
Tesis de Doctorado en Informática

Systolic Genetic Search,
A Parallel Metaheuristic for GPUs

Martín Pedemonte

Director de Tesis: Prof. Enrique Alba Torres
Co-Director de Tesis: Prof. Francisco Luna Valero
Director Académico: Prof. Héctor Cancela

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Setiembre 2017

“Life is what happens to you,
while you’re busy making other plans”

John Lennon, Beautiful Boy (Darling Boy)

To Juan Pablo and Isabel, two by-products of this thesis.

Agradecimientos

Finalmente ha llegado el día y el Doctorado está terminando. Este momento nunca hubiera
sido posible sin la colaboración de un conjunto de personas, que me apoyaron a lo largo de
este proceso, a las que quiero expresar mi agradecimiento.

En primer lugar, quiero agradecer a mis directores de Tesis Enrique y Paco por su guía
académica, su aporte a este trabajo, y la confianza en mí y en mi trabajo. También agradezco
a Héctor, quien fue mi director académico, por su ayuda y su estímulo.

A Pablo y Ernesto por aportarme otras perspectivas, por los intercambios de ideas y por
sus valiosos comentarios que contribuyeron con este trabajo. A Eduardo por sus sugerencias
e ideas para el diseño de una nueva grilla.

Agradezco a mi compañera Leonella por su apoyo incondicional y su paciencia infinita,
y también por haberme facilitado las cosas para que pudiera dedicarle tiempo a esta tesis.
También agradezco a mis hijos Juan Pablo e Isabel por todos los ratos que les tuve que robar.
A mi madre Graciela y a mi hermano Gerardo por su continuo aliento y por su cariño.

También agradezco a mis compañeros de la sala 048 del INCO por el buen ambiente de
trabajo que hemos creado y a los integrantes del grupo NEO de la UMA por el buen rollo y
por tratarme como uno más.

Por último agradezco a aquellas instituciones que brindaron soporte económico para
realizar tareas en el marco de esta investigación. En particular, a la Agencia Nacional
de Investigación e Innovación que a través del fondo María Viñas financió el proyecto
“Metaheurísticas paralelas en GPU”, y a la RED CYTED - CADING (Computación de Alto
Desempeño en Ingeniería), al PEDECIBA Informática y a CSIC que financiaron parcialmente
pasantías, asistencias a congresos y compras de equipamiento.

Abstract

The use of Graphics Processing Units (GPUs) for general purpose computing has experienced
a tremendous growth in recent years, based on its wide availability, low economic cost and
inherent parallel architecture, as well as on the emergence of general purpose programming
languages that have eased the development of applications onto this parallel computing
platforms. In this context, the design of new parallel algorithms that profit from the GPUs
platform is certainly a promising and interesting research line.

Metaheuristics are stochastic algorithms which are able to provide optimization problems
with very accurate (many times, optimal) solutions in a reasonable amount of time. However,
as many optimization problems involve tasks demanding large computational resources,
and/or problem instances in today’s research are becoming very large, even metaheuristics
may be highly computationally expensive. In this situation, parallelism comes out as a
successful strategy for speeding up the search of those kind of algorithms. Parallel meta-
heuristics do not only allow to reduce the runtime of the algorithms, but also often improve
the quality of the results obtained by traditional sequential algorithms.

Although the use of GPUs has also represented an inspiring domain for the research
in parallel metaheuristics, most previous works were aimed at porting existing family of
algorithms onto this new kind of hardware. As a consequence, many published material is
targeted to show the time savings of running different parallel types of metaheuristics on
GPUs. In spite of this considerable work on the parallelization of metaheuristics in GPUs,
there are few novel ideas for designing new algorithms and/or parallel models that explicitly
exploit the high degree of parallelism available in modern GPU architectures.

This thesis addresses the design of an innovative proposal of a parallel optimization
family of algorithms, called Systolic Genetic Search (SGS), that merges ideas from the fields
of metaheuristics and systolic computing. SGS, as well as systolic computing, are inspired
by the same biological phenomenon: the systolic contraction of the heart that makes possible
blood circulation. In SGS, solutions circulate synchronously through a grid of processing
cells. When two solutions meet in a cell, adapted evolutionary operators are applied to
generate new solutions that continue moving through the grid. The implementation of this

viii

new proposal takes special advantage of the specific features of the massively parallel GPU
platforms.

An extensive experimental analysis, which considers several classical benchmark prob-
lems and two real-world problems from the Software Engineering field, shows that the newly
proposed algorithm is highly effective, finding optimal or near optimal solutions in short
execution times. Moreover, the numerical results obtained by SGS are competitive with the
state-of-the-art results for the two real-world problems also targeted in this PhD thesis. On
the other hand, the parallel GPU implementation of SGS has achieved a high performance,
obtaining a large runtime reduction from the sequential implementation and showing that it
scales properly on instances of increasing size.

A theoretical analysis of the search capabilities of SGS has been also performed for
understanding how some aspects of the behaviour of the algorithm affect the numerical
results of SGS. This analysis gives an important insight in the behavior of SGS that can be
used to improve the design of future variants of the algorithm.

Keywords: Evolutionary Algorithms, Systolic Computing, Parallel Metaheuristics, GPU,
Search-Based Software Engineering.

Resumen

La utilización de unidades de procesamiento gráfico (GPUs) para la resolución de problemas
de propósito general ha experimentado un crecimiento vertiginoso en los últimos años,
sustentado en su amplia disponibilidad, su bajo costo económico y en contar con una
arquitectura inherentemente paralela, así como en la aparición de lenguajes de programación
de propósito general que han facilitado el desarrollo de aplicaciones en estas plataformas. En
este contexto, el diseño de nuevos algoritmos paralelos que puedan beneficiarse del uso de
GPUs es una línea de investigación prometedora e interesante.

