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Abstract. We study the behavioral definition of complementary goods: if the

price of one good increases, demand for a complementary good must decrease. We

obtain its full implications for observable demand behavior (its testable implica-

tions), and for the consumer’s underlying preferences. We characterize those data

sets which can be generated by rational preferences exhibiting complementarities.

In a model in which income results from selling an endowment (as in general equi-

librium models of exchange economies), the notion is surprisingly strong and is

essentially equivalent to Leontief preferences. In the model of nominal income,

the notion describes a class of preferences whose extreme cases are Leontief and

Cobb-Douglas respectively.

Resumen. Estudiamos la definición conductual de bienes complementarios: si

el precio de un bien aumenta cae la demanda de un bien complementario. Ob-

tenemos las consecuencias emṕıricas sobre el comportamiento del consumidor y

sobre sus preferencias. Caracterizamos las observaciones que son compatibles con

la complementariedad en demanda. En un modelo en que el ingreso resulta de la

venta de una dotación, la noción de bienes complementarios resulta sorprendente-

mente fuerte y es esencialmente equivalente a preferencias Leontief. En un modelo

de ingreso nominal, es equivalente a preferencias que de algún modo estan entre

las Leontief y las Cobb-Douglas.

Keywords. Afriat’s Theorem, Weak Axiom of Revealed Preference, Comple-
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1. Introduction

We study the behavioral notion of complementarity in demand (which we refer

to throughout simply as complementarity): when the price of one good decreases,

demand for a complementary good increases. We deal both with the case where

consumers’ nominal income is fixed and where income is derived from selling a fixed

endowment at prevailing prices.

Our work is specifically aimed at the study of two goods. While the definition is

quite natural for two goods, for three or more goods, things become more complex.

In fact, when there are more than two goods, the obvious extension of the definition

(that two goods are complements if the reduction in price of one good implies an

increase in consumption of the other) is not adequate as an intuitive definition of

complementarity.1 There are other ways of extending the definition. Discussion of

these ideas is left to future research.

We obtain the full implications of complementarity both for observable demand

behavior (its testable implications) and for the underlying preferences. In the former

exercise, we characterize all finite sets of price-demand pairs consistent with com-

plementarity. The latter exercise characterizes the class of preferences generating

complementarity.

The complementarity property, which we call “behavioral” to emphasize that

demand, not preference, is primitive, is a classical notion. It is the notion taught in

Principles of Economics textbooks (e.g. McAfee (2006), Stiglitz and Walsh (2003)

and Krugman and Wells (2006)) and Intermediate Microeconomics textbooks (e.g.

Nicholson and Snyder (2006), Jehle and Reny (2000), and Varian (2005)). It is a

crucial property in applied work: marketing researchers test for complementarities

among products they plan to market; managers’ pricing strategy takes a special

1Samuelson (1974) gives the example of coffee, cream, and sugar. Both cream and sugar are

intuitively complementary to coffee. However, sugar may be “more complementary” with coffee

than cream. Hence, a reduction in the price of cream may lead to a decrease in the consumption

of sugar, and a corresponding decrease in the consumption of coffee.
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form when they market complementary goods; regulatory agencies are interested in

complements for their potential impact on competitive practices; complementarity

is relevant for decisions on environmental policies; complementary goods receive a

special treatment in the construction of price indexes; complementary export goods

are important in standard models of international trade, etc. etc. The literature on

applications of complementarity is too large to review here.

Yet, the notion discussed here has received surprisingly little theoretical atten-

tion. The general testable implications of complementarity were, until now, un-

known. In many applications, one needs to decide empirically whether two goods

are complements. Hence, a test which can falsify complementarity is both useful and

important. Empirical researchers’ tests typically estimate cross-partial elasticities

in highly parametric models. However, such an exercise actually jointly tests several

hypotheses. In contrast, we elicit the complete testable implications of complemen-

tarity in a general framework.

We consider two models: a model in which consumers carry endowments and form

their demand as a function of prices and the income derived from selling endowment,

and a model in which consumers are simply endowed with a nominal income. In the

nominal-income model, we provide a necessary and sufficient condition for expen-

diture data to be consistent with the rational maximization of a preference which

exhibits complementarity in demand. In the income-from-endowment model, com-

plementarity is equivalent to all observed demands lying on a continuous monotone

path.

We also characterize the class of preferences that generate complementarity. Again

the results depend on the model under consideration. In the nominal-income model,

complementarity effectively requires that demand be monotonic with respect to set

inclusion of budgets (and hence normal). In addition, complementarity in this model

automatically implies rationalizability by an upper semicontinuous utility function–a
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consequence of the continuity of demand (which is also an implication of comple-

mentarity). Within the class of smooth rationalizations, complementarity is char-

acterized by a bound on the percentage change in the marginal rate of substitution

with respect to a change in either commodity. Cobb-Douglas preferences are exactly

those preferences meeting this bound.

However, when income obtains from selling an endowment, we obtain a sharper

result. If for each endowment and price, there exists some other price for which

consumption of the two goods move weakly in the same direction, then the pref-

erences are “generalized” Leontief. Hence, the only preferences exhibiting global

demand complementarity for all endowments are preferences featuring “perfect com-

plements.” This result may speak to the fact that most canonical examples of com-

plementary goods (coffee and sugar, gin and tonic, etc.) are chosen in fixed propor-

tions.

Our results are for demand for two goods. Complementarity is always a statement

about pairs of goods, so ours is in a sense the canonical setup, and the most relevant

from the viewpoint of conceptually sorting out the right notion of complementarity.

We imagine our results being used after aggregating appropriately (as in Blundell,

Browning, and Crawford (2003)), or conditional on demand for other goods being

constant. In any case, testing for all goods being complementary makes little sense,

so some degree of aggregation or conditioning seems unavoidable.

1.1. Discussion of results. We illustrate and discuss graphically some of our re-

sults. See Section 2 for the formal statements.

Consider Figure 1(a), which depicts a hypothetical observation of demand x =

(x1, x2) at prices p = (p1, p2). Figure 1(a) illustrates the notion of complementarity:

goods 1 and 2 are complements if, when we decrease the price of one good, demand

for the other good increases. In the figure, complementarity require that demand

at the dotted budget line involves more of both goods. Note that we are assuming

no Giffen goods, which is implied by normal demand. Symmetrically, a decrease in

the price of good 2 would also imply a larger demanded bundle.



BEHAVIORAL COMPLEMENTARITY 5

p

x

(a) Complementarities.

x

x′

p′p

(b) Demands x and x′ at prices

p and p′.

Figure 1. When is observed demand consistent with complementarity?.

Given Figure 1(a), one may think that the testable implications of complemen-

tarity amount to verifying that, whenever one finds two budgets like the ones in

the figure, one demand is always higher than the other. Consider then Figure 1(b),

where one budget is not larger than another. Are the observed demands of x at

prices p, and x′ at p′, consistent with demand complementarity? The answer is neg-

ative, as can be seen from Figure 2(a): the larger budget drawn with a dotted line is

obtained from either of the p or p′ budgets by making exactly one good cheaper. So

it would need to generate a demand larger than both x and x′, which is not possible.

Figure 2(b) shows a condition on x and x′ which is necessary for complementarity:

the pointwise maximum of demands, x ∨ x′, must be affordable for any budget

larger than the p and p′ budgets. Since there is a smallest larger budget, the least

upper bound on the space of budgets (the dotted-line budget), we need x∨ x′ to be

affordable at the least upper bound of the p and p′ budgets.

Since demand is homogeneous of degree zero, we can normalize prices and incomes

so that income is 1. Then the least upper bound of the p and p′ budgets is the budget

obtained with income 1 and prices p ∧ p′, the component-wise minimum price. The

necessary condition in Figure 2(b) is that (x ∨ x′) · (p ∧ p′) ≤ 1.
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x

x′

p′p

(a) A larger budget.

p′p

x

x′

x ∨ x′

(b) x ∨ x′ consistent with com-

plementarities

pp′

x
x′

(c) Demands x and x′ at prices

p and p′.

p′p

x
x′

(d) Violation of WARP.

Figure 2. Observed demands.

There is a second necessary condition. Consider the observed demands in Fig-

ure 2(c). This a situation where, when we go from p to p′, demand for the good

that gets cheaper decreases while demand for the good that gets more expensive

increases. This is not in itself a violation of either complementarity or the absence

of Giffen goods. However, consider Figure 2(d): were we to increase the budget

from p to the dotted prices, complementarity would imply a demand at the dotted

prices that is larger than x. But no point in the dotted budget line is both larger
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than x and satisfies the weak axiom of revealed preference (WARP) with respect to

the choice of x′.

So a simultaneous increase in one price and decrease in another cannot yield

opposite changes in demand. This property is a strengthening of WARP: Fix p, p′

and x as in Figure 2(c). Then WARP requires that x′ not lie below the point where

the p and p′ budget lines cross. Our property requires that x′ not lie below the point

where the horizontal dotted line crosses the p′ budget, or that demand for good 1

not be smaller in x′ than in x. In fact, this property is implied by either of the two

following sets of conditions: i) rationalizability and the absence of Giffen goods or

ii) rationalizability and normal demand.

We show (Theorem 1 of Section 2) that the two necessary properties, the (x∨x′) ·

(p ∧ p′) property in Figure 2(b) and the strengthening of WARP, are also sufficient

for a complementary demand. That is: given a finite collection of observed demands

x at prices p, these could come from a demand function for complementary goods

if and only if any pair of observations satisfies the two properties. Thus, the two

properties constitute a non-parametric test for complementary goods, in the spirit

of the revealed-preference tests of Samuelson (1947) and Afriat (1967).2

We now turn to a geometric intuition for one of our results on preferences. Sup-

pose that prices affect incomes—a consumer obtains her income from selling an

endowment ω of goods at the prevailing prices. Consider Figure 3(a), which shows

demand x at prices p and endowment ω, i.e. income is p · ω. We shall describe the

consumer’s indifference curve at x. Note that demand does not change if we set the

endowment to be ω′ = x. Consider the dotted prices in Figure 3(a). Demand at

these prices cannot be to the left of x because it would violate WARP, and demand

to the right of x would violate complementarity, as it would demand less of the

good complementary to the good whose price decreased. But then demand has to

be x at the dotted prices. By repeating this argument for all prices, Figure 3(b),

2See Varian (1982) for an exposition and further results. Matzkin (1991) and Forges and Minelli

(2006) discuss more general sets of data. Brown and Calsamiglia (2007) present a test for quasi-

linear utility.



