the 1000 epochs example is 0.18 seconds.

7. CONCLUSIONS

A pre-trained and a learning capable hardware version of an Adaptive Logic Network were implemented in areconfigurable
logic board attached to a standard PC host. Both versions were tested with standard control and pettern recognition
objectives.

From the point of view of the final applicaion, we can conclude that the dgorithms implemented in hardware exadly
substitute C functions. Therefore, for a user acastomed to working with the Atree software, the usage of the hardware
library developed is almost transparent, being this one of the main objectives of this work.

Analyzing the speed up results, it is concluded that the hardware implementation is highly convenient, achieving orders of
magnitude of improvement.

The RIPPLO bard showed to be alequate for the hardware implementation of big sizetrained ALN, which are gplicable to
red time mntrol or more genericdly to evaluate agrea amount of patterns for different kinds of applications. In this case
the training of the network must be done offline but it can be goplied to the antrol of processes in which dow adaptability is
required as well.

Asfor the implementation of ALN with on-board adaptation cgpadty, the chosen architedure even thoughadequate from the

speal pant of view, is very limited by the size of the trees that can be implemented. Is passble to adapt networks with a
very small number of inputs, that is, only in very simple applications.

8. ACKNOWLEDGEMENTS

Thiswork was supparted by the Uruguayan Scientific and Technicad Reseach National Bureau (CONICY T) under the IDB-
CONICYT ProjectN° 355 “Neural processor based on Programmable Logic Devices”.

The RIPPLO bards were provided at no cost by the Programmable Hardware Development Program at Altera (spedal
thanks to Stephen Smith).

9. REFERENCES

1. S.GuccioneProgramming Fine-graine®econfigurable ArchitectureBh. D. Thesis, University of Texas at Austin,
1995.

2. J.Cloutier, E.Cosatto, S. Pigeon, F. Royer and P. YSimard , “VIP: An FPGA-based Processor for Image
Processing and Neural NetworkMjcroNeuro ‘96,Lausanne, Switzerland, 1996.

3. Several authordrtificial Neural Networks: Paradigm#plications and Hardware Implementationsdited by Edgar
Sanchez-Sinencio and Cliffotdhu, IEEE Press, New York, 1992.

4. R.Hecht-NielsenNeurocomputingAddison-Wesley, Reading, Massachusetts, 1991.
5. S.Haykin, Neural NetworksMacmillan,Englewood Cliffs, NJ, 1994.

A. G. Supynuk and W. W. Armstrong, “Adaptive Logic Networks and Robot Conteodic. Vision Interface
Conference '92, also called Al/VI/GI '92, pp. 181 - 186, Vancouver B. C., 1992.

7. W. Armstrong and J5ecsei, "Architecture of a Tree-based Image Procesketti AsilomarConf. on Circuits, Systems
and Computerspp. 345-349, Pacific Grove, 1978.

8. C. S.Lindsey and TLindblad, “Review of Hardware Neural Networks: A User’s Perspective”, Third Workshop on
Neural Networks: From Biology to High Energy Physisslad’Elba, Italy, 1994.

9. J. N. H.Heemskerk, “Overview of Neural Hardware”, ChaptePB, D. Thesi?Neurocomputers for Brain-Style
Processing. Design, Implementation and Applicaticriden University, The Netherlands, 1995.
(ftp://ftp.mrc-apu.cam.ac.uk/puidh).

10. J.A.Hegt, “Hardware Implementations of Neural Networkd&asurement and Artificial Neural Networks
ProceedingsThemadag van dé/erkgemeenschagdeten’, Utrecht, 1993,
(ftp://ftp.tue.nl/pub/neurdiardware_general.ps.gz).

11. 1. Paolo. and GKuhn, “Digital Systems for Neural Network®jgital Signal Processing Technolodgy. Papamichalis
and R.Kerwin, editors, Vol. CR57 ofritical Reviews Seriepp. 314-345, SPIE Optical Engineering, 1995.

12. W. W. Armstrong and GGodbout, "Properties of Binary Trees of Flexible Elements Useful in Pattern Recognition”,
IEEE 1975 InternationaConf. on Cybernetics and Socigp. 447-449, San Francisco, 1975.

13. W. W. Armstrong, ADwelly, J.Liang, D.Lin and Scott Reynolds, “Learning and Generalization in Adaptive Logic
Networks”, Artificial Neural NetworksProc. of the 1991 InConf. on Artificial Neural Networks (ICANN-9TI).
Kohonen, KMakisara, OSimula, JKangasgeds, pp.1173-1176, Norttolland,.Espoo, Finland, 1991.

14. G. V.Bochmann and W. Armstrong, “Properties of Boolean Functions with a Tree Decomposition”, BIT, Vol. 13, pp.
1-13, 1974.

15. W. Armstrong and J5ecsei, "Adaptation Algorithms for Binary Tree Networks", IEEE Trans. on Systems, Man and
Cybernetics, Vol. 9, pp. 276-285, 1979.

16.
17.
18.

19.

William Armstrong Home Pagéttp:/Mww.cs.ualberta.cabrms
Altera’s Programmable Hardware Development Program Web Reggivww.altera.comitml/programgshd.html

E. Ferreira, EPlanchén and Clrochédn , “Neural Network Controller for the Inverted Penduludill Simposio
Nacional de ControAutomético AADECA’92, Buenos Aires, 1992.

Ferreira, and AFonseca d®liveira, “UnaAplicacion deRedesBinariasAdaptivas (ALN) en Control”XIV Simposio
Nacional de ControAutomatico AADECA'94, Buenos Aires, 1994,