Las metaheurísticas son algoritmos estocásticos capaces de encontrar soluciones muy
precisas (muchas veces óptimas) a problemas de optimización en un tiempo razonable. Sin
embargo, como muchos problemas de optimización involucran tareas que exigen grandes
recursos computacionales y/o el tamaño de las instancias que se están abordando actualmente
se están volviendo muy grandes, incluso las metaheurísticas pueden ser computacionalmente
muy costosas. En este escenario, el paralelismo surge como una alternativa exitosa con el fin
de acelerar la búsqueda de este tipo de algoritmos. Además de permitir reducir el tiempo de
ejecución de los algoritmos, las metaheurísticas paralelas a menudo son capaces de mejorar
la calidad de los resultados obtenidos por los algoritmos secuenciales tradicionales.

Si bien el uso de GPUs ha representado un dominio inspirador también para la investi-
gación en metaheurísticas paralelas, la mayoría de los trabajos previos tenían como objetivo
portar una familia existente de algoritmos a este nuevo tipo de hardware. Como consecuencia,
muchas publicaciones están dirigidas a mostrar el ahorro en tiempo de ejecución que se
puede lograr al ejecutar los diferentes tipos paralelos de metaheurísticas existentes en GPU.
En otras palabras, a pesar de que existe un volumen considerable de trabajo sobre este tópico,
se han propuesto pocas ideas novedosas que busquen diseñar nuevos algoritmos y/o modelos
de paralelismo que exploten explícitamente el alto grado de paralelismo disponible en las
arquitecturas de las GPUs.

Esta tesis aborda el diseño de una propuesta innovadora de algoritmo de optimización
paralelo denominada Búsqueda Genética Sistólica (SGS), que combina ideas de los campos
de metaheurísticas y computación sistólica. SGS, así como la computación sistólica, se
inspiran en el mismo fenómeno biológico: la contracción sistólica del corazón que hace

x

posible la circulación de la sangre. En SGS, las soluciones circulan de forma síncrona a
través de una grilla (rejilla) de celdas. Cuando dos soluciones se encuentran en una celda
se aplican operadores evolutivos adaptados para generar nuevas soluciones que continúan
moviéndose a través de la grilla (rejilla). La implementación de esta nueva propuesta saca
partido especialmente de las características específicas de las GPUs.

Un extenso análisis experimental que considera varios problemas de benchmark clásicos
y dos problemas del mundo real del área de Ingeniería de Software, muestra que el nuevo
algoritmo propuesto es muy efectivo, encontrando soluciones óptimas o casi óptimas en
tiempos de ejecución cortos. Además, los resultados numéricos obtenidos por SGS son
competitivos con los resultados del estado del arte para los dos problemas del mundo real
en cuestión. Por otro lado, la implementación paralela en GPU de SGS ha logrado un
alto rendimiento, obteniendo grandes reducciones de tiempo de ejecución con respecto a la
implementación secuencial y mostrando que escala adecuadamente cuando se consideran
instancias de tamaño creciente.

También se ha realizado un análisis teórico de las capacidades de búsqueda de SGS
para comprender cómo algunos aspectos del diseño del algoritmo afectan a sus resultados
numéricos. Este análisis arroja luz sobre algunos aspectos del funcionamiento de SGS que
pueden utilizarse para mejorar el diseño del algoritmo en futuras variantes.

Palabras clave: Algoritmos Evolutivos, Computación Sistólica, Metaheurísticas Paralelas,
GPU, Ingeniería de Software Basada en Búsqueda.

Table of Contents

List of Figures xiii

List of Tables xv

Nomenclature xix

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 4
1.3 Contributions . 6
1.4 Structure of the Document . 6

2 Systolic Computing and Graphics Processing Units 9
2.1 Architecture of Parallel Computers . 9
2.2 Systolic Computing . 12
2.3 Graphics Processing Units . 14

2.3.1 CUDA (Compute Unified Device Architecture) 15
2.3.2 GPUs Used in this PhD Thesis . 17

3 Evolutionary Algorithms and Their Parallelization 19
3.1 Metaheuristics . 20
3.2 Evolutionary Algorithms . 21

3.2.1 Genetic Algorithms . 22
3.3 Parallel Evolutionary Algorithms . 25

4 Systolic Genetic Search 29
4.1 Systolic Genetic Search Algorithm . 30
4.2 GPU Implementation of SGS . 32
4.3 Related Work . 35

xii Table of Contents

4.4 Methodology for the Evaluation of the Numerical and Computational Perfor-
mance . 36

5 Articles Supporting this PhD Thesis 39
5.1 Articles Compiled in this PhD Thesis . 39
5.2 Other Peer-reviewed Publications . 41

5.2.1 Proceedings of International Conferences 42
5.2.2 Book Chapters . 43

6 Conclusions 45
6.1 Concluding Remarks . 45
6.2 Open Research Lines and Future Work . 47

References 51

Appendix A Systolic Genetic Search, a Systolic Computing-Based Metaheuristic 61

Appendix B A Systolic Genetic Search for Reducing the Execution Cost of Regres-
sion Testing 85

Appendix C A Theoretical and Empirical Study of the Trajectories of Solutions
on the Grid of Systolic Genetic Search 103

List of Figures

2.1 Flynn’s Taxonomy. 11
2.2 Architecture of a one dimensional systolic system. 12
2.3 2-dimensional systolic arrays. 13
2.4 GeForce GTX 680 Architecture. 16

3.1 Single Point Crossover. 24
3.2 Double Point Crossover. 24
3.3 Master-slave model for EAs. 27
3.4 Island model for EAs. 27
3.5 Cellular model for EAs. 27

4.1 Ingoing and outgoing solutions from cell at position(i, j). 30
4.2 Data organization on the GPU. 33
4.3 Threads organization. 34

