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Abstract

The problem studied in this paper is to obtain the opti-
mal robust performance achievable by a static prefilter
in the presence of structured uncertainty. The perfor-
mance indexes we adopt are the ‘H~ and X2 norms,
and we consider either Linear Time-Invariant ( LTI )
as Linear Time Varying ( LTV ) uncertainties. It is
shown that the optimal solutions for the LTV cases can
be obtained by solving finite dimensional convex prob-
lems. The LTI cases can be posed as (infinite dimen-
sional) convex problems, for which several algorithms
are available that dispense with the classical D – K
iteration.

In
of

1 Introduction

this paper we consider the uncertain control system
Figure 1 where w denotes the disturbances, u the

control action, s the performance output, r the refer-
ence inputs, and v the measured outputs. The uncer-
tainty A is supposed to be structured.

The plant GP is controlled by a two-degrees-of-freedom
controller 1< which is composed by the feedback part
F and the prefilter P such that u = Fv + Pr.

K
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Figure 1: Two-Degrees-of-Freedom Controller

We will suppose that a direct measure of the external
inputs r is available. Instead, we have no access to
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the disturbances w which must be compensed by the
feedback action.

The feedback part F is classically designed from spec-
ifications like stability and disturbance rejection. The
prefilter P is introduced to improve the command re-
sponse, i.e. the transfer between r and s, in aspects as
constraints on the step response, decoupling between
input channels, steady state response, etc..

It was proven [1] for the nominal case that if the unique
constraint on P and F is their realizability, the stability
and disturbance attenuation on the one hand and com-
mand response on the other are independent require-
ments. A more precise statement of that independence
may be formulated: let us suppose that a given transfer
function T$, between r and s is achieved by a couple
of a prefilter PI and a closed loop stabilizing feedback
controller F1. Then, for all stabilizing F2 there exists a
prefilter P2 such that the desired transfer function can
be reached.

The potential cost of that independence may be an ex-
cessive dynamic order. However, this result is a valu-
able guide in designing controllers with two degrees of
freedom.

For the uncertain case the robust stability and distur-
bance rejection exclusively depend on the feedback con-
troller F. The robust command tracking also depends
on F, but a strong dependence on P is present.

The joint synthesis of P and F for robust performance
is technically viable, see e.g. [2]. The resulting con-
plant plus the order of the corresponding scaling ma-
trices. However, this approach has some drawbacks.

First, we must use the same norm for the characteri-
zation of the disturbance rejection and the command
tracking. If this is not possible, the joint synthesis of
P and F may not be convenient due to the lack, at our
knowledge, of an efficient technique for the design for
robust mixed 7-12/’H~ performance. The use of the Hz

norm as performance index for the command tracking is
natural since it is habitual working with the references
belonging to a set of test inputs as steps or ramps. Also
it is not difficult to conceive that there can be cases in
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which the disturbances w can be deterministic signals
that can concentrate its energy in a relatively narrow
uncertain band of frequency, If such is the case, the
I& norm seems to be adequate for the characteriza-
tion of the disturbance rejection.

In second place, we are not able to obtain the global
optimum for the robust design of controllers with two
degrees of freedom. In the general case we have no al-
ternative to suboptimal design techniques as the clas-
sical D – K iteration [8].

The approach we adopt in this work is the indepen-
dent design of each degree of freedom. The feedback
action must be firstly designed by a suitable method to
assure robust stability and a good disturbance rejec-
tion. In a second step the prefilter must be designed to
improve the robust command tracking. However, once
the feedback action is incorporated to the plant, the
use of classical full order design techniques may easily
lead to relatively high dynamic orders.

We will develop design methodologies for prefilters in
the presence of LTI or LTV uncertainties. We will con-
sider either’& or HZ norms as performance index. We
will center the study on static prefilters, but some com-
ments on extensions to the general case will be made.

The design methodologies developed here allow us to
obtain the global optimum for the stated problems
when we restrict ourselves to the static case. The ap-
parent poorer performance due to the lack of dynamics
in the prefilter may be misleading. There are no known
methodology that allows us to obtain the optimum full
order prefilter. In addition, if the resulting order is ex-
cessive, a model reduction for the prefilter can be nec-
essary. The performance of the static prefilter begins
to be comparable to the dynamic alternative prefilter.
See [3] for an example involving the nominal case.