8 CHAMBERS, ECHENIQUE, AND SHMAYA

ω

p

x = ω′

(a)

p

(b)

Figure 3. Complementarity implies Leontief preferences.

we conclude that the only indifference curve supported by all prices at x is the one

obtained from Leontief preferences.

Our result is in fact stronger than the previous argument suggests. We show

(Theorem 4 of Section 2) that if, for every endowment, there is one price change

for which demand of both goods move in the same direction, then preferences must

have a Leontief form.

1.2. Historical Notes. Before proceeding, we discuss briefly the history of the

theory of complementary goods. Much of this discussion is borrowed from Samuelson

(1974), which serves as an excellent introduction to the topic.

Perhaps the first notion of complementary goods is that formulated by Edge-

worth and Pareto on introspective grounds (Samuelson, 1974). They believed that

if two goods were complementary, then the marginal utility of an extra unit of each

should be greater than the sum of the marginal utilities of an extra unit of either.

In other words, the marginal utility of the consumption of either good should be

increasing in the consumption of the other good; the utility function should have

nonnegative cross-derivatives. This is an intuitively appealing definition based on

preferences, not behavior; however, it clearly depends on cardinal utility compar-

isons. Hicks and Allen (1934), Hicks (1939) and Samuelson (1947) recognized this,
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and suggested that as a local measure of complementarity, it was useless. At any

given consumption bundle, any utility function can be transformed to have nonneg-

ative cross-derivatives. Milgrom and Shannon (1994) established that, despite not

being an ordinal notion, the Edgeworth Pareto definition does in fact have ordinal

implications. Chambers and Echenique (2007) on the other hand, showed that if

the notion has any implications for observable demand data, they can only be tested

with an infinite set of data.

Most of the modern notions build on the increasing marginal utility notion, using

some cardinal function. For example, the notion discussed by Hicks and Allen

notion for three goods works as follows. Consider some bundle
(

x, y, t
)

. Now,

define a function T (x, y) =
{

t : U (x, y, t) = U
(

x, y, t
)}

. Then the first two goods

are complements if and only if

∂2

∂x∂y
(−T (x, y)) ≥ 0.

In particular, if u (x, y, t) = U (x, y) + t, then goods one and two are complemen-

tary if and only if U has nonnegative cross derivatives (Samuelson, 1974, p. 1270).

Samuelson goes a bit further, suggesting that complementarity be defined with re-

spect to a particular cardinalization of preference. His proposal is to use either

McKenzie’s money-metric utility function, or a von Neumann-Morgenstern utility

index for expected utility maximizers.

We now discuss the main objection to the behavioral notion of complementarity

we have studied, as well as the Hicks-Allen theory proposed to rectify it. While our

notion, sometimes called “gross complementarities,” is both natural and commonly

understood, there are other such notions. The primary criticism of our definition is

that it can be “asymmetric” in a sense. It is possible that raising the price of good

one leads to an increase in consumption of good two, while raising the price of good

two leads to a decrease in consumption of good one. This asymmetry led Hicks

(1939) and other early researchers to take interest in other notions (although they

never claimed the notion we discuss was incorrect). Hicks and Allen (1934) devel-

oped a theory of complementarity of demand based on compensated price changes.
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The type of price change considered by Hicks is the following. The price of good

one is increased and the income of the agent is simultaneously increased just enough

to leave the consumer on the same indifference curve. Good one is complementary

to good two if a compensated increase in the price of good two leads to a lower

consumption of good one. Indeed, Hicksian demand is usually understood as an

expenditure minimizing bundle attaining a certain level of utility. It is well-known

that with such a definition, good one is complementary to good two if and only if

good two is complementary to good one.

Samuelson suggests that Hicks’ notion only real defense is the fact that it is not

susceptible to the same “criticisms” that earlier definitions are (Samuelson, 1974, p.

1284). Ostensibly, the reason for studying compensated price changes is to provide

a single-dimensional measure of complementarity of any pair of goods. Implicit in

this approach is the notion that all goods must be either complements or substitutes.

While a single-dimensional measure of complementarity is certainly interesting, we

believe there is also room for the study of other concepts (perhaps leading to other,

less decisive, measures of complementarity).

Further, the Hicks definition can also be “criticized”: in the case of two commodi-

ties (which is the case under consideration here), all goods are economic substitutes

by necessity. This is a consequence of downward sloping indifference curves–requiring

both goods to be complements essentially results in generalized Leontief preferences.

Thus, the definition does not allow for a meaningful study of complementarity in

what is arguably the most natural framework for discussing the concept. In contrast,

with our definition (in the nominal income model), goods are both complements and

substitutes if and only if preferences are Cobb-Douglas.

Finally, compensated price changes present a challenge from the empirical per-

spective we adopt in this paper: compensated demand changes are unlikely to be

observed in real data. In other words, it is unclear what observable phenomena in

the real world correspond to compensated price changes. The notion of complemen-

tarity we adopt is the only purely behavioral notion.
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To sum up, we study the standard textbook-notion of complementarity of demand.

We avoid the criticism of asymmetry simply by specifying from the outset that two

goods are complementary if a change in price in either good leads to consumption

changing in the same direction for both goods.
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2. Statement of Results

We discuss complementarity in two different contexts: first we study changes in

price when nominal income is fixed, and second, when an endowment of goods is

fixed. In the latter environment, price changes affect income, as income results

from selling the endowment at prevailing prices. Theorems 1, 2, and 3 are for the

nominal income model, D(p, I). Theorem 4 is for the endowment model. The proof

of Theorem 1 is in Section 6; the proof of Theorem 4 is in Section 4; the proof

of Theorem 3 is in Section 5. Theorem 2 follows from lemmas 6.15 and 6.16 in

Section 6.

2.1. Preliminaries. Let R2
+ be the domain of consumption bundles, and R2

++ the

domain of possible prices. We use standard notational conventions: x ≤ y if xi ≤ yi

in R, for i = 1, 2; x < y if x ≤ y and x 6= y; and x � y if xi < yi in R, for i = 1, 2.

We write x · y for the inner product x1y1 + x2y2.

A function u : R2
+ ⇒ R is monotone increasing if x ≤ y implies u(x) ≤ u(y). It

is monotone decreasing if (−u) is monotone increasing.

A function D : R2
++ × R+ → R2

+ is a demand function if it is homogeneous of

degree 0 and satisfies p · D(p, I) = I, for all p ∈ R2
++ and I ∈ R+ .

Say that a demand function satisfies complementarities if, for fixed p2 and I, p1 7→

D((p1, p2), I) is monotone decreasing, and for fixed p1 and I, p2 7→ D((p1, p2), I) is

monotone decreasing.3

For all (p, I) ∈ R2
++×R+, define the budget B (p, I) by B (p, I) =

{

x ∈ R2
+ : p · x ≤ I

}

.

Note that B (p, I) is compact, by the assumption that prices are strictly positive.

A demand function D is rational if there is a monotone increasing function u :

R2
+ → R such that

(1) D (p, I) = argmaxx∈B(p,I)u(x).

3This is equivalent to the notion that if p′ ≤ p, then D (p) ≤ D (p′). Formally, we may require the

weaker statement that D2 ((p1, p2) , I) is weakly monotone decreasing in p1 and that D1 ((p1, p2) , I)

is weakly monotone decreasing in p2. That is, none of our results would change if we allowed for

the theoretical possibility of Giffen goods (they will be ruled out anyhow).
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In that case, we say that u is a rationalization of (or that it rationalizes) D. Note

that D(p, I) is the unique maximizer of u in B(p, I).

Say that a partial demand function satisfies the the weak axiom of revealed pref-

erence if p ·D(p′, I ′) > I whenever p′ ·D(p, I) < I ′ (with two goods, the weak axiom

is equivalent to the strong axiom of revealed preference).

2.2. Nominal Income. We shall use homogeneity to regard demand as only a

function of prices: D(p, I) = D((1/I)p, 1), so we can normalize income to 1. In

this case, we regard demand as a function D : R2
++ → R2

+ with p · D(p) = 1 for all

p ∈ R2
++.

A partial demand function is a function D : P → R2
+ where P ⊆ R2

++ and

p ·D(p) = 1 for every p ∈ P ; P is called the domain of D. So a demand function is a

partial demand function whose domain is R2
++. The concept of the partial demand

function allows us to study finite demand observations. We imagine that we have

observed demand at all prices in P (see e.g. Afriat (1967), Diewert and Parkan

(1983) or Varian (1982)).

Theorem 1 (Observable Demand). Let P be a finite subset of R2
++ and let D :

P → R2
+ be a partial demand function. Then D is the restriction to P of a rational

demand that satisfies complementarity if and only if for every p, p′ ∈ P the following

conditions are satisfied

(1) (p ∧ p′) · (D(p) ∨ D(p′)) ≤ 1.

(2) If p′ · D(p) ≤ 1 and p′i > pi for some product i ∈ {1, 2} then D(p′)j ≥ D(p)j

for j 6= i.

The following theorem gives several topological implications of rationalizability.

Theorem 2 (Continuity). Let D : R2
++ → R2

+ be a rationalizable demand func-

tion which satisfies complementarity. Then D is continuous. Furthermore, D is

rationalized by an upper semicontinuous, weakly monotonic utility function.
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Theorem 3 requires demand to be rationalized by a twice continuously differen-

tiable (C2) function u. We write

m(x) =
∂u(x)/∂x1

∂u(x)/∂x2

to denote the marginal rate of substitution of u at an interior point x.

Theorem 3 (Smooth Utility). Let D be a rational demand function with interior

range and a monotone increasing, C2, and strictly quasiconvex rationalization u.