List of Tables

2.1 Main features of GPUs used in this thesis. 18

Nomenclature

Acronyms / Abbreviations

ACO Ant Colony Optimization

ALU Arithmetic Logic Unit

API Application Programming Interface

ARM Advanced RISC Machine

COW Clusters Of Workstations

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DPX Double Point Crossover

EA Evolutionary Algorithm

ES Evolution Strategies

FPGA Field-Programmable Gate Array

GA Genetic Algorithm

GPC Graphics Processing Cluster

GP Genetic Programming

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphic Processing Unit

GRASP Greedy Randomized Adaptive Search Procedure

xviii Nomenclature

HPC High Performance Computing

ILS Iterated Local Search

KP Knapsack Problem

MIMD Multiple Instruction streams - Multiple Data streams

MISD Multiple Instruction streams - Single Data stream

MMDP Massively Multimodal Deceptive Problem

MPMD Multiple Programs - Multiple Data streams

MPP Massively Parallel Processors

NP Non-deterministic Polynomial-time

NRP Next Release Problem

PEA Parallel Evolutionary Algorithm

PGP Pipelined Genetic Propagation

PSO Particle Swarm Optimization

SA Simulated Annealing

SBSE Search-Based Software Engineering

SGS Systolic Genetic Search

SIMD Single Instruction stream - Multiple Data streams

SIMT Single-Instruction Multiple-Threads

SISD Single Instruction stream - Single Data stream

SM Streaming Multiprocessor

SNS Systolic Neighborhood Search

SPMD Single Program - Multiple Data streams

SPX Single Point Crossover

TSMP Test Suite Minimization Problem

Nomenclature xix

TS Tabu Search

VLSI Very-Large-Scale Integration

VNS Variable Neighborhood Search

Chapter 1

Introduction

1.1 Motivation

One of the most important open questions in computation theory is whether the complexity
class P is equal to complexity class NP. The complexity class P is the set of decision
problems that can be solved in polynomial time by a deterministic Turing machine, while
the complexity class NP contains the problems that can be solved in polynomial time by a
non-deterministic Turing machine [6]. Equivalently, the NP class can be conceptualized as
the set of problems verifiable in polynomial time, i.e., any given instance of the problem can
be checked if it is a solution to the problem or not in polynomial time. In other words, P
problems can be solved efficiently, while NP problems can be verifiable efficiently.

From these definitions, it is possible to conclude that P ⊆ NP, but the question “Is P = NP?”
has not been answered in more than 40 years [24]. P ̸= NP is nowadays the most important
conjecture of the theory of computation. This conjecture has many practical implications for
solving optimization problems, since many optimization problems belong to the NP-hard
class. A problem is NP-hard when all NP problems can be reduced to it in polynomial time.
That is, NP-hard problems are as hard as any problem in NP.

When a problem belongs to the class P, i.e., there is a polynomial time algorithm for its
resolution, it is considered that it can be efficiently solved in practice. On the other hand,
when a problem belongs to the NP class, and therefore there is no such algorithm, it is
considered that the problem can not be efficiently resolved when instances of increasing
size are used. As a consequence, the resolution of NP-hard optimization problems [39] in
reasonable times is limited in practice due to their high computational complexity.

In this scenario, metaheuristic methods have emerged as an alternative since, although
they do not guarantee to obtain an optimal solution in many cases, they are able to find very
accurate solutions efficiently. Metaheuristics [14, 43, 111] are general schemes of heuristics

2 Introduction

that make it able to address a wide range of problems, adapting to the particularities of each
one. Evolutionary Algorithms (EAs) are one of the most popular types of metaheuristics.
EAs explore the search space evaluating candidate solutions of the optimization problem at
hand. During the exploration, EAs generate new candidate solutions in the decision space.
This process is guided by a metric related to the objective space, which is known as the
fitness function.

Research in metaheuristics is nowadays consolidated, motivated by the excellent results
obtained in their application to the resolution of problems in search, optimization, and
machine learning [46, 111]. However, as the problem instances in today’s research are
becoming very large, even metaheuristics may be highly computationally expensive.

The design of parallel metaheuristics [1], due to the increase on the capabilities of modern
hardware architectures, is a natural line of research with the goal of substantially reducing the
runtime of the algorithms, specially when solving problems of a high dimension or severely
restricted, or when the time available for solving the problem is very limited.

Parallel metaheuristics often exploit new search patterns that are different from traditional
sequential algorithms. The truly interesting point is that parallel metaheuristics not only
speed up the runtime of the algorithms, but also allow to improve the quality of results
obtained by traditional sequential algorithms due to their enhanced search engine [1]. As
a consequence, research in parallel metaheuristics has substantially grown in the last two
decades.

In the last ten years, computing platforms have undergone revolutionary changes [52].
Parallel hardware is no longer an infrastructure reserved for a few research laboratories,
but it is widely available for the general public. On the one hand, the architecture of CPU
processors has changed, and are now multi-core, i.e., a single computing unit composed
of at least two independent processors. As a consequence, modern desktop computers
are currently quad-core or octa-core. On the other hand, the parallel hardware that can
be used for computation has diversified notably. Nowadays, it is possible to use parallel
computing devices like multi-core processors with ARM architecture [38] for general purpose,
which have become massively available in smart cell phones and tablet computers, as well
as hardware accelerators, like Graphics Processing Units (GPUs) [40, 63] and Xeon Phi
processors [57]. As a consequence, the design of parallel algorithms able to profit from the
new capabilities available in modern hardware is certainly indispensable.

It is clear that the computing platform used for execution is a crucial aspect in the
implementation of parallel algorithms in general and of parallel metaheuristics in particular.
The hardware platforms that are traditionally available, such as supercomputers or clusters
with a large number of CPUs, imply a very high economic cost caused by the equipment

1.1 Motivation 3

cost, the building cost associated to the equipment installation and the administration, and
maintenance cost of such infrastructure. A more cost-effective alternative is represented
by multi-core processors but they only have a relatively small number of processing units.
In contrast, GPUs are today an extremely appealing option for their computing power, as
well as for their economic cost and energy consumption, specially in countries like Uruguay,
where the access to large computing infrastructures is restricted due to economic reasons.

General-purpose computing on graphics processing units, which is known as GPGPU,
has experienced a tremendous growth in recent years, based on its wide availability, low
economic cost, low energy consumption and inherent parallel architecture, and also on the
emergence of general purpose programming languages, like CUDA [92] and OpenCL [40].
This fact has also motivated many scientists from different fields to take advantage of the
use of GPUs in order to tackle general problems in various fields [93] like numerical linear
algebra [33], databases [17], model order reduction [9], scientific computing [108], etc.