It is shown that when LTV uncertainties are present,
either the ‘HZas the ‘l-& problem can be solved through
an optimization procedure involving Linear Matrix In-
equalities ( LMI ) [10]. For those cases where the uncer-

tainties are LTI, the optimum static prefilters may be
obtained through an infinite dimensional convex prob-
lem. This can be adequately solved, from an engineer-
ing point of view, e.g. by griding the frequency domain
and solving a set of LMIs. The novel aspect is that is
not necessary any iteration between the controller and
the corresponding scaling matrices.

The design problems are formulated in the next sec-
tion. Section 3 presents the main results of this work.
Section 4 contains some remarks on computational is-
sues and the fifth section finishes the work with some
concluding remarks.
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Notation: The transfer function

G(s) = C(S1 – A)-lB + D

[+1

AB
will be denoted as G(s) = ~ ~ .

For a partitioned operator

M:
[

Ml 1
M21

and two operators P and Q

Ml 2
M22 1

with compatible dimen-,
sions, the lower and upper linear fractional transfor-
mations ( LFT ) are defined as

F/(M, Q) 9 Mll + MIzQ(I – MZZQ)-l MZ1

FU(M, P) ~ M22 + M21P(1 – M11P)-1M12

2 Problem statement

Let us assume that an adequate feedback controller F
was already designed that assures closed loop stabil-
ity. In order to design the prefilter, a model following
interconnection diagram can be constructed ( see e.g.
[2] ). The resulting system, including the controller F
and all the introduced weights, may be represented as
in Figure 2.

B
A

Wt .q
r G .2
u Y

P

Figure 2: Uncertain system

The plant G is given by

ABEM
[r]Cl LI HI N1
G(s) = C2 L2 Hz N2

(1)

0010

where the partition is according to Figure 2. The di-
mensions of the signals wt, r, U, a, z and y are rewec-

tively dw, dr, du, dw, dr and dy. The dimension of
the state vector is n. The prefilter P is assumed to be
static, i.e. P E RdUxd’.

We are assuming that the reference input is measured
and no feedback action is done by the static prefilter
P, i.e. y = r. The nominal plant G is supposed to be
stable.
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The uncertainty A is assumed to have the structure

A = diag[t$l~.1, . . .,b~l.~, AL+l, . . ., AL+r]

where the blocks in A represent dynamical perturba-
tions. Let us consider the normalized set BA defined
as BA ~ {A ● A: I]AII < 1} in some operator norm.

The transfer function between [w~,r]’ and [q, z]’ is

Tp(s) 8 $/(G(s), P)

In the presence of LTI uncertainties A, the system is
said to have ( normalized ) robust 7fm performance
if

sup llFu(Tp(s), A)llm < 1
AEBfli

Analogously, the system has normalized robust Hz
performance if

SUP 111’U(T’’(S),A)[IZ < 1
AEBA

The definitions above can be generalized to the LTV
cases [5, 7, 9]. In order to obtain the respective condi-
tions for robust performance we introduce scaling ma-
trices of the form

X = diag[Xl , . . . . XL, ~~+1~~1, . . . . Z~+FIm~] (2)

which commute with the elements in A. Let us denote
by X the set of positive definite, continuous scaling
X(U) with the structure (2).

We will denote by @ the set of matrix functions O(u) E
Cdrxdr such that O(w) = O*(U) >0.

An index ~ for robust performance will be introduced.
With the help of several known results on analysis of
uncertain systems [4, 5, 6, 8, 9, 12] we can state com-
putable conditions for robust performance.

Condition 1 [?&, LTI] : There exists a scaling func-
tion X(w) E X and P E Rduxdr such that for all w it

is satisfied
Tp (jw)”
[x$) Wp(’w)-[x$’ ~d<’

(3)

Condition 2 [’lt~, LTV]: There e$ists a constant
X E X and P E Rduxd’ such that

Condition 3 [’Hz, LTI]: There exists a scaling f~~C-
tion X(w) E X, P E Rd”xdT and a matrix function

2

Tp(jw)”
[x$) Wp(’w)-[x$) Jw) 1 ‘0

Condition 4 [’H2, LTV]: There exists a constant X E
X, P E Rduxdv and a matrix function O(w) E @ such
that for all w it is satisfied

Tp(jw)”
[~ Wp(’wm 4)1<0

It is worth to note that conditions 1 and 3 are only
sufficient to guarantee robust performance.

Given the uncertain system of Figure 2, we will con-
sider the problem of obtaining the static prefilter P
that assures the optimal robust performance against
either LTI or LTV structured uncertainties A. This ob-
jective is achieved in the LTV cases with an arbitrary
degree of approximation through a convex optimization
problem as it is treated in sections 3.1 and 3.2.