Then D satisfies complementarity if and only if the marginal rate of substitution m

associated to u satisfies that

∂m(x)/∂x1

m(x)
≤

−1

x1

and
∂m(x)/∂x2

m(x)
≥

1

x2

2.3. Endowment Model. We also study what happens when income results from

selling an endowment ω ∈ R2
+ at prices p. In this case, I = p · ω and demand is

therefore given by D(p, p·ω). Importantly, a change in prices implies a corresponding

change in income.

In this model, D satisfies complementarity if, for all (p, ω) and all p′,

(2) [D1(p
′, p′ · ω) − D1(p, p · ω)] [D2(p

′, p′ · ω′) − D2(p, p · ω)] ≥ 0.

A substantially weaker property will be of interest: A demand function D satisfies

weak complementarity if, for every (p, ω) there is at least one price p′ 6= p satisfying

(2). Note that Fisher (1972) has a characterization of preferences generating gross

substitutes in the endowment model; like us, he assumes that substitutes holds at

all endowments (but he assumes differentiability).
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Theorem 4 (Endowment Model). Let D be a rational demand function with a con-

tinuous and monotone increasing rationalization. Then, in the endowment model,

the following are equivalent:

(1) D satisfies complementarity.

(2) D satisfies weak complementarity.

(3) There exist continuous strictly monotone functions fi : R+ → R∪{∞},

i = 1, 2, at least one of which is everywhere real valued (fi (R+) ⊆ R), so

that

u(x) = min {f1(x1), f2(x2)}

is a rationalization of D.

2.4. Discussion and remarks. The following observations are of interest:

(1) Theorem 1 derives the testable implications of complementarity in the nomi-

nal income model, D(p, I). With expenditure data (as in, e.g., Afriat (1967)),

it should be straightforward to verify Conditions 1 and 2 in the theorem.

(2) The testable implications of complementarity in the endowment model are,

by Theorem 4, trivial: with Leontief preferences all observed consumption

bundles would lie on a continuous monotone path in consumption space.

(3) Property 2 of Theorem 1 follows from the weak axiom of revealed prefer-

ence and the monotonicity in own price (absence of Giffen goods, see the

discussion in the introduction).

(4) In Theorem 4, we may without loss of generality normalize the real-valued

fi to be the identity function; this good then acts as a kind of endogenous

“numeraire.”

(5) A version of Theorem 4 holds for any number of goods. We present a proof

for the general n good case in Section 4. For the other results, we present a

discussion of the two-good assumption in the introduction.
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Theorem 1 implies that a partial demand satisfying (1) and (2) is rationalizable

by a monotone increasing, upper semicontinuous, utility. One may want the ratio-

nalizing utility to be in addition continuous, Example 1 shows that complementarity

does not impli rationalization by a continuous utility. It is interesting to note here

that Richter (1971) and Hurwicz and Richter (1971) present results on the existence

of monotone increasing and continuous rationalizations, but require the range of

demand to be convex. Demand in Example 1 has non-convex range (see also the

remark after Lemma 6.16).

Example 1. Consider the following utility

u(x1, x2) =











min(x1, x2), if min(x1, x2) < 1

x1 · x2, if x1, x2 ≥ 1.

So u behaves like a Leontief preference when min(x, y) < 1 and Cobb-Douglas

otherwise. In other words, if the consumer cannot afford to buy at least 1 from both

products then she buys the same amount from each product. Otherwise, she spends

half of your money on each product, making sure to buy at least 1 from each. The

demand generated by this preference relation is given by

D(px, py) =







































(

1/(px + py), 1/(px + py)
)

, if px + py ≥ 1

(

1/(2px), 1/(2py)
)

, if px, py ≤ 1/2

(

1, (1 − px)/py

)

, if py ≤ 1/2 and 1/2 ≤ px ≤ 1 − py

(

(1 − py)/px, 1
)

, if px ≤ 1/2 and 1/2 ≤ py ≤ 1 − px

and let D be the corresponding demand function. It is easy to verify that D is

monotone. So D is continuous by Lemma 6.15.

However D cannot be rationalized by a continuous utility function. Indeed,

assume that v is a utility that rationalizes D. Then for every ε > 0 we have

v(1 − ε, 3) < v(1, 1), Since (1, 1) is revealed prefer to (1 − ε, 3): If p = (1 − η, η)

for small enough η then D(p) = (1, 1) and (1 − ε, 3) ∈ L(p). On the other hand
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v(1, 3) > v(1, 1) since (1, 3) is revealed preferred to (1, 1): If p = (1/2, 1/6) then

D(p) = (1, 3) and (1, 1) ∈ L(p). Therefore v cannot be continuous.

Finally, discussions of complementarity are often centered around the elasticity of

substitution (Samuelson, 1974). In addition, Fisher (1972) presents a characteriza-

tion of the gross substitutes property in terms of elasticities. The following corollary

to Theorem 3 may be of interest.

Let D be differentiable, in addition to the hypotheses of Theorem 3. Let ηi(p, I)

be the own-price elasticity, and θi(p, I) be the cross elasticity, of demand for good

i; i.e.

η1(p, I) =
∂D1(p, I)

∂p1

p1

D1(p, I)
θ1(p, I) =

∂D1(p, I)

∂p2

p2

D1(p, I)
.

Corollary 1. If D satisfies complementarity, then, for i = 1, 2,

ηi(p, I) + θi(p, I)

η1(p, I)η2(p, I) − θ1(p, i)θ2(p, i)
≤ −1.

Now, we consider the case of additive separability.

Corollary 2. Suppose the hypotheses of Theorem 3 are satisfied,and in addition,

suppose that u (x, y) = f (x)+ g (y). Then complementarities is satisfied if and only

if
f ′′ (x)

f ′ (x)
≤ −

1

x
,
g′′ (x)

g′ (x)
≤ −

1

x
.

Therefore, an additively separable utility satisfies complementarity if and only if

each of its components are more concave than the natural logarithm. This result is

essentially in Wald (1951), for the case of gross substitutes (Varian (1985) clarifies

this issue and presents a different proof; the appendix to Quah (2007) has a proof

for the the non-differentiable case). For a function f : R+ −→ R, the number

−
f ′′ (x)

f ′ (x)

is often understood as a local measure of curvature at the point x. In particular,

one can demonstrate that for subjective expected utility, when u (x, y) = π1U (x) +

π2U (y), complementarity is satisfied if and only if the rate of relative risk aversion
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p
p′

p ∧ p′

B

B

A A

x

(a) Budget p: between A–A and B–B.

p′′

x

C C

p ∧ p′′

(b) Budget p′′: below C–C.

Figure 4. Implications of (x, p).

is greater than one. It may be of interest to compare this with Quah’s (2003) result

that the “law of demand” is, in this case, equivalent to the rate of risk aversion

never varying by more than four.

We proceed in Section 3 with a heuristic argument for Theorem 1. We then

proceed with proofs of all three results.

3. A geometric intuition for Theorem 1.

The proof of Theorem 1 is based on extending D, one price at a time, to a

countable dense subset of R2
++. It turns out that the crucial step is to extend

D from two prices to a third price. Here we present a geometric version of the

argument, for one of the special cases we need to cover in the proof.

Fix two prices, p and p′′, with corresponding demands x = D(p) and x′′ = D(p′′).

Let p′ be a third price. We want to show that we can extend D to p′ while respecting

properties 1 and 2. We fix x as shown in Figure 4(a)

In Figure 4(a) we present the implications of x for demand x′ = D(p′), if x′ is to

satisfy the conditions in the theorem. Compliance with Property 1 requires demand

to be below the line A–A, as the intersection of A–A with the p′-budget line gives

equality in Property 1. Compliance with Property 2 requires demand to be to the

left of B–B. Hence, the possible x′ are in the bold interval on the p′ budget line.
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x

C C
D

p′
∧ p′′ p ∧ p′

AA
D

Figure 5. Compliance with x and any x′′ that complies with x.

Consider Figure 4(b), where we introduce prices p′′. Since x′′ and x satisfy prop-

erties 1 and 2, x′′ must lie below the line C–C on the p′′ budget line. We want to

show that we can choose an x′ that agrees with the implications of both p and p′′.

In particular, that any x′′ below C–C is compatible with a choice of x′ on the bold

segment of the p′-budget line.

In Figure 5, we represent the implications of x on x′′, and its indirect implications

on the demand at p′. To make the figure clearer, we do not represent the p′′ budget,

but we keep the C–C line: Note that the highest possible position of x′′ determines

a point on the p′∧p′′-budget line, the point where C–C intersects the p′∧p′′-budget

line. This point, in turn, determines a point on the p′-budget line, the point where

the D–D line intersects the p′ budget line; note that, were x′ to lie to the left of

D–D, it would violate Properties 1 with respect to x′′.

So, Property 1 applied to (x, p) and (x′′, p′′) requires that x′′ lies below the inter-

section of C–C with the p′′-budget line. This implies that the position of demand

on the p′-budget line must lie to the right of the intersection with D–D. But this

requirement is the same as the compliance with Property 1 with respect to x: note

that A–A and D–D intersect p′ at the same point. So demand for p′ lies below A–A,

as dictated by x if and only if it lies to the right of D–D, as dictated by any x′′ that

complies with Property 1 with respect to x.
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That D–D and A–A should coincide on the p′-budget line may seem curious at

this stage, but it is a result of the special case we are considering. Here, the budget

set of p′ is the meet of the budget sets corresponding to prices p ∧ p′ and p′ ∧ p′′;

that is p′ = (p ∧ p′) ∨ (p′ ∧ p′′). Let y and z be, respectively, the intersection of

B–B with the p ∧ p′ budget line, and of C–C with the p′ ∧ p′′ line. Then, in the

case we show in Figure 5, y ∨ z coincides with y in the good that is cheaper for p′,

and with z in the good that is cheaper in p′′. As a result, (p′ ∧ p′′) · (y ∨ z) = 1

says that expenditure on the two cheapest goods adds to 1. But at the same time

y ∧ z coincides with y in the good that is more expensive for p, and similarly for z

and p′′. So (p ∧ p′′) · (y ∨ z) = 1 also says also that the sum of expenditures on the

two most expensive goods, when evaluated at prices p ∨ p′′, must equal 1. Hence

(p ∨ p′′) · (y ∧ z) = 1.