The use of GPUs have also represented an inspiring domain for the research in parallel
metaheuristics. As might be expected, the first works on this subject have gone in the
direction of taking a standard existing family of algorithms and porting them to this new kind
of hardware [66, 71]. Thus, many results show the time savings of the implementation of
master-slave [78], island [122, 123], and cellular [109, 114] models of parallel metaheuristics
on GPU. The metaheuristics that have been mainly used for such implementation on GPUs
are Genetic Programming [50, 71–73, 79] and Genetic Algorithms [78, 123], but also other
types of techniques like Ant Colony Optimization [21, 22, 112], Differential Evolution [113],
Particle Swarm Optimization [124], etc.

In spite of this considerable work in the use of GPUs for reducing the execution time
of metaheuristics, the changes in modern hardware like the GPUs, which are massively
parallel and have thousands of cores, were not matched by changes in the conception of the
development of parallel metaheuristics. As a consequence, there are few innovative proposals
for the design of new algorithms and/or parallelism models that exploit the particular features
and massive parallelism offered by the architecture of the GPU.

GPUs can be seen as a revival of the concept of SIMD machines, opening the door to a
vast existing knowledge on massively parallel and vectorial computers ready to be used to
create new generations of unseen numerical algorithms. And this merits a different approach,
consisting in creating new fresh algorithms targeted to this architecture. For this reason, the
course of action followed in this work is different, and consists in using Systolic Computing
as a source of inspiration for designing a new optimization algorithm.

The concept Systolic Computing was developed at Carnegie-Mellon University [67, 69].
The basic idea focuses on creating a network of different simple processors or operations

4 Introduction

that rhythmically compute and pass data through the system. Systolic computation offers
several advantages, including simplicity, modularity, and repeatability of operations. This
kind of architecture also offers transparent, understandable and manageable, but still quite
powerful parallelism. However, this architecture had difficulties in the past, since building
systolic computers was not easy and, especially, because programming high level algorithms
on such a low-level hardware was hard, error prone, and too manual. Now, the behavior of
systolic computing can be mimicked by software on the GPUs, avoiding such problems and
getting only the advantages.

1.2 Objectives

This thesis deals with the study of the use of GPUs as a general-purpose computing platform,
in particular for the implementation of parallel metaheuristics applied to the resolution of
optimization problems. The main goal of this thesis lies in designing and proposing new
parallel metaheuristic techniques and/or new parallel models that explicitly exploit the high
degree of parallelism available in modern GPU architectures. The objective is to develop
algorithms that can profit from the characteristics of the GPU architecture and that they
are both effective and efficient, i.e., that are able to obtain near optimal solutions in short
execution times.

To achieve the main purpose of this thesis, the work is divided into several specific
objectives that are summarized as follows:

Design of an innovative proposal of parallel metaheuristics on GPU for solving opti-
mization problems: The source of inspiration for designing a new optimization algorithm
comes from systolic computing. In particular, the new optimization algorithm proposed
combines the use of a systolic architecture, in which the solutions circulate through the cells,
with the application of adapted evolutionary operators.

Develop an efficient implementation on GPU of the newly proposed optimization al-
gorithm: The implementation of the new proposal has to take special advantage of the
specific features of the massively parallel GPU platform.

Validation of the optimization algorithm proposed: In order to validate the new opti-
mization algorithm, an experimental evaluation has been conducted on classical benchmark
problems to asses both the search capabilities of the algorithm and the parallel performance
of the algorithm when deployed on a GPU card. Since GPUs architectures have significant

1.2 Objectives 5

changes in each generation, it is desirable that the experimental evaluation involves GPUs
from different generations and with different features.

In-depth study of one real-word problem: As part of this work, a real-world problem
has been tackled in-depth as an application case of the newly proposed algorithm. In
particular, the use of metaheuristics for solving optimization problems that arise in the
Software Engineering field, which is known as Search-Based Software Engineering (SBSE)
[51], has gained great interest among researchers. For this reason, it is attractive to address a
real-world problem from this field.

Study of theoretical properties of the newly proposed optimization algorithm: Be-
sides the experimental evaluation, it is also important to understand how the features of the
algorithm affect the numerical results obtained by the new optimization algorithm. For this
reason, a theoretical study has been conducted for analyzing some aspects of the behaviour
of the algorithm if this PhD is to be a solid contribution to the field.

In order to fulfill these objectives, the following stages have been followed. In the first
place, the features of the GPUs hardware platforms have been studied, as well as the state-
of-the-art in parallel metaheuristics implementation on GPUs, and in the implementation
of evolutionary algorithms using systolic computing devices. From this survey, the design
of a new algorithm is made, combining ideas from systolic computing and evolutionary
computation. The new algorithm is named Systolic Genetic Search (SGS) since it uses the
solution representation and the evolutionary operators of the genetic algorithms. A direct
antecedent of SGS is Systolic Neighborhood Search (SNS) [115, 116], which also uses a
systolic architecture but with a more simple search strategy than SGS. Then, a first empirical
analysis of the proposed algorithm is conducted using as a testbed two classical benchmark
problems and a real-world problem from the field of software engineering. From the feedback
of the first experimental evaluation, the original design of the new algorithm is expected to
be adjusted.

An analysis of relevant real-world problems from the field of software engineering is
conducted in order to identify and select an application case of the newly proposed algorithm.
This problem is used for a second experimental evaluation of SGS. This evaluation includes
the experimental comparison with algorithms previously proposed in the literature that are
the state-of-the-art for the problem under consideration. Finally, since the behavior of the new
algorithm proposed has been studied only empirically, a particular aspect of the algorithm

6 Introduction

(the flow of solutions) is theoretically and experimentally analyzed in detail, yielding valuable
lessons that will undoubtedly be useful to consolidate the proposed algorithm.