Despite of the fact that there are no available com-
putable conditions that exactly characterize robust per-
formance in the LTI case, we can synthesize a reason-
ably good approximation by minimizing the index y
subject to the satisfaction of conditions 1 or 3. This is
the topic we discuss in sections 3.3 and 3.4.

3 Main Results

The transfer function TP (s) is given by

‘p(s)’[+-l-==] (7)
where the matrices (7, L, H, N result of stacking the
corresponding matrices in (1). When we will consider
the 7-t2performance we will restrict ourselves to a G(s)
strictly proper, i.e L = O, H = O and N = O. These
assumptions can be relaxed in some extent at the cost
of a higher complexity in the formulae.

It can be shown that

where

[++ ‘l(S)=[+-+]To(s) = ~ ~
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‘p(s) = [ To(s) ‘1(s)+ ‘2(s)P ] (8)
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T2(S) = : ;

3.1 ?&, LTV case
Following proposition gives us a convex formulation for
condition 2.

Proposition 1 : Given -y>0, condition 2 is satisfied
if and only if there exists a symmetn”c W ~ Rnxn,
Z E X and P-E Rduxd’ such that W >0 and

[

AW+ WA’ BZ E+MP Wc’
ZB’ –z o ZL’

1(E+ MP)’ O –72 I (H+ ivP)’ <0

Cw
[1

LZ H+NP – ; ;

(9)

Proof :

[1

Xo
Let us denote Q ~ o ~ .

By applying the Bounded Real Lemma ( see [13] ) con-
dition 2 is equivalent to the existence of P E Rdu ‘d”
and symetric matrices Xl >0, X

[

X/A + A’X/
Q-l[ B -(-l(E+MP) ]’X/

QC

C’Q

c X such that:

Xi[ B Y-l(E+MP) ]Q-
–I

Q[ L y-l(H+NP) ]Q-l

1
. . . JQ-l[ L ~-@+NP) ]’Q <0

–I

By left and right multiplying by

[

x; 1

0 Q!, :

00 Q-1
1

and by denoting
Wrgx:l

we have

[

AW + WA’ [ B y-l(E+MP) ]Q-2
Q-2[ B 7-l(E+MP) ]’ _Q-2

Cw [ L Y-’(H + NP) ]Q-2

Wc’

. ..

1

Q-2[ L ~-l(H+IVP) ]’ <0
_Q-2

By denoting Z 2 X-2,

[1
Q-2= : :

and expression (9) follows in a direct manner. •1

Note that expression (9) represents an LMI constraint
on Y2, W, Z and P. The optimum prefilter can be
obtained with the help of a standard algorithm for the
minimization of a linear objective subject to an LMI
constraint.
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3.2 X2, LTV case
n LMI condition for robust 7i2 performance in the
resence of LTV uncertainties can be found in [6]. The
roposition presented in this section is a straightfor-
ard application of this result. The proof is omitted.

roposition 2 : Given y >0, condition 4 is satisfied
f and only if there exists P E RdUxdr, X ● X, her.

mitian n x n matrices P_, P+, and Z E RdTxd’ such
hat

trace(Z) < ‘y2

P->o

[

AP- + P-A’ + BXB’ P-c’

cP_
[ 11

Xo<o.
01

[

AP+ + P+A’ + BXB’ P+c’

CP+
[ 11

Xo<o—
01

[

z

1

(E+ A4P)’ >0
E+MP P+ – P_

(lo)

he optimum static prefilter can be obtained as the
olution of a finite dimensional convex problem with
he help of proposition 2.

.3 Iim, LTI case
e will derive an auxiliary lemma that we will use

ater. Let us define the matrix function
: R x X x @ x I@xdr - C(2dr+dwlx(zdr+dw J

Iqw, Y(L/J), @(LLJ),P) :

[

[1

Y(u) o
To(jco)Y(Lo)To(jw)* – o ~ T, (jw) + T’2(jw)P

(T, (.W) + T2(jLJ)f’)* –Q(w) 1
(11)
emma 1 : The following sentences are equivalent:
i) There exist X(U) E X, P e Rduxdr and O(w) E @
such that for all w

Tp(jw)*
[x$) :ITP(’W)- [X$) L] ‘0

(12)
ii) There exist Y(w) E X, ~(w) E @ and P ~ Rdu’xd;
such that for all w it is satisfied

w(w, Y(w), @(w), P) <0 (13)



Proof:
For clarity, all dependence on frequency will be
dropped.