4. Proof of Theorem 4

We present the proof for n goods. For the purpose of this section, then, let Rn
+ be

consumption space and Rn
++ be the set of possible prices. A demand function is a

function D : Rn
++×Rn

+ → Rn
+ such that, for all (p, w) ∈ Rn

++×Rn
+, p·D (p, w) ≤ p·w.

We generalize the notion of complementarity and weak complementarity to the

case of n goods. We will say that demand D satisfies complementary if, for all i, j,

for all (p, w) , (p′, w′) for which w′ = w,

[Di (p
′, w′) − Di (p, w)] [Dj (p′, w′) − Dj (p, w)] ≥ 0.

We say that D satisfies weak complementary if, or every (p, w) the set of prices p′

such that

(3) [Di (p
′, w) − Di (p, w)] [Dj (p′, w) − Dj (p, w)] ≥ 0 for every i, j

has a nonempty interior

We shall prove the following:

Theorem 5. A rational demand function D satisfies weak complementarity if and

only if there exist continuous strictly monotone functions fi : R+ → R∪{∞} for
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which for some i, fi (R+) ⊆ R (is always real-valued), so that

D (p, w) = arg max
B(p,w)

min
i=1,...,n

{fi (xi)} .

Let us first discuss a simple argument for the case in which complementarity (as

opposed to weak complementarity) is assumed. The argument holds for n goods.

The argument here is simpler than the argument for weak complementarity, and

proceeds by establishing that all price vectors have the same (strictly increasing and

continuous) Engel curves. The proof of the weak complementarity argument is more

difficult and works by characterizing weak upper contour sets of certain commodity

bundles.

Define a function g : R+ → Rn
+, and then prove that it is weakly increasing. Let

1 indicate a vector of ones, and define

g (α) = D ((1/n)1, α1) .

Then g is a function specifying demand when total wealth is α, and prices are equal.

Moreover, it is clear by rationalizability (from Walras’ law) that
∑

i gi (α) = α. We

establish that g is weakly increasing, so that for all i, and all α < β, gi (α) ≤ gi (β).

To this end, suppose by means of contradiction that there exist α < β and i∗ for

which gi∗ (β) < gi∗ (α). As
∑

i gi (α) = α, there exists some j∗ for which gj∗ (α) <

gj∗ (β).

We will establish the existence of p∗ ∈ Rn
++ such that p∗ · (g (β) − g (α)) = 0.

Suppose there does not exist such a p∗. Define

P = {p : p · (g (β) − g (α)) = 0} ;

the space of vectors orthogonal to (g (β) − g (α)). We know that P ∩ Rn
++ = ∅.

Hence, there exists a hyperplane q ∈ Rn\ {0} for which for all p ∈ P , q · p ≥ 0 and

for all p ∈ Rn
++, q ·p ≤ 0. As P is a vector space, we may conclude that for all p ∈ P ,

q ·p = 0. Moreover, as Rn
++ is open, we may conclude that for all p ∈ Rn

++, q ·p < 0.

In particular, as q is orthogonal to the orthogonal subspace of (g (β) − g (α)), there

exists some γ 6= 0 for which q = γ (g (β) − g (α)). Hence, we may conclude that
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either (g (β) − g (α)) ·p < 0 for all p ∈ Rn
++ or (g (β) − g (α)) ·p > 0 for all p ∈ Rn

++.

But this is clearly false, as there exist i∗ for which gi∗ (β) − gi∗ (α) < 0 and j∗ for

which gi∗ (β) − gi∗ (α) > 0. Hence, there exists such a p∗.

Now, B ((1/n)1, α1) = B ((1/n)1, g (α)), so that by rationalizability, D ((1/n)1, g (α)) =

g (α). Similarly, D ((1/n)1, g (β)) = β. Now, there does not exist x ∈ B (p∗, g (α))

for which x ≥ g (α) and x 6= g (α). Hence, by rationality and complementarity, it

follows that D (p∗, g (α)) = g (α). Similarly, we may establish that D (p∗, g (β)) =

g (β). But note that B (p∗, g (α)) = B (p∗, g (β)). Hence g (α) = D (p∗, g (α)) =

D (p∗, g (β)) = g (β), a contradiction. Hence, α ≤ β implies g (α) ≤ g (β).

This latter fact in particular, along with the fact that
∑

i gi(α) = α, implies that

g is continuous (we establish that any monotonic demand function is continuous, see

Lemma 6.15). We establish that for any (p, w), D (p, w) = maxα {g (α) : g (α) ∈ D (p, w)}.

Let

x = max
α

{g (α) : g (α) ∈ D (p, w)} = g (α∗) .

This follows in a similar way to the preceding argument: For all p and all α one

easily establishes that D (p, g (α)) = g (α) by complementarity and the preceding

argument. As the maximum is attained (by continuity and the fact that g is un-

bounded), as B (p, w) = B (p, g (α∗)), we conclude that D (p, w) = g (α∗), so that

D (p, w) = maxα {g (α) : g (α) ∈ D (p, w)}.

Recall that rationalizability implies the existence of a monotonic, continuous R

rationalizing D.4 Define U (g (α)) ≡ {x : xRg (α)}. By monotonicity, Rn
++{g (α)} ⊆

U (g (α)). Moreover, for any x /∈ Rn
+ + {g (α)}, there exists some p ∈ Rn

++ for which

p · x ≤ p · g (α) (by a simple separating hyperplane argument) as x /∈ D (p, g (α)),

we may conclude that g (α) Px. Hence, x /∈ U (g (α)). Therefore, U (g (α)) =

Rn
++{g (α)}. Therefore, by continuity, for all x ≥ g (α) for which x � g (α) is false,

we conclude that xIg (α). Therefore, for all α < β, it follows that g (α) � g (β); as

otherwise, for all p, g (α) maximizes R in B (p, g (β)), contradicting rationalizability.

4For R, we denote the asymmetric part by P and the symmetric part by I.
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We conclude that g is strictly increasing and continuous. It remains to define fi.

But gi is strictly increasing and continuous for all i, so simply define fi (x) = g−1
i (x)

on the range of gi, and ∞ otherwise. Note that as
∑

i gi (α) = α, it follows that some

gi must be unbounded above; hence for some i, g−1
i is well-defined and real-valued

on all of R+. It is now straightforward to verify that u (x) = mini {fi (xi)} generates

D (p, w).

Now, we proceed with the argument for the weak complementarity case. The

intuition for the proof is quite simple. Consider a price-endowment pair, and the

demand at that pair. Without loss of generality, by rationality, we may assume that

in fact, the demand coincides with the endowment. Let us imagine the upper-contour

set of utility at the demand. We claim that there is a “kink” in this upper contour

set at the demand point. This follows because there exists some other price (at the

same endowment) for which demand of both commodities moves weakly in the same

direction. But, since endowment and demand coincide for the original price, in order

for both commodities to move weakly in the same direction, demand must remain

unchanged. Hence there exist two distinct prices for which demand coincides: there

must therefore be a kink in the indifference curve at this point. However, for any

support point of the upper contour set, the same property is satisfied. This tells

us that every support point is actually a kink, and therefore the upper contour set

must coincide with a translation of the nonnegative orthant: establishing that the

rationalizing preference is generalized Leontief.

Say a set U is upper comprehensive if for all x ∈ U , {x} + Rn
+ ⊆ U . Recall that

the support function h : Rn
+ → R of a closed upper comprehensive set U ⊆ Rn is

given by

(4) h(p) = inf{p · x|x ∈ U}.

The infimum is achieved for p ∈ Rn
++, and the support function is continuous and

concave on this domain. A simple modification of Theorem 1.7.4 of Schneider (2003)
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establishes that that the subgradient of h at p is given by

(5) ∂h(p) = conv

(

arg min
x∈U

p · x

)

for every p ∈ Rn
++.

Before proving the theorem we prove the following lemmas (many are common

knowledge and appear in standard economics textbooks–we obviously make no claim

to priority). The set Uα = {x : u (x) ≥ α} for some α ∈ R is called an upper contour

set of u at α.

Lemma 4.1. Let u be a continuous function on Rn
+, Uα an upper contour set of u

and p ∈ Rn
++, and let w0 ∈ argminx∈Uα

p · x. Then

u(w0) = α = max
B(p,w0)

u, and(6)

argminx∈Uα
p · x = Uα ∩ B(p, w0) = argmaxx∈B(p,w0)u(x).(7)

Proof. First, if x ∈ B(p, w0) and z < x then p · z < p ·x ≤ p ·w0 and therefore, since

w0 ∈ argminx∈Uα
p · x, it follows that z /∈ Uα, i.e. u(z) < α. Since u is continuous

and this is true for every z < x it follows that u(x) ≤ α for every x ∈ B(p, w0).

Thus maxB(p,w0) u ≤ α. Since w0 ∈ B(p, w0) and u(w0) ≥ α (as w0 ∈ Uα) we get (6).

The left equality of (7) follows directly from the fact that w0 ∈ argminx∈Uα
p · x,

and the right equality follows from the fact that maxB(p,w0) u = α.

When the utility function rationalizes a single-valued demand function we know

that argmaxB(p,w)u = D(p, w) is a singleton for every p, w. For an upper compre-

hensive set U , we define the support function as h : R2
++ → R given by

h (p) = inf
x∈U

p · x.

We get the following Corollary.

Corollary 3. Let D be a (single-valued) demand function which is rationalized by

the continuous and monotone utility function u and let U = Uα be an upper contour

set of u, and h the support function of Uα. Then:



BEHAVIORAL COMPLEMENTARITY 25

(1) ∂h(p) is a singleton for every p ∈ Rn
++ (that is, h is differentiable at p).

(2) ∂h(p) is the unique element w ∈ Rn such that u(w) = α and w = D(p, w).