1.3 Contributions

The contributions of this thesis are related to the study of the possibilities offered by new
hardware platforms, like the GPUs, in order to design new algorithms that are both effec-
tive and efficient for the resolution of optimization problems. These contributions can be
summarized in the following points:

• Design of the new parallel metaheuristic algorithm Systolic Genetic Search, specially
tailored for GPU platforms, for solving optimization problems based on hybridizing
ideas of genetic algorithms and systolic computing.

• Efficient GPU implementation of SGS able to both reduce the runtime of the algorithm
significantly and scale properly on instances of increasing size.

• Exhaustive and detailed analysis of the numerical efficiency and parallel performance
of SGS in both benchmark and real-world problems.

• Application of SGS to address two real-world problems from the field of Software
Engineering, namely the Next Release Problem [8] and the Test Suite Minimization
Problem [121], with competitive results to the state-of-the-art.

• Theoretical analysis of the search capabilities of SGS based on the trajectories de-
scribed by the solutions on the grid. This analysis gives an important insight into the
behaviour of the algorithm that can be used in future works to improve the design of
the algorithm.

1.4 Structure of the Document

This PhD thesis is structured as a compendium of articles instead of a traditional monograph.
The thesis is supported by three articles that have been published in international journals.
This document is divided into two parts. The first part, which is composed by six chapters,
provides general background on the subject of this thesis, introduces the main contributions
of this work, a summary of each one of the three articles, and the bibliography. The second
part is composed by three appendixes that correspond to the three articles supporting this
PhD thesis.

A brief introduction to each chapter is provided next:

1.4 Structure of the Document 7

Chapter 1 serves as introduction to the subject of the thesis. It provides the motivation
and the objectives of the thesis and the outline of the document.

Chapter 2 gives background knowledge on computing platforms that it is indispensable
for understanding the algorithm proposed in this thesis. It describes the fundamental ideas
of Systolic Computing, which is the source of inspiration for Systolic Genetic Search, and
the architecture of the GPUs, which is the platform for which the proposed algorithm is
conceived.

Chapter 3 provides elementary notions of metaheuristics that support the rest of this
work. It describes Evolutionary Algorithms, and Genetic Algorithms in particular, which are
closely related to the proposal of Systolic Genetic Search. It also presents the parallelization
strategies used for EAs and the population models that have emerged as a result of these
strategies.

Chapter 4 serves as a presentation of the Systolic Genetic Search algorithm proposed in
this thesis. It presents the fundamental aspects of the algorithm, as well as, the description
of its GPU implementation. The chapter also includes a brief discussion of related work
with similar ideas to the algorithm proposed and the methodology followed for analyzing the
experimental results of the algorithm.

Chapter 5 summarizes each one of the three articles that are the main outcomes of the
research of this PhD thesis. In addition to those articles that provide support for this thesis,
this chapter also presents other peer-reviewed publications that have also been produced in
this work.

Chapter 6 serves as a general conclusion of this thesis and establishes the lines of future
research.

Appendix 1 presents the article “Systolic genetic search, a systolic computing-based
metaheuristic” that has been published in Soft Computing journal. This article sets the
foundations of SGS algorithm.

Appendix 2 presents the article “A Systolic Genetic Search for reducing the execution cost
of regression testing” that has been published in Applied Soft Computing journal. In this
article, a real-world problem is tackled with SGS; the results obtained are not only relevant
for the SGS but also are relevant for the problem.

8 Introduction

Appendix 3 presents the article “A theoretical and empirical study of the trajectories of
solutions on the grid of Systolic Genetic Search” that has been published in Information
Sciences journal. This article provides a theoretical analysis on the trajectories described
by the solutions on the grid of SGS that offers a valuable insight on the behavior of the
algorithm.

Chapter 2

Systolic Computing and Graphics
Processing Units

Parallel computing is a high performance computing (HPC) technique in which several
processing units work simultaneously and coordinated, i.e., at the same physical instant, to
solve a common problem [80]. In this computational paradigm, a problem is divided into
several subtasks that can be computed independently and whose results are combined for
obtaining the result of the whole problem.

Since the implementation of parallel algorithms heavily relies on the features of the
computing platform used for execution, this chapter is devoted to introducing Graphics
Processing Units (GPUs), which are the parallel computing devices that are used in this work.
The rest of this chapter is organized as follows. The next section presents a description of
existing parallel computer architectures. Then, we introduce Systolic Computing, which is
the source of inspiration for the algorithm proposed in this thesis, namely Systolic Genetic
Search. Finally, the chapter ends with the description of the architecture of the GPUs.

2.1 Architecture of Parallel Computers

In the last ten years, parallel-capable hardware has turned into the dominant paradigm
in computer architecture [7]. Several taxonomies have been proposed to classify parallel
computers. The most commonly used was proposed by Flynn [36] and it is characterized by
considering independently the instruction and data streams. For both types of streams, the
taxonomy distinguishes according to the number of streams available between single and
multiple, thus determining four different categories. The characteristics of each category are
briefly described below:

10 Systolic Computing and Graphics Processing Units

• Single Instruction stream - Single Data stream (SISD): This category corresponds
to the traditional von Neumann architecture, which consists in a single processing
unit that has no parallelism in either the data or the instructions. An example of this
architecture is the traditional single uni-core processor that was massively available in
older PCs. The SISD architecture is shown in Figure 2.1a.

• Single Instruction stream - Multiple Data streams (SIMD): This category is character-
ized by having multiple processing units that execute the same instruction on different
data at the same instant of time. The processing units have no processing autonomy
and are centrally controlled. Originally, because of the constraints caused by synchro-
nism and data distribution, computers with this architecture were typically used for
purpose-specific applications [3]. Later, SIMD instructions were incorporated in the
instruction set of common PC processors, like Intel’s MMX, SSE and AVX instruction
set extensions to the x86 architecture. The SIMD architecture is shown in Figure 2.1b.