By left and right multiplying condition i) by the matrix

[X-* 01

[ o @-* J

we have

[xi’:$IT’[f ~lT’[xi’ :+1-’<0

Thus

‘{[~’ W[xi+ :$1}<1

Equivalently

‘p[x~’ Jb-[x;’ :1<0 ’14)

By defining Y(w) S X(w)- 1 and by using expression
(8) in (14):

[1

Yo
TIJYT: + [Tl +T2P]Q-l[TI +T2P]* – o ~ <0

Then, condition ii) follows from a direct application of
the Schur’s complement ( see [13] ). ❑

Note that expression (13) define a convex constraint
on Y(u), O(w) and P. This constraint is an infinite
dimensional ( parameterized by w ) LMI.

A particular case of our interest is comprised in the
following corollary:

Corollary 1 : Given y > 0, there exists a matrix
function X(w) E X and P E Rduxd” such that for all
w it is satisfied

Tp(jw)”
[x$) UTP(’W)-[ X$) A]<o
(15)
if and only if there exist Y(w) G X and P c Rdu’xd;
such that

W(w, Y(w), #1, P) <0 (16)

In order to improve the robust ‘1-f~ performance against
LTI uncertainties, we can minimize y subject to con-
dition 1 holds. Corollary 1 gives us a convex formula-
tion for condition 1 which will be useful for solving this
problem. So, the optimum static feedforward action P
may be obtained by solving the following optimization
problem:
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Problem 1:
min ~

Y(w),y,P

subject to
W(U, Y(U),721, P) <0

for all u.

Comments on the computational characteristics of this
problem will be made in section 4.

3.4 ?f2, LTI case
An analogous discussion involving condition 3 and
lemma 1 leads us to formulate the following problem
in order to design for robust ?t2 performance against
LTI uncertainties:

I
Problem 2:

/

+m
min trace(~(w))~

Y(ld),@(w),P _@

subject to
w(u, Y(w), @(u), P) <0

for all w.

4 Computational issues and possible
extensions

(17)

Two optimization problems were formulated in the pre-
vious section which allow us to compute the solution for
the robust synthesis against LTI uncertainties. Both
are convex, infinite dimensional problems. In order to
solve these problems it is necessary to turn them into
finite dimensional LMIs for which efficient algorithms
are available [10].

It is always possible to select a finite set of basis func-
tions and restrict our search to the corresponding finite
dimensional subspace generated by the span of these
functions, see e.g. [11].

Other alternative approach is based on the frequency
domain and it consists of gridding the frequency axis by
considering the points wo . . .WN. A finite dimensional
approximation to Problem 1 is
min -y
Ye,..., YN,~, P

subject to

W(wi, Yi,7’21, P)<0 i= O). ... N

where Yi E X are structured, constant matrices. This
problem is convex and it can be efficiently solved.

Some special considerations must be made about the
cost function of Problem 2. It is necessary to con-
sider a support interval [WO,WN] such that trace@]
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is neglected for all w out of this interval. The support
interval can be estimated from engineering considera-
tions, or as a result of a brief iterative process. Then,
the integral in Problem 2 may be discretized and this
problem may be approximated w

min EftTUCe[@’~](Wj – Wi_I)
Y.,..., YN,@o,@N,P@N,P

subject to

V(wi, Yi, @i, P)<O i= O,..., N

where Yi E X and @i E @ are constant matrices.

These approaches offer no hard guarantees since that a
“water bed” behavior is possible if an inadequate set
of points is considered. However, it seems a valuable
design method when it is accompanied with engineering
judgement in selecting the grid points.

If we do not restrict our attention to static prefilters
and we consider the class of dynamic prefilters P(s)
with arbitrary order, the extension of the results is pos-
sible. The convexity of problems 1 and 2 holds for a
prefilter P = P(ju). Similar conditions for the LTV
cases can be obtained by restricting X(w) in problems
1 and 2 to be constant. The optimum P(s) can be
recovered through an interpolation procedure in the
frequency domain taking care to preserve the stability
properties of the prefilter itself. The approach of the
basis functions also provide a viable synthesis method-
ology. Current research efforts are directed to compare
static vs. dynamic prefilters, and these techniques with
the classical robust synthesis methods.

5 Conclusions

An extensive collection of robust synthesis problems for
static prefilters was presented. These allows us to de-
sign the optimal static prefilter for robust performance
against LTI or LTV structured uncertainties when ei-
ther the llz or % norm are adopted as performance
index. All of these problems were shown to be convex
ones and they fall into the scope of well known op-

timization algorithms. All of them dispense with the
D – K iteration which seems to be the general rule for
robust synthesis problems.
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