Proof. Let w0 ∈ argminx∈Uα
p · x. Then

(8) argminx∈Uα
p · x = argmaxB(p,w0)u = D(p, w0),

where the first equality follows from (7) and the second from the definition of D. In

particular, argminx∈Uα
p · x is a is a singleton, that is w0 = argminx∈Uα

p · x. By (5)

∂h(p) is also a singleton and ∂h(p) = argminx∈Uα
p ·x = w0. Moreover, it also follows

from (8) that w0 = D(p, w0) and from (6) that u(w0) = α.

Assume now that u(w) = α and w = D(p, w) for some w ∈ Rn
++. We claim

that w = w0. Indeed, since w ∈ Uα and w0 = argminx∈Uα
p · x it follows that

p · w0 ≤ p · w. In particular w0 ∈ B(p, w). But u(w0) = α = u(w) and by

assumption w = D(p, w) = argmaxB(p,w)u. Therefore w0 = w.

Lemma 4.2. Assume that D is rationalized by u. Then p ·D(p, w) = p ·w for every

p ∈ Rn
++ and w ∈ Rn

+.

Proof. By monotonicity of u the maximum in (1) is achieved on the boundary of

B(p, w). Since the the maximizer is by assumption unique the result follows.

Lemma 4.3. Assume that D is rationalized by the relation u. Then

D(p,D(p, w)) = D(p, w)

for every p ∈ Rn
++ and w ∈ Rn

+.

Proof. The lemma follows from (1) and the fact that by the previous lemma B(p,D(p, w)) =

B(p, w).

Consequences of Weak Complementarity. The following lemma shows that

weak complementarity, when applied to demand, is not as innocuous as it appears.
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Lemma 4.4. Assume that D satisfies rationalizability. Let w∗ = D(p, w) for some

p ∈ Rn
++ and w ∈ Rn

+. Assume that, for some p′ ∈ Rn
++ (3), is satisfied with w = w∗.

Then

D(p, w∗) = w∗ = D(p′, w∗).

Proof. Condition (3) means that either D(p′, w∗) ≥ D(p, w∗) or D(p′, w∗) ≤ D(p, w∗)

coordinate-wise. Assume, without loss of generality, the former. By Lemma 4.3

D(p, w∗) = w∗, therefore

D(p′, w∗) ≥ w∗.

By Lemma 4.2

p′ · D(p′, w∗) = p′ · w∗.

Since p′ ∈ Rn
++ it follows from the last two equations that

D(p′, w∗) = w∗ = D(p, w∗).

Proof of Theorem 4. Let U be an upper contour set of R and let h be its support

function. Let p ∈ Rn
++. Then by Corollary 3 h is differentiable at p, ∂h(p) ∈ U and

∂h(p) = D(p, ∂h(p)).

We now claim that the derivative function p 7→ ∂h(p) is constant. Indeed, let

p ∈ Rn
++, and let w∗ = ∂h(p). Then w∗ = D(p, w∗). By weak complementarity

(via Lemma (4.4)) there exists an open set of p′ such that w∗ = D(p′, w∗). By the

second item of Corollary 3, ∂h(p′) = w∗ for every such p′. In particular, every value

in the image of p 7→ ∂h(p) is achieved on a set with non-empty interior. From the

separability of Rn
++ it follows that the image of the function p 7→ ∂h(p) is countable.

Since the function p 7→ ∂h(p) is continuous (as a derivative of a smooth concave

function) it must be constant. Assume that ∂h(p) = w0 for every p ∈ Rn
++ for some

w0 ∈ U . By definition of the subgradient, it follows that p · w0 ≤ p · w for every

w ∈ U and every p ∈ Rn
++. By continuity, the later inequality follows for every Rn

+.

Therefore w0 ≤ w for every w ∈ U . Since U is upper comprehensive and w0 ∈ U we
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know that if w0 ≤ w then w ∈ U . Therefore U = w0 + Rn
++ is a translated orthant.

The rest of the argument is the same as in the previous theorem.

5. Proof of Theorem 3

Fix x̂ in the interior of consumption space. Denote by ∇u (x) =
(

∂u(x)
∂x1

, ∂u(x)
∂x2

)

.

Note that

x̂ = D (∇u (x̂) ,∇u (x̂) · x̂) .

Let p = ∇u (x̂). We calculate p′
1 such that (x̂1 + ε, x̂2) lies on the budget line for

(p′1, p2) with income p · x̂. So p′
1(x̂1 + ε) + p2x̂2 = p1x̂1 + p2x̂2. Conclude

p′1
p2

=
x̂1

x̂1 + ε
m(x̂).

The rest of the argument is illustrated in Figure 6. Since p′
1 < p1, complementarity

implies that D(p′1, p2, I) lies weakly to the northwest of (x̂1 + ε, x̂2) on the budget

line. By the strict convexity of u, u(y) > u(x̂1 + ε, x̂2) for any y that lies between

D(p′1, p2, I) and (x̂1 + ε, x̂2) on the budget line. Hence, if u does not achieve its

maximum on the budget line at (x̂1 +ε, x̂2), it is increasing as we move northwest on

the budget line. So the product ∇u ·v, of the gradient of u with any vector pointing

northwest, is nonnegative. This gives m(x̂1 + ε, x̂2) ≤
p′
1

p2

, so

m(x̂1 + ε, x̂2) ≤
x̂1

x̂1 + ε
m(x̂).

Since ε > 0 was arbitrary, and since the two sides of the inequality are equal at

ε = 0, we can differentiate with respect to ε and evaluate at ε = 0 to obtain

∂m(x̂)

∂x̂1

1

m(x̂)
≤

−1

x̂1

The proof of the second inequality is analogous.

6. Proof of Theorem 1

6.1. Preliminaries. For p ∈ R2
++ let L(p) = {x ∈ R2

+|p · x = 1}.
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x1

x2

x̂1 x̂1 + ε

x̂2

Figure 6. Illustration for the proof of Theorem 3.

For x ∈ R let sgn(x) =























1, if x > 0

−1, if x < 0

0, if x = 0

.

The following lemmas are obvious.

Lemma 6.1. Let a, b, b′ ∈ R2
+ such that a · b = a · b′ = 1. Then

(1) sgn(b1 − b′1) · sgn(b2 − b′2) ≤ 0.

(2) If a � 0 and b 6= b′ then sgn(b1 − b′1) · sgn(b2 − b′2) = −1.

Lemma 6.2. Let a, b ∈ R2 such that a � 0 and b > 0. Then a · b > 0.

Lemma 6.3. Let a, b, c ∈ R2 such that a � 0. If a·b ≤ a·c and bi ≥ ci for i ∈ {1, 2}

then bj ≤ cj for j = 3 − i.

For p ∈ R2
++ and x ∈ R+ such that pjx ≤ 1 let Xi(p, x) = (1 − pjx)/pi where

j = 3 − i. Then Xi(p, x) is the i-th coordinate of the element of L(p) whose j-th

coordinate is x. Note that, when p, p′ ∈ R2
++ and p · (xi, xj) = 1, Xi(p ∧ p′, xj) is

well defined; this will be a recurrent use of Xi in the sequel.
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Lemma 6.4. Let p, p′ ∈ R2
++ and x, x′ ∈ R+ and i ∈ {1, 2} such that pjx, p′jx

′ ≤ 1,

and let j = 3 − i. Then

(1) piXi(p, x) ≤ 1 and x = Xj(p,Xi(p, x))

(2) If p ≤ p′ then Xi(p, x
′) ≥ Xi(p

′, x′).

(3) If x′ < x then Xi(p, x
′) > Xi(p, x)

Lemma 6.5. If p ∈ R2
++ and x ∈ R2

+, i ∈ {1, 2} and j = 3 − i. Assume that

pjxj ≤ 1. Then

(1) p · x ≤ 1 iff xi ≤ Xi(p, xj).

(2) p · x ≥ 1 iff xi ≥ Xi(p, xj)

Note that Statements 1 and 2 in Lemma 6.5 are not equivalent.

Lemma 6.6. Let p, q ∈ R2
++ such that qi ≥ pi for some product i ∈ {1, 2}, and let

x, y ∈ L(p). If q · y ≥ 1 and xi ≥ yi then q · x ≥ 1.

Proof. Since xi ≥ yi and xi ≤ 1/pi (as xipi ≤ x · p = 1) it follows that xi =

λyi + (1 − λ)1/pi for some 0 ≤ λ ≤ 1. Since y ∈ L(p), λy + (1 − λ)ei ∈ L(p), where

ei ∈ R2
++ is given by ei

i = 1/pi and ei
j = 0 for j = 3 − i. Then, x = λy + (1 − λ)ei,

as there is only one element of L(p) with i-th component xi. Therefore

q · x ≥ min(q · y, q · ei) = min(q · y, qi/pi) ≥ 1,

as desired.

Lemma 6.7. Let p, q ∈ R2
++ such that qi > pi for some product i ∈ {1, 2} and

assume that q · x ≤ 1 for some x ∈ L(p). Then pj ≥ qj for j = 3 − i.

Proof. If pj < qj then q − p � 0 and therefore

q · x − p · x = (q − p) · x > 0

By Lemma 6.2, but this is a contradiction since q · x ≤ p · x = 1.
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6.2. The conditions are necessary. We now prove that the conditions in The-

orem 1 are necessary. Let D : R2
++ → R2

+ be a decreasing demand function that

satisfies the weak axiom of revealed preference. Let p, p′ ∈ R2
++.

To prove that D satisfies Condition 1 note first that from the monotonicity of D

it follows that

(9) D(p) ∨ D(p′) ≤ D(p ∧ p′).

Therefore

(p ∧ p′) · (D(p) ∨ D(p′)) ≤ (p ∧ p′) · D(p ∧ p′) = 1,

where the inequality follows from (9) and monotonicity of the scalar product in the

second argument.