• Multiple Instruction streams - Single Data stream (MISD): This type of architecture
executes multiple instructions on a single data stream. It is a parallel architecture very
uncommon in practice. It can be used for implementing fault tolerance systems, where
each processing unit operates on the same data and the results obtained by each unit
have to be the same. In general, systolic arrays are usually classified into this category,
although, as it will be seen in Section 2.2, the classification of such devices is unclear.
The MISD architecture is shown in Figure 2.1c.

• Multiple Instruction streams - Multiple Data streams (MIMD): In the architectures of
this category, several processing units execute different instructions on different data at
any instant of time. The processing units are autonomous and the control is completely
decentralized. The MIMD architecture is shown in Figure 2.1d.

Several refinements to this classification have been proposed, taking into account aspects
that were not included in the original taxonomy.

The SIMD category can be subdivided between array processors and vector processors.
In array processors, each operation is performed in a single step over multiple data (the
elements of the vectors) at the same time. On the other hand, in vector processors, each
operation is performed in several consecutive steps over multiple data. Array processors are
based on the use of multiple ALUs, while vector processors use pipeline parallelism, in which
each stage of the pipeline works on a different element of the vectors, for implementing the
vectorial instructions.

The MIMD category can be subdivided into two subcategories, depending on whether
the memory is composed of a single address space or there are several different spaces. In

2.1 Architecture of Parallel Computers 11

Instruction Pool

D
a
t
a

P
o
o
l

PU

(a) SISD Architecture.

Instruction Pool

PU

D
a
t
a

P
o
o
l

PU

PU

PU

(b) SIMD Architecture.
Instruction Pool

D
a
t
a

P
o
o
l

PU PU

(c) MISD Architecture.

Instruction Pool

PU PU

D
a
t
a

P
o
o
l

PU

PU

PU

PU

PU

PU

(d) MIMD Architecture.

Fig. 2.1 Flynn’s Taxonomy.

multiprocessors, all processing units have access to the same memory space, so these devices
are also known as shared memory computers. The communication and synchronization of
processes is done through the reading and writing of the global memory. On the other hand,
in multicomputers, each processing units has a separate memory that can only be accessed by
the processor itself, without a global memory to the entire system. Multicomputers are also
known as distributed memory machines. In this case, the communication and synchronization
of processes is made through the explicit passage of messages between the processing units.
Examples of distributed memory include Clusters of Workstations (COW) and Massively
Parallel Processors (MPP).

Another alternative for subdividing the MIMD category is to distinguish whether all
processing units execute the same program or not. In particular this refinement distinguishes
between the Single Program Multiple Data streams (SPMD) and the Multiple Programs
Multiple Data streams (MPMD) paradigms. In SPMD, processing units run the same program
on multiple parts of the data, but do not have to be executing the same instruction at the same

12 Systolic Computing and Graphics Processing Units

time [25, 26]. On the other hand, in MPMD, the processing units are running at least two
independent programs at the same time.

2.2 Systolic Computing

The idea of Systolic Computing emerged in the late 70’s [58, 67, 69, 70]. It was conceived
as a general methodology for mapping high-level computations into low-level hardware
structures, specially for the design of high-performance special-purpose computer systems
used for off-loading computations from a general-purpose computer. It is a design style that
was proposed for the design and implementation of Very-Large-Scale Integration (VLSI)
systems [81], which combine electronic components in an integrated circuit or microchip.

The basic idea of systolic computing consists in organizing the processing units using a
systolic architecture. In a systolic architecture, the processing units lie in a network connected
in a simple and regular fashion allowing data flow between neighboring units. The network is
also connected to the computer memory. Data rhythmically flows from the computer memory
through the units before it returns to memory. The units, which are also known as cells, are
capable of performing simple operations to data, for instance the inner product of the inputs
of the unit [69], that is then passed through the next unit in the topology. The behaviour of
systolic computing systems resemble the systolic contraction of the heart that makes possible
that ventricles eject blood rhythmically. Each processing unit can be seen as a heart that
regularly pumps data in and out, performing a simple operation over the data in order to
maintain a regular flow of data [69]. Figure 2.2 shows the architecture of a one dimensional
systolic computing system.

Memory

PU PU PU PU PUPU

Fig. 2.2 Architecture of a one dimensional systolic system.

The architecture of systolic computation offers several advantages. The advantages in-
clude a simple and regular design, local communication between the cells, and the modularity
and repeatability of the operations computed by the cells. This architecture offers under-
standable and manageable, but still quite powerful parallelism through the use of pipelining

2.2 Systolic Computing 13

and multiprocessing. For this reason, the use of systolic architectures have transcended
from special-purpose implementations of algorithms on VLSI technology to general-purpose
systolic arrays using Field-Programmable Gate Array (FPGA) technology [58].

The one dimensional linearly connected architecture is the most common topology used
for systolic arrays. This architecture has been used for implementing, among others, the
computation of lineal polynomial GCD [16], the resolution of triangular linear systems [69],
and the computation of the Matrix-Vector multiplication [69].

Two-dimensional systolic arrays have also been proposed and extensively used, like the
orthogonally connected or type R architecture (e.g., used for the calculation of relational
database operations [68] and the implementation of dynamic programming algorithms [47]
and the transitive closure of graphs [47]), the hexagonally connected or type H architecture
(e.g., the calculation of the matrix multiplication [69], the LU-decomposition of a band matrix
[69], and the calculation of a band matrix-matrix multiplication [117]), and the rectangular
grid on a triangle or type T architecture (e.g., the solution of dense systems of linear equations
[15] and the calculation of matrix triangularization [42]). These architectures are shown in
Figure 2.3.

(a) Type R. (b) Type H. (c) Type T.

Fig. 2.3 2-dimensional systolic arrays.

