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ABSTRACT 

A method for deforming curves in a given image to a 
desired position in a second image is introduced in this pa- 
per. The algorithm is based on deforming the first image 
toward the second one via a partial differential equation, 
while tracking the deformation of the curves of interest in 
the first image with an additional] coupled, partial differ- 
ential equation. The technique can be applied to abject 
tracking and slice-by-slice segmentation of 3D data. The 
topology of the deforming curve can change, without any 
special topology handling procedures added to the scheme. 
This permits for example the automatic tracking of scenes 
where, due to occlusions, the topology of the objects of in- 
terest changes from frame to frame. 
Key words: Partial differential equations, curve evolution, 
morphing, segmentation, interpolation, tracking] topology. 

1. INTRODUCTION 

In a large number of applications, we can use information 
from one or more images to perform some operation in an 
additional image. Examples of this are given in Figure 1. 
On the top row we have two consecutive slices of a 3D image 
obtained from electronic microscopy. We can for example 
use a given segmentation of the image on the left to drive 
the segmentation of the next slice, the image on the right. 
On the bottom row we see two consecutive frames of a video 
sequence. Once again, we can use the image on the left to 
track the object in the image on the right. These are the 
type of problems we address in this paper. 
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Our approach is based on deforming the contours of 
interest from the first image toward the desired place in 
the second one. More specifically, we use a system of cou- 
pled partial differential equations to achieve this (coupled 
PDE’s have already been used in the past to address other 
image processing tasks, see [ll, 121 and references therein). 
The first partial differential equation (PDE) deforms the 
first image toward the second one. The additional PDE is 
driven by the deformation velocity of the first one, and it 
deforms the curves marking the segmentation in the first 
image toward the desired segmentation in the second one. 
This last deformation is implemented using the level-sets 
numerical scheme developed in [9], allowing for changes in 
the topology of the deforming curve. That is, if the objects 
of interest split or merge from the first image to the second 
one, these topology changes are automatically handled by 
the algorithm. This means that we will be able to track 
scenes where objects split and merge, due to occlusions for 
example, and also to segment 3D medical data where the 
slices contain cuts with different topology. 

2. THE ALGORITHM 

2.1. Basic curve evolution 

Let C(p,O) : R -+ R2 be a set of closed curves. Assume 
these curves deform “in time” according to 

where ,I3 is a given velocity and J? the inner unit normal to 
C@, t) .  Let’s now assume that C is the level-set (isophote) of 
a given function U : R2 -+ R. Then, in order to represent 
the evolution of C according to (l), we have to deform U 
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where p is computed at the level-sets of U. This is the for- 
mulation introduced by Osher and Sethian [9] to implement 
curve evolution flows of the type of (1). This implementa- 
tion has several advantages over a direct discretization of 
(1). Probably the main advantage is that changes in the 
topology of C ( p ,  t )  are automatically handled when evolv- 
ing U, that is, there is no need for any special tracking of 
the topology of the level-sets; see [9] for details on this and 
the exact discretization of (2). This has motivated the use 
of this formulation for a large number of applications, in- 
cluding shape from shading, segmentation, mathematical 
morphology, stereo, and regularization. 

2.2. Morphing active contours 

Let 11(z,y,O) : R2 -+ R be the current frame (or slice), 
where we have already segmented the object of interest. 
The boundary of this object is given by Czl (p, 0) : R + R2. 
Let &(a,y,O) : R2 -+ R be the image of the next frame, 
where we have to detect the new position of the object 
originally given by Czl (p, 0) in Z~(Z, y, 0). Let us define a 
function U(Z,  y, 0) : IR2 + R, such that its zero level set is 
the curve C z , ( p , O ) .  This function can be for example the 
signed distance function from Cz, ( p ,  0). With these func- 
tions as initial conditions, we define the following system 
of coupled evolution equations (t stands for the marching 
variable): 

In this system, 1 1  is evolving toward 1 2 ,  and accord- 
ing to the description in the previous section, all the level 
sets of both and U are evolving with the image depen- 
dent velocity TI(., y, t )  - &(z, y,O). More specifically, 
the zero level-set of U,  which originally was positioned at 
the boundary of the object of interest in the current frame 
(11(z,y, 0)), follows the deformation that i s  moving 1 1  to- 
ward the next frame, ZZ. That is, U is used to follow the 
deformation of the curve of interest, Czl (p, t ) ,  in 1 1 ( ~ ,  y,  t ) .  
Note that in general Czl ( p ,  t ) ,  the boundary of the object of 
interest, will not be a level set of 1 1  ( E ,  y, t )  (this will hap- 
pen, for example, in the case of morphing binary images; 
see comment below). 

the 
steady stateof (3) isobtainedwhenZl(z,y,co) = &(z,y,O), 
that is, when the current frame has been totally deformed 
toward the next one. This is the basic system we propose 
to track from frame to frame in a video sequence and to 
segment from slice to slice in a 3D image. 

For images with large variations of gray values inside 
and outside the objects delimited by Czl ( p ,  0), we found 
helpful to replace 1 1  (2, y, 0) by the average values inside and 
outside Czl (p, 0). This makes the boundary of the desired 

Eliminating the case where ( 1  V11 (2, y, t )  [ I =  0, 

'Although it is possible to find pathological situations where 
this can cause the flow to stop, we haven't encountered any in 
the large amount of examples we tested. 

object a level-set of the modified image. This was done for 
the examples in Figure 2. 