To prove that D satisfies Condition 2 assume that p′ · D(p) ≤ 1 and, say, that

p′1 > p1. We want to show that D(p′)2 ≥ D(p)2. Let p′′ = 1
p′·D(p)

p′. Then p′ ≤ p′′

and p′′ ·D(p) = 1. In particular, it follows from the last equality and the weak axiom

of revealed preference that p · D(p′′) ≥ 1. Let x = D(p) and x′′ = D(p′′). Then

p · x = p′′ · x′′ = p′′ · x = 1 and p · x′′ ≥ 1. Therefore

(10) 0 ≥ p · x + p′′ · x′′ − p · x′′ − p′′ · x = (p − p′′) · (x − x′′) =

(p1 − p′′1) · (x1 − x′′
1) + (p2 − p′′2) · (x2 − x′′

2).

Since p′′1 ≥ p′1 > p1 and p′′ · x = p · x we get from Lemma 6.1 that p′′
2 ≤ p2. Assume,

by way of contradiction, that x′′
2 < x2. Then, since p′′ · x′′ = p′′ · x and p′′ � 0 it

follows from Lemma 6.1 that x1 < x′′
1, in which case the sum in the right hand side

of (10) is strictly positive (since p′′
2 ≤ p2, p′′1 > p1,x

′′
2 < x2 and x1 < x′′

1), which leads

to a contradiction. It follows that x′′
2 ≥ x2, i.e. D(p′′)2 ≥ D(p)2. By monotonicity

of D it follows that D(p′) ≥ D(p′′). Hence

D(p′)2 ≥ D(p′′)2 > D(p)2,

as desired.
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6.3. The conditions are sufficient. A data point is given by a pair (p, x) ∈

R2
++ × R2

+ such that p · x = 1.

Definition 1. A pair (p, x), (p′, x′) ∈ R2
++ × R2

+ of data points is permissible if the

following conditions are satisfied:

(1) (p ∧ p′) · (x ∨ x′) ≤ 1.

(2) If p′ ·x ≤ 1 and p′i > pi for some product i ∈ {1, 2} then x′
j ≥ xj for j = 3−i.

(3) If p ·x′ ≤ 1 and pi > p′i for some product i ∈ {1, 2} then xj ≥ x′
j for j = 3−i.

Let us say that a partial demand function P : D → R2
++ is permissible if

(p,D(p)), (p′, D(p′)) is a permissible pair for every p, p′ ∈ P Using this terminol-

ogy, a partial demand function D : P → R2
++ satisfies the conditions of Theorem 1

iff it is permissible

Monotonicity is a consequence of permissibility:

Lemma 6.8. If (p, x), (p′, x′) ∈ R2
++ × R2

+ is a permissible pair of data points and

p ≤ p′ then x′ ≤ x.

Proof. If p ≤ p′ then p ∧ p′ = p and therefore it follows from Condition 1 of Defini-

tion 1 that p · (x ∨ x′) ≤ 1. But p · x = 1 and therefore

p · (x ∨ x′ − x) = p · (x ∨ x′) − p · x ≤ 0.

Since x∨x′−x ≥ 0 it follows from the last inequality and Lemma 6.2 that x∨x′−x =

0, i.e. x′ ≤ x, as desired.

The weak axiom of revealed preference is a consequence of permissibility:

Lemma 6.9. If (p, x), (p′, x′) ∈ R2
++ × R2

+ is a permissible pair of data points and

p′ · x < 1 then p · x′ > 1.

Proof. We show that p · x′ ≤ 1 implies p′ · x ≥ 1. Assume that p · x′ ≤ 1. If p′ ≥ p

then p′ · x ≥ p · x = 1 and we are done. Let p′ � p. Assume w.l.o.g. that p1 > p′1.

By Condition 3 of Definition 1 it follows that x2 ≥ x′
2. Also, since

(p − p′) · x′ = p · x′ − p′ · x′ ≤ 0
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and since x′ > 0 it follows from Lemma 6.2 that it cannot be the case that p−p′ � 0.

Therefore p2 ≤ p′2. Let x′′ ∈ R2
++ be such that x′′

2 = x′
2 and p · x′′

2 = 1; that is

x′′ = (X1(p, x
′
2), x

′
2); note that X1(p, x

′
2) is well defined because p2x

′
2 ≤ p′2x

′
2 ≤ 1.

Since p · x′ ≤ 1 = p · x′′ and x′′
2 = x′

2 it follows from Lemma 6.3 that x′′
1 ≥ x′

1.

Therefore x′′ ≥ x′, and, in particular, p′ · x′′ ≥ p′ · x′ ≥ 1. Since x2 ≥ x′
2 = x′′

2 and

p2 ≤ p′2 it follows from Lemma 6.6 that p′ · x ≥ 1 as desired.

The following lemma provides an equivalent characterization of permissible pairs.

Unlike the previous characterization, here the roles of p and p′ are not symmetric.

For fixed p and p′, the lemma states the restrictions on x′ (the demand at p′) such

that the pair (p, x), (p′, x′) is permissible assuming that x is already given. Recall

Figure 4(a). From the lemma we see that every good induces one restriction on x′.

If the good is cheaper for p′ (as is the good that corresponds to the vertical axis in

Figure 4(a)) then it induces an inequality of type 1 – an upper bound on the demand

for that good. This is the line A–A in the figure. If the good is more expensive for p′

(as is the good that corresponds to the horizontal axis in Figure 4(a)) then it induces

an inequality of type 2 or 3, depending on whether x is a possible consumption at

the new price p′. In the figure, since x is not possible in the new price, we get an

inequality of type 3 – an upper bound on the demand for that product. This is the

line B–B in the figure.

Lemma 6.10. A pair (p, x), (p′, x′) is permissible iff the following conditions are

satisfied for every product i ∈ {1, 2} and j = 3 − i.

(1) If p′i ≤ pi then x′
i ≤ Xi(p ∧ p′, xj).

(2) If p′i > pi and p′ · x ≤ 1 then x′
j ≥ xj.

(3) If p′i > pi and p′ · x > 1 then x′
i ≤ xi.

The proof of Lemma 6.10 requires some auxiliary results, presented here as

Claims 6.12, 6.11, and 6.13.

Claim 6.11. If (p, x), (p′, x′) is a pair of data points and (p∧ p′) · (x∨ x′) ≤ 1 then

x′
i ≤ Xi(p ∧ p′, xj)
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Proof. Let i ∈ {1, 2} and j = 3 − i. Let y ∈ R2
++ be such that yj = xj and yi = x′

i.

Then

(p ∧ p′) · y ≤ (p ∧ p′) · (x′ ∨ x) ≤ 1,

where the first inequality follows from the fact that y ≤ x′ ∨ x. In particular, it

follows from the last inequality and Lemma 6.5 that

x′
i = yi ≤ Xi(p ∧ p′, yj) = Xi(p ∧ p′, xj),

as desired.

Claim 6.12. For every p, p′ ∈ R2
++ and x ∈ L(p) the set of all x′ ∈ L(p′) such that

(p ∧ p′) · (x ∨ x′) ≤ 1 is a subinterval of L(p′)

Proof. The function x′ 7→ (p ∧ p′) · (x ∨ x′) is concave since the inner product is

monotone and linear and since

x ∨
(

λα + (1 − λ)β
)

≤ λ(x ∨ α) + (1 − λ)(x ∨ β)

for every α, β ∈ R2
++ and every 0 ≤ λ ≤ 1.

Claim 6.13. If (p, x), (p′, x′) is a permissible pair such that x1 < x′
1 and x2 > x′

2

then p1 > p′1 and p2 < p′2.

Proof. We show that any other possibility leads to a contradiction. Note first that

Lemma 6.8 implies x ≥ x′ if p ≤ p′, and x ≤ x′ if p ≥ p′. Both cases contradict the

hypotheses on x and x′.

Second, suppose that p1 < p′1 and p2 > p′2. Consider the following three cases.

• If p′ · x ≤ 1, then x′
2 ≥ x2 by Condition 2 of Definition 1.

• If p · x′ ≤ 1, then x1 ≥ x′
1 by Condition 3 of Definition 1.

• If p′ · x > 1 and p · x′ > 1 then

0 < p · x′ + p′ · x − p · x − p′ · x′ = (p − p′) · (x′ − x) =

(p1 − p′1) · (x
′
1 − x1) + (p2 − p′2) · (x

′
2 − x2) < 0
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The first inequality follows from the fact that p·x = p′ ·x′ = 1 and p·x′, p′ ·x >

1. The last inequality follows because, in each product, one multiplier is

negative and one is positive.

All three cases contradict the hypotheses on x and x′. The only possibility left is

p1 > p′1 and p2 < p′2, as desired.

We now prove Lemma 6.10

Proof. We consider separately the possible positions of p, p′, x, up to symmetry

between the products.

Case 1: p � p′. We show first that the conditions in the lemma imply permissibility.

Since p � p′ then p′ ·x = p·x+(p′−p)·x > 1 (the inequality follows from Lemma 6.2)

and, by Condition 3 in the lemma x′ ≤ x.

Since p ≤ p′, x′ ≤ x implies that (p∧p′) ·(x∨x′) = p ·x = 1. So Condition 1 in the

definition of permissibility is satisfied. In addition, x′ ≤ x implies that Condition 3

is satisfied. We show Condition 2: If p′ · x ≤ 1 and p′i > pi, then p · x = 1 implies

that x′
i = xi = 0 and that p′j = pj for j = 3 − i. Then x′

2 = 1/p′2 = 1/p2 = x2. So

Condition 2 is satisfied.

Now we show that permissibility implies the conditions in the lemma. Condi-

tion 1 in the lemma follows from Claim 6.11. Condition 3 holds because Lemma 6.8

implies x′ ≤ x. Finally, Condition 2 follows from Condition 2 in the definition of

permissibility.

Case 2: p′ ≤ p. For each i, p′i ≤ pi. So x′
i ≤ Xi(p

′, xj) by Condition 1 of the lemma,

as p′ = p′ ∧ p′. But x′
i = Xi(p

′, x′
j), so Xi(p

′, x′
j) ≤ Xi(p

′, xj). Since Xi is monotone

decreasing in xj (item 3 of Lemma 6.4), xj ≤ x′
j. This shows that x ≤ x′. The rest

of the argument is analogous to the previous case.