It is a controversial issue in which category of the Flynn’s Taxonomy systolic arrays
should be classified. In general, systolic arrays tend to be classified as MISD, but it can
be argued that they are not part of that category since the processing units are not working
on the same data because data is transformed when it circulates through the units. Some
authors, like Johnson et al. [58], categorize systolic arrays as SIMD or MIMD. The SIMD
systolic arrays are characterized by executing the same instruction on all the processing units
on different data [58] but data streams do not maintain their independence as it happens
in traditional SIMD architectures. On the other hand, the MIMD systolic arrays execute
different programs on each of the cells [58] but they also do not seem to be completely well
classified by this category. In any case, none of the categories of the Flynn’s Taxonomy

14 Systolic Computing and Graphics Processing Units

captures the interconnection of the data flow between the processing units, which is one of
the key aspects of a systolic computing system.

2.3 Graphics Processing Units

Graphics Processing Units (GPUs) are computation devices originally designed for graphics
processing. The term GPU was coined by Nvidia in 1999, when the Nvidia GeForce 256
was launched on the market. The GeForce 256 was the first consumer-level video card that
implemented the entire graphics pipeline in hardware, i.e., it integrated the transformation
and lighting calculations in the hardware of the GPU instead of using the CPU for performing
such calculations. In consequence, the workload of the CPU is lightened and the CPU can
perform other computations while the graphics processing calculations are performed on the
graphic device.

Two important milestones in the design of the architecture of the GPUs should be
highlighted. The first one was the replacement of the fixed-function graphics pipeline by
programmable vertex shader units (to perform transformations and lighting operations on
vertices) and pixel shader units (to determine the final pixels color). The second one was the
adoption of the unified shader model in 2005/2006. In the unified shader model, the same set
of unified processing units is used for both vertex and pixel computation. This is considered
one of the most important breakthroughs in the design of these devices since it included for
the first time general-purpose cores in the GPU.

The architecture of GPUs follows a design philosophy that is radically different to CPU.
While GPUs are designed with the idea of devoting most of the transistors to computation, in
a CPU a large part of the transistors are dedicated to other tasks such as branch prediction,
out-of-order execution, etc. In consequence, current GPUs have a large number of small
cores and are usually considered many-core devices. The number of cores available in
modern GPUs is growing steadily and will undoubtedly continue to do so in the foreseeable
future. For instance, Nvidia has recently launched its new generation of GPUs with Pascal
microarchitecture [87, 88], with up to 3,584 CUDA cores at 1,480 MHz and a single precision
floating point peak performance of 10.61 TFlops (i.e., 1012 floating point operations per
second) in the GeForce GTX 1080 Ti. As a consequence, the number of threads that recent
GPUs can run in parallel is in the order of thousands and is expected to continue growing
rapidly; what makes these devices a very powerful platform for implementing massively
parallel algorithms.

Regarding the programming capabilities, the progress in the design of GPUs was not
initially accompanied by an advance in the software for programming these devices. The

2.3 Graphics Processing Units 15

shaders had to be written originally in assembly language, so the resulting programs were not
portable because there were several languages depending on the GPU models. An alternative
was to directly use computer graphics application programming interfaces (APIs), such as
OpenGL [61] or DirectX . Hence, this was an important limitation for the development of
general-purpose computing programs since the programmer had to do esoteric mappings
between data structures of the program and computer graphics datatypes. For this reason,
different higher level programming languages were developed to solve this problem, like
NVIDIA’s Cg [35], as well as languages following the stream processing computer program-
ming paradigm [59], such as Brook [18, 19]. However, each programming language was still
highly dependent on the GPU architecture, model, etc.

Finally, Compute Unified Device Architecture (CUDA) [63, 92] and OpenCL [62]
emerged as general-purpose programming languages in order to solve these drawbacks.
CUDA is the general framework that enables to use Nvidia’s GPUs for general-purpose
computing, while OpenCL is an open standard proposed by the Khronos Group for supporting
programming on heterogeneous platforms including CPUs, GPUs and FPGAs, among others.
These languages have enabled to unleash the power of GPUs for a wide range of users,
including researchers. They are a key aspect of the widespread adoption of these devices for
general-purpose computing.

Since in this work we use Nvidia’s GPUs, the next section describes the main features of
CUDA. OpenCL is rather similar to CUDA and the concepts, which are explained in the next
section about CUDA, can be mapped almost directly to OpenCL.

2.3.1 CUDA (Compute Unified Device Architecture)

CUDA is a general-purpose parallel computing platform and programming model [92]. The
cores of CUDA-enabled GPUs are organized in Streaming Multiprocessors (SMs) that are
grouped in Graphics Processing Clusters (GPCs). Figure 2.4a shows the block diagram of
the architecture of the GeForce GTX 680. This GPU has four GPCs, eight SMs, four global
memory controllers, and a 512KB L2 cache. Figure 2.4b presents the structure of each SM
of the GeForce GTX 680. Each SM is composed of 192 cores, which are usually known
as CUDA cores, totalling 1,536 cores in the whole GPU. The SMs also include four warp
schedulers, which are responsible of dispatching up to two instructions to the cores on every
clock cycle, and an on-chip memory that could be used as a L1 cache for global memory.

CUDA abstracts the GPU as a set of shared memory multiprocessors (MPs) that are able to
execute a large number of threads in parallel. Each MP follows the SIMT (Single-Instruction
Multiple-Threads) parallel programming paradigm [63, 80, 92]. SIMT is similar to SIMD but
in addition to data-level parallelism (when threads are coherent and are executing the same

16 Systolic Computing and Graphics Processing Units

(a) Block Diagram (taken from [86]). (b) SM (from [86]).

Fig. 2.4 GeForce GTX 680 Architecture.

instruction) allows thread-level parallelism (when threads are divergent and have to execute
different instructions). The thread-level parallelism is transparently achieved by CUDA using
masking and executing the different instructions in different clock cycles [80, 92].

CUDA provides an extension of the C/C++ programming language that acts as interface
to the CUDA parallel computing platform. CUDA allows to define C/C++ functions, called
kernels, that could be run in parallel on the GPU. When a kernel is called in CUDA, a large
number of threads are generated on the GPU. The group of all the threads generated by a
kernel invocation is called a grid, which is partitioned into blocks. The threads from a block
are executed concurrently on a single multiprocessor. There is no fixed order of execution
between blocks. If there are enough multiprocessors available on the GPU, they are executed
in parallel. Otherwise, a time-sharing strategy is used [92]. The blocks are divided for
their execution into warps that are the basic scheduling units in CUDA and consist of 32
consecutive threads.