The complete model is obtained by multiplying the ve- 
locity in the evolution of U by the term 

This allows for the concavities of U to differ from those of 11, 
eliminates the need of the averaging described above, and 
also eliminates the need to have all values outside (inside) 
the curve of interest grater (smaller) than the values inside 
(outside) of it. 

3. EXAMPLES 

The first example of our algorithm is presented in Figure 
2. This figure shows an image of a neuron from the cen- 
tral nervous system. This image was obtained via elec- 
tronic microscopy (EM). After the neuron is identified, it 
is marked via the injection of a color fluid. Then, a por- 
tion of the tissue is extracted, and after some processing, 
it is cut into thin slices and observed and captured via the 
EM system. The figure shows the output of the EM after 
some simple post-processing, mainly composed by contrast 
enhancement. The goal of the biologist is to obtain a three 
dimensional reconstruction of this neuron. As we observe 
from these examples, the EM images are very noisy, and the 
boundaries of the neuron are not easy to identify. Segment- 
ing the neuron is then a difficult task. Using active contours 
techniques as those in [3, 4, 6, 7, 8, 13, 141 normally fail with 
this type of images. Since the variation between consecu- 
tive slices is not big, we can use the segmentation obtained 
for the first slice (segmentation obtained either manually 
or with the technique describe in [15]), to drive the seg- 
mentation of the next one. One could argue that we could 
also use this segmentation to initialize the active contours 
mentioned above. We still encounter a number of difficul- 
ties with this approach: 1- The deforming curve still gets 
attracted to local minima, and often fails to detect the neu- 
ron; 2- Those algorithms normally deform either inwards 
or outwards (mainly due to the presence of balloon-type 
forces), while the boundary curve corresponding to the first 
image is in general neither inside nor outside of the object in 
the second image. Therefore, even if the image is not noisy, 
special techniques need to be developed and implemented 
to  direct different points of the curve toward different di- 
rections. 

The top-left image in Figure 2 shows the contour ob- 
tained from the previous slice and the one derived from it 
and the system (3) for the current one. The next images, 
from left to right and top to bottom, show consecutive slices 
automatically segmented after the segmentation of the first 
slice was obtained. Before processing for segmentation, the 
images are regularized using anisotropic diffusion [l, 2, lo]. 

Figure 3 shows an example for object tracking. Once 
again, the algorithm detects the moving object without any 
difficulty. Other algorithms for tracking in video sequences, 
based on the general geodesic framework introduced in [3,4] 
can be found in [5]. In contrast with our approach, this 
scheme is based on a unique PDE, deforming the curve to- 
ward a (local) geodesic curve. The algorithm is again very 
sensible to spatial and temporal noisy gradients. 
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Figure 4 shows and additional tracking example, where 
the topology of the tracked boundaries changes. 

4. CONCLUDING REMARKS 

In this paper we have presented a system of coupled PDE’s 
used for image segmentation and tracking. The first PDE 
deforms the first frame (or slice) toward the second one, 
while the additional PDE tracks the deformation of the 
curves of interest in the first image until they converge to 
the desired position in the second one. 

There are a number of directions to continue the frame- 
work describe in this paper. First of all, although the tech- 
nique here presented is less sensible than active contours to 
noisy edges, it is more sensible to changes in absolute gray- 
value, as those obtained from changes in illumination (al- 
though such changes didn’t affect the performance in Figure 
3). One possible way to address this issue is to normalize 
the histograms of the consecutive frames. This was added 
to the algorithm and it is described in our extended report. 

We have also applied this algorithm for 3D morphing, 
and for MRI visualization, and the results can be observed 
in our extended report. 

The use of singular value decomposition and principal 
components analysis became very popular in computer vi- 
sion and image processing in the past years. The basic 
idea is to represent a given event as a linear combination 
of principal components from learned events. We can see 
the technique here described as a first step toward the de- 
formation of principal components. That is, we can look 
at the curve obtained from the current slice as a principal 
component. We are currently investigating the extension of 
this technique to the deformation of a number of principal 
components, thereby representing a given event as a combi- 
nation of deformed learned principal components. The de- 
formations will be obtained as a system of coupled PDE’s. 

The equations introduced in this paper are basically 
“short in memory,” that is, only the present frame is used 
to segment the next one. We can incorporate past infor- 
mation to these equations, in the form of optical flow or 
Kalman filtering, in order to improve the detection results. 
This will be the subject of further study as well. 

We are also studying the extension of our previous the- 
oretical results for the system of coupled PDE’s presented 
in this paper. 
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Figure 1: Examples of the problems addressed in this paper. 
On  the top row we see two consecutive slices of a 3 0  image 
obtained with electronic microscopy. The segmentation on 
the left can be used to drive the segmentation of the image 
on the right. On the bottom row we see two consecutive 
frames of a video sequence. The image on the left is used 
to track the object in the image on the right. 

Figure 2: Example of the morphing active contours for  seg- 
menting EM. The top-left image shows in black the contour 
obtained f rom the previous slice and in red the one derived 
from it and the system (3) for the current one. The next 
images, f rom left to right and top to bottom, show consec- 
utive slices automatically segmented after the segmentation 
of the first slice was obtained. (This is a color figure.) 
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Figure 3: il3-aclcing with the morphing active contours (green 
lines, f rom top to  bottom). The  1st segmentation was done 
by hand, while the others where obtained with the system 
proposed in this paper. (This  as a color figure.) 

Figure 4: Tracking with the morphing active contours Ob- 
serve how changes in topology are automatically tracked. 
(This  as a color figure.) 
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