Case 3: p1 < p′1, p2 > p′2 and p′ · x ≤ 1. Let

A = {x′ ∈ L(p′)|x′
2 ≥ x2, (p ∧ p′) · (x ∨ x′) ≤ 1}.
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Note that A is the set of all x′ such that the pair (p, x), (p′, x′) is permissible. Let

B = {x′ ∈ L(p′)|x′
2 ≥ x2, x

′
2 ≤ X2(p ∧ p′, x1)}

be the set of all x′ such that the pair (p, x), (p′, x′) satisfies the conditions of

Lemma 6.10. We have to prove that A = B. From Claim 6.11 we get that A ⊆ B.

For the other direction, note that the set B is the closed interval whose endpoints

are the unique points y, z in L(p′) such that y2 = x2 and z2 = X2(p ∧ p′, x1). Since,

by Claim 6.12, A is an interval, it is sufficient to prove that y, z ∈ A.

Since p′ · x ≤ 1 it follows that x1 ≤ y1 and therefore x ≤ y and x ∨ y = y and

therefore

(p ∧ p′) · (x ∨ y) = (p ∧ p′) · y ≤ p′ · y = 1,

and thus y ∈ A.

Now,

z2 = X2(p ∧ p′, x1) ≥ X2(p, x1) = x2 and

z1 = X1(p
′, z2) ≤ X1(p

′ ∧ p, z2) = X1(p
′ ∧ p,X2(p

′ ∧ p, x1)) = x1,

where the inequalities follow from item 2 of Lemma 6.4. It follows that x ∨ z =

(x1, z2). Since z2 = X2(p ∧ p′, x1) it follows that (p ∧ p′) · (x ∨ z) = 1 and therefore

z ∈ A.

Case 4: p1 < p′1, p2 > p′2 and p′ · x > 1. Note that, in this case, the conditions in

the lemma are equivalent to x′
1 ≤ x1 and x′

2 ≤ X2(p ∧ p′, x1).

We show first that permissibility implies the latter conditions. We need to show

that x′
1 ≤ x1, as Claim 6.11 gives x′

2 ≤ X2(p ∧ p′, x1). First, if p · x′ ≤ 1 then by

Condition 3 of the definition of permissibility x′
1 ≤ x1. Second, let p · x′ � 1. Then

p′ · x > 1 and p · x′ > 1 imply x′ � x and x � x′. Now, x′
1 > x1 and x′

2 < x2 imply,

by Claim 6.13 that p′1 < p1 and p′2 > p2. So it must be that x′
1 < x1 and x′

2 > x2.

Thus, either way we get that x′
1 ≤ x1.

We now show that the conditions imply permissibility. Let y = (x1, X2(p∧p′, x1));

so (p∧p′)·y = 1. Note that x2 = X2(p, x1) ≤ X2(p∧p′, x1), so x ≤ y. The conditions
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are equivalent to x′ ≤ y. So we obtain

(p ∧ p′) · (x ∨ x′) ≤ (p ∧ p′) · (x ∨ y) ≤ (p ∧ p′) · y = 1.

Thus Condition 1 of the definition of permissibility is satisfied. Condition 2 in

the definition follows from Condition 2 in the lemma. Finally, Condition 3 in the

definition is satisfied since x′
1 ≤ x1.

The proof of Theorem 1 is based on the following lemma:

Lemma 6.14. Let P be a finite subset of R2
++ and let D : P → R2

+ be a permissible

partial demand function. Let p′ ∈ R2
++. Then D can be extended to a permissible

partial demand function over P ∪ {p′}.

Proof. For p ∈ P and x = D(p) let A(p) be the set of all x′ ∈ L(p′) such that the

pair (p, x), (p′, x′) is permissible. We have to prove that
⋂

p∈P A(p) is nonempty.

From Lemma 6.10, A(p) is a sub-interval of L(p′). It is then sufficient to show that

for any pa and pb in P , A(pa)∩A(pb) 6= ∅, as any collection of pairwise-intersecting

intervals has nonempty intersection (an easy consequence of Helly’s Theorem, for

example see Rockafellar (2006), Corollary 21.3.2).

Thus we fix pa and pb in P . From Lemma 6.10, A(pa) and A(pb) are defined

by a set of inequalities, one inequality for each product. We have to show that

the intersection of the solution sets for these inequalities is nonempty. Note that

two inequalities that correspond to the same products are always simultaneously

satisfiable.

Case 1: p′1 ≤ pa
1 and p′2 ≤ pb

2. Let y ∈ R2
++ be given by y1 = X1(p

a ∧ p′, xa
2) and

y2 = X2(p
b ∧ p′, xb

1). We have to prove that L(p′) ∩ {x′|x′ ≤ y} is nonempty, or
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equivalently that p′ · y ≥ 1. Indeed,

p′ · y = p′1 · y1 + p′2 · y2

= (p′1 ∧ pa
1) · y1 + (p′2 ∧ pb

2) · y2

= 2 −
∑

(i,j)∈{(a,2),(b,1)}

(p′j ∧ pi
j) · x

i
j

≥ 2 −
∑

(i,j)∈{(a,2),(b,1)}

(pj
j ∧ pi

j) · (x
i
j ∨ xj

j)

= 2 − (pa ∧ pb) · (xa ∨ xb)

≥ 1.

The second equality above follows from the fact that p′
1 ≤ pa

1 and p′2 ≤ pb
2. The

third equality follows from the fact that (y1, x
a
2) ∈ L(p′ ∧ pa), so (p′1 ∧ pa

1) · y1 =

1 − (p′2 ∧ pa
2) · x

a
2, and similarly for (xb

1, y2). The first inequality is because p′
1 ≤ pa

1

and p′2 ≤ pb
2. The last inequality is because (pa, xa), (pb, xb) is permissible.

Case 2: p′1 > pa
1 and p′ · xa ≤ 1, while p′2 > pb

2 and p′ · xb ≤ 1. Let y = (xb
1, x

a
2). We

have to prove that L(p′)∩ {x′|x′ ≥ y} is nonempty. Or, equivalently, that p′ · y ≤ 1.

If y ≤ xa or y ≤ xb then we are done. Suppose then that y � xa and y � xb; hence

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13 that pa
1 > pb

1 and

pa
2 < pb

2. Since we assumed that p′2 > pb
2 it follows that p′2 > pa

2. Since we assumed

that p′1 > pa
1 it follows that p′ � pa, which contradicts p′ · xa ≤ 1 (since pa · xa = 1).

Case 3: p′1 > pa
1 and p′ · xa > 1, while p′2 > pb

2 and p′ · xb > 1. Let y = (xa
1, x

b
2).

We prove that L(p′) ∩ {x′|x′ ≤ y} is nonempty. Or, equivalently, that p′ · y ≥ 1.

If y ≥ xa or y ≥ xb then we are done. Suppose then that y � xa and y � xb, so

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13 that pa
1 > pb

1 and

pa
2 < pb

2. Therefore pa ∧ pb = (pb
1, p

a
2) and xa ∨ xb = (xb

1, x
a
2). It follows that

p′ · y = p′1 · y1 + p′2 · y2 ≥ pa
1 · x

a
1 + pb

2 · x
b
2 =

2 − pb
1 · x

b
1 − pa

2 · x
a
2 = 2 − (pa ∧ pb) · (xa ∨ xb) ≥ 1,
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The first inequality follows from the assumption that p′
1 > pa

1 and p′2 > pb
2. The

second equality follows from pi · xi = 1, i = a, b. The last inequality follows from

permissibility (Condition 1 in Definition 1).

Case 4: p′1 ≤ pa
1 and p′2 > pb

2 and p′ · xb ≤ 1. Note first that Lemma 6.7 implies

p′1 ≤ pb
1. We need there to exist x′ ∈ L(p′) with x′

1 ≤ X1(p
a ∧ p′, xa

2) and x′
1 ≥ xb

1.

That is, we need xb
1 ≤ X1(p

a ∧ p′, xa
2). Or, equivalently, that (pa ∧ p′) · y ≤ 1

where y = (xb
1, x

a
2). If y ≤ xa then (pa ∧ p′) · y ≤ pa · xa = 1. If y ≤ xb then

(pa ∧ p′) · y ≤ p′ · xb ≤ 1. The only other possibility is that y > xa and y > xb, so

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows in particular from Claim 6.13 that

pa
2 < pb

2. Now, p′1 ≤ pb
1 implies that pa ∧ p′ ≤ pb and therefore pa ∧ p′ ≤ pa ∧ pb. In

addition, in this case, y = xa ∨ xb. Therefore

(pa ∧ p′) · y ≤ (pa ∧ pb) · (xa ∨ xb) ≤ 1

the last inequality follows from Condition 1 in Definition 1

Case 5: p′1 ≤ pa
1 and p′2 > pb

2 and p′ · xb > 1. Let y1 = X1(p
a ∧ p′, xa

2) and y2 = xb
2.

We have to prove that the set L(p′) ∩ {x′|x′ ≤ y} is nonempty, or equivalently that

p′ · y ≥ 1. If xa
1 ≥ xb

1 then y ≥ xb (since y1 = X1(p
a ∧ p′, xa

2) ≥ X1(p
a, xa

2) = xa
1)

and, in particular, p′ · y ≥ p′ · xb ≥ 1. If xb
2 ≥ xa

2 then y2 ≥ X2(p
a ∧ p′, y1) (Since, by

Lemma 6.4, X2(p
a ∧ p′, y1) = xa

2) and therefore p′ · y ≥ (pa ∧ p′) · y ≥ 1. The only

other possibility is that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13

that pa
2 < pb

2 and pa
1 > pb

1. So pa ∧ pb = (pb
1, p

a
2), and, since p′2 > pb

2, p′2 > pa
2. Now,

p′ · y ≥ (p′1, p
b
2) · (y1, y2) =

(pb
1, p

b
2) · (x

b
1, y2) + (p′1, p

a
2) · (y1, x

a
2) − (pb

1, p
a
2) · (x

b
1, x

a
2) ≥ 1.

Where the last inequality follows from the following observations:

(pb
1, p

b
2) · (x

b
1, y2) = pb · xb = 1.

(p′1, p
a
2) · (y1, x

a
2) = (pa ∧ p′) · (y1, x

a
2) = 1 since y1 = X1(p

a ∧ p′, xa
2).

(pb
1, p

a
2) · (x

b
1, x

a
2) = (pa ∧ pb) · (xa ∨ xb) ≤ 1
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The last equality follows from (pb
1, p

a
2) = (pa ∧ pb), as we established above. The

inequality follows from permissibility.

Case 6: p′1 > pa
1 and p′ · xa ≤ 1 and p′2 > pb

2 and p′ · xb > 1. We have to prove

that xa
2 ≤ xb

2. Indeed, from Lemma 6.7 it follows that p′
2 ≤ pa

2. Thus pa
2 > pb

2. If

pa · xb > 1 then by Condition 3 of Lemma 6.10 xa
2 ≤ xb

2, as desired. If pa · xb < 1

then, since pa
2 > pb

2, it follows from Condition 2 of Definition 1 that xa
1 ≥ xb

1. Since

p′ · xa ≤ 1 < p′ · xb it follows from Lemma 6.3 that xa
2 ≤ xb

2, as desired.

Finally, we complete the proof of Theorem 1. Let P be a finite subset of R2
++ and

let D : P → R2
+ be a partial demand function that satisfies the conditions of the

theorem, i.e. such that the pair (p,D(p)), (p′, D(p′)) is permissible for every p, p′ ∈

P . Let Q be a countable dense subset of R2
++ that contains P . By Lemma 6.14, D

can be extended to a function D : Q → R2
+ such that for every p, p′ ∈ Q the pair

(p,D(p)), (p′, D(p′)) is permissible.

In particular, by Lemma 6.8, D is monotone on Q. Extend D to R2
++ by defining

D̃(p) =
∧

q∈Q,q≤p D(q) for every p ∈ R2
++. Since D is monotone, it follows that

D̃(p) = D(p) for p ∈ Q and that D̃ is monotone. Since p · D(p) = 1 for p ∈ Q it

follows that p · D̃(p) = 1 for p ∈ R2
++. That is, for all q ∈ Q, q ≤ p, q · D̃(p) ≤

q · D (q) = 1, so that in the limit, p · D̃(p) ≤ 1. If, in fact, p · D̃(p) < 1, then

there exists q ∈ Q, q ≤ p such that p · D (q) < 1; from which we conclude that

q · D (q) ≤ q · D (p) < 1, a contradiction. .Therefore, p · D̃(p) = 1.

Now, by Lemma 6.15, D̃ is continuous.

Lemma 6.15. If a demand function satisfies complementarity, then it is continuous.

Proof. Let p∗ ∈ R2
++ and {pn}∞n=1 ⊆ R2

++ such that pn → p∗. First consider the

case in which for all n, pn ≤ p∗. In particular, for all n, D (pn) ≥ D (p∗). Let ε > 0;

we wish to show that there exists some N such that for all i = 1, 2, n ≥ N implies

Di (p
n) < Di (p

∗) + ε. Suppose that there exists no such N and without loss of

generality suppose that D1 (pnk) > D1 (p∗) + ε for some subsequence. The equality
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pnk

1 D1 (pnk) + pnk

2 D2 (pnk) = 1 implies that

D2(p
∗) ≤ D2 (pnk) =

1 − pnk

1 D1 (pnk)

pnk

2

<
1 − pnk

1 (D1 (p∗) + ε)

pnk

2

.

Hence, in the limit we have

D2 (p∗) ≤
1 − p∗1 (D1 (p∗) + ε)

p∗2
.

But then

p∗1D1(p
∗) + p∗2D2(p

∗) ≤ 1 − p∗1ε < 1,

contradicting that D is a demand function.

A similar argument holds for pn ≥ p∗.

Now suppose that pn is arbitrary. By monotonicity, we have

D (p∗ ∨ pn) ≤ D (pn) ≤ D (p∗ ∧ pn) ,

and as p∗ ∨ pn → p∗ and p∗ ∧ pn → p∗, we conclude that D (pn) → D (p∗).

It remains to show that D̃ is rationalizable by a monotone increasing utility. We

first establish that D̃ satisfies the weak axiom. So, suppose by means of contradiction

that there exists p, p′ such that p · D̃ (p′) < 1 and p′ · D̃ (p) ≤ 1. By monotonicity

and continuity of D̃, we may therefore find q ∈ Q, q � p′ such that p · D̃ (q) < 1

and q · D̃ (p) < 1. By continuity, there exists q′ ∈ Q such that q′ · D̃ (q) < 1 and

q · D̃ (q′) < 1. However, Lemma 6.9 implies that D̃ satisfies the axiom on Q, a

contradiction. The result then follows from Lemma 6.16

Lemma 6.16. A continuous demand function satisfying the weak axiom of revealed

preference is rationalizable by an upper semicontinuous, monotone increasing, util-

ity.

Remark. Lemma 6.16 is related to Theorem 12 in Richter (1971) and Theorem 1 in

Hurwicz and Richter (1971). Both results require a convex-range assumption. In

addition, the monotonicity and upper-semicontinuity hold on the range of demand,
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not necessarily on consumption space. Richter (1971) obtains a strictly increasing

utility on the range of demand. We obtain a utility such that x � y implies u(x) >

u(y) and x ≥ y implies u (x) ≥ u (y). Note that the demand function D(p1, p2) =
(

1/(p1 + p2), 1/(p1 + p2)
)

, which is rationalized by u(x1, x2) = min(x1, x2), admits

no utility function that is strictly monotone over R2. On the role of convex range,

see our Example 1.

Proof. Let R be the revealed preference binary relation on R2
+, so x R y if there is a

p with x = D(p) and p · y ≤ 1. The weak axiom with two commodities implies that

Rτ is acyclic (the strong axiom). Let Rτ be the transitive closure of R; . Then Rτ

is a strict partial order.

Let x, x′ ∈ Y with x T x′. We claim that there exists z ∈ D(Q2
++) and a neigh-

borhood U of x′ such that x R z and z R y for every y ∈ U . In particular, this will

demonstrate two facts. Firstly, there exists a countable Rτ -dense set, and secondly,

that Rτ is an upper semicontinuous binary relation.

Suppose first that p · x′ < 1. Then there exists q ∈ Q2
++ with p ≤ q and q · x′ < 1.

Let z = D(q) and U be a neighborhood of x′ such that q · y < 1 for every y ∈ U . It

follows that z R y for every y ∈ U . Moreover, as p ≤ q and q · z = 1, x R z.

Secondly, suppose that p ·x′ = 1. Without loss of generality, suppose that x1 < x′
1

and x′
2 < x2. Choose w = (1/2)x + (1/2)x′, so x,w, x′ ∈ L(p). Let δ > 0 be

such that Bδ(x) ∩ Bδ(w) = ∅, where Bδ(x) denotes the open ball of radius δ and

center x. For all q1 < p1, let p̂2(q1) = (1/w2)(1 − q1w1) (Note that w2 > 0 since

w2 > x′
2 ≥ 0). So p̂2(q1) > p2 and w is the intersection of L(p) and L(q1, p̂2(q1)).

Note that if z ∈ L(q1, p̂2(q1)) and z1 < w1 then p ·z < 1 and if z ∈ L(p) with w1 < z1

then (q1, p̂2(q1)) · z < 1. Since demand is continuous, and x = D(p), there exists

ε > 0 such that p̃ ∈ Bε(p) implies D(p̃) ∈ Bδ(x). Fix q1 ∈ Q, q1 > p1, such that

(q1, p̂2(q1)) ∈ Bε(p). Note that by the choice of δ, and since D(q1, p̂2(q1)) ∈ Bδ(x), we

have that D(q1, p̂2(q1)) < w1. So p ·D(q1, p̂2(q1)) < 1. Similarly, (q1, p̂2(q1)) · x
′ < 1.

Using continuity of demand again, there is a q2 ∈ Q++ close enough to p̂2(q1) such

that p · D(q1, q2) < 1 and (q1, q2) · x
′ < 1. Let U be a neighborhood of x′ such that
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(q1, q2) · y < 1 for every y ∈ U . Set z = D(q1, q2). Then x R z R y for every y ∈ U ,

as desired.

Therefore Rτ is a partial strict order over R2
++ admitting a countably dense set

(namely D(Q2
++)) and such that the lower contour sets are open. By Peleg (1970)

5 there exists an upper semi continuous function u : R2
++ → R that rationalizes Rτ .

Let v(x) = max{u(y)|y ∈ R2
++ and y ≤ x} (note that the maximum is achieved

since u is upper semi continuous). Then v is monotone and also rationalizes Rτ .

It remains to show that v is upper semi continuous. Let α ∈ R and consider the

lower contour set V = {x ∈ R2
++|v(x) < α}. We have to show that V is open.

Indeed, let x ∈ V , and let B = {y ∈ R2
++|y ≤ x} and U = {x ∈ R2

++|u(x) < α}.

Then B ⊆ U by definition of v, and, moreover, B is compact and U is open (since

u is upper semi-continuous). Therefore there exists some ε > 0 such that B+ε ⊆ U

where B+ε = {z ∈ R2
++|∃x ∈ B ‖x − z‖∞ < ε} (here ε is the ‖‖∞-distance between

the compact set B and the closed set U c). Let z ∈ R2
++ be such that ‖z − x‖∞ < ε.

Then y ∈ B+ε for every y ≤ z and therefore u(y) < α for every such y. It follows

that v(z) < α. This proves that V is open.

Remark. Theorem 2 follows from lemmas 6.15 and 6.16.

5Peleg also assumes a condition on the order that he terms spaciousness. Spaciousness is used

to guarantee that the utility representation is continuous; but the rest of his theorem guarantees

the existence of an upper semicontinuous binary relation as we have here. One can alternatively

use the results of Rader (1963) and Jaffray (1975).
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