Threads can access data on multiple memory spaces during their life time. CUDA
architecture has six different memory spaces: global memory, registers, shared memory, local
memory, constant memory and texture memory [92]. All the threads running on a GPU have
access to the same global memory on the card that is one of the slowest memories on the GPU.
However, access to global GPU memory is usually more than one order of magnitude faster
than data transfers between CPU and GPU. In fact, the transfers between CPU and GPU

2.3 Graphics Processing Units 17

are usually one of the most important bottlenecks on CPU-GPU heterogeneous computing.
Registers are the fastest memory available on the card but they are entirely managed by
the compiler. They are only accessible by each thread independently and the total memory
space for registers has a very limited size. Shared memory is almost as fast as registers
and it can be accessed by any thread of a block; its lifetime is equal to the lifetime of the
block. Each thread has its own local memory but is one of the slowest memories on the
card. Local memory is also entirely managed by the compiler. The compiler places variables
in local memory when register spilling occurs, i.e., the kernel needs more registers than
available. Constant memory is a read-only memory space for the device that is accessible
for all threads. Texture memory has similar features than the constant memory, but it is
optimized for certain access patterns. In the last years, the GPUs have incorporated two
levels of cache for accessing to global memory, but both caches are quite small.

For designing a GPU implementation of an algorithm several aspects should be con-
sidered [91, 92] like minimizing data transfer between the CPU and the GPU, maximizing
multiprocessor occupancy, coalescing memory accesses to global memory of the GPU, re-
ducing the impact of memory latency, and avoiding different execution paths within threads
of the same warp.

2.3.2 GPUs Used in this PhD Thesis

Throughout the development of this thesis six different GPUs were used. Table 2.1 shows the
main features of the GPUs used in this thesis including the microarchitecture of the GPU, the
CUDA compute capability (which allows to know some basic features of the GPU capacities),
the number of cores of the GPU, the clock rate of the cores, and the theoretical peaks of the
computational performance and the memory bandwidth of the global memory of GPU.

In the articles “Systolic genetic search, a systolic computing-based metaheuristic” (pre-
sented in Appendix A) and “A Systolic Genetic Search for reducing the execution cost of
regression testing” (presented in Appendix B), which are two of the three core articles of this
thesis, we use a GeForce GTX 480 and a GeForce GTX 780, respectively.

18
Systolic

C
om

puting
and

G
raphics

Processing
U

nits
Table 2.1 Main features of GPUs used in this thesis.

GeForce Tesla GeForce GeForce GeForce GeForce
9800 GTX+ C 1060 GTX 285 GTX 480 GTX 680 GTX 780

Microarchitecture Tesla Tesla Tesla Fermi Kepler Kepler
CUDA Compute Capability 1.1 1.3 1.3 2.0 3.0 3.5

CUDA Cores 128 240 240 480 1,536 2,304
Frequency (MHz) 1,836 1,296 1,476 1,401 1,006 863

Performance Theoretical Peak (GFlops) 705.02 933.12 1062.72 1344.96 3090.43 3976.70
Memory Bandwidth Theoretical Peak (GB/s) 70.40 102.40 159.00 177.40 192.26 288.00

Chapter 3

Evolutionary Algorithms and Their
Parallelization

The resolution of an optimization problem lies in finding an optimal solution from a set of
possible solutions (known as solution space or search space). The element is considered
optimal in the sense that satisfies a certain criterion or objective. In order to measure the
satisfaction of the objective, the notion of objective function is introduced and thus the
goal of the optimization problem can be stated as the minimization or maximization of the
objective function. These problems have been of great interest to the scientific community
for its almost straightforward application to real world problems and the simplicity of its
formulation [105].

The term Metaheuristics was coined in 1986 by Fred Glover to refer to heuristics with a
higher level of abstraction [43]. Metaheuristics, as well as heuristics techniques, are able to
find high quality solutions (many times optimal) to optimization problems in reasonable exe-
cution times. Unlike heuristic techniques that involve designing a specific procedure for each
optimization problem, metaheuristics are general schemes of optimization algorithms that
can be used for addressing a wide range of problems [14, 43, 111]. In general, metaheuristic
techniques are considered as a general pattern of algorithms, which can be applied to the
particularities of each problem with relatively few modifications.

This chapter provides the reader with the elementary notions of metaheuristics that will
help for a better understanding of the rest of this PhD thesis. The structure of the chapter is
as follows. Background on metaheuristics and some taxonomies proposed for classifying
metaheuristics are presented in Section 3.1. Then, Section 3.2 introduces the family of
Evolutionary Algorithms (EAs) techniques and Genetic Algorithms (GAs) in particular, since
the evolutionary operators of GAs are used in the design of Systolic Genetic Search. Finally,

20 Evolutionary Algorithms and Their Parallelization

Section 3.3 discusses the parallelization strategies that have been proposed for Evolutionary
Algorithms.

3.1 Metaheuristics

Metaheuristics techniques [14, 111] are approximate and, in general, stochastic algorithms
that can be abstracted with a high-level description of its basic components. They can be
seen as general strategies for the design of underlying heuristics through their adaptation to
the particularities of each specific problem. These algorithms can even incorporate specific
information of the problem or a subordinated problem-specific heuristic.

Metaheuristics explore the search space efficiently, with the goal of finding high quality
feasible solutions, i.e., with values of the objective function close to the optimal. The design
of a metaheuristic algorithm should take into account a proper balance between diversification
(i.e., the exploration of the search space) and intensification (i.e., the exploitation of the best
solutions found). A metaheuristic should also explore the solution space without getting
stuck in particular regions of the search space, specially avoiding getting trapped in local
optima.

A large number of new metaheuristics have been proposed due to the increasing interest
in the use of these techniques for the resolution of NP-hard optimization problems. However,
only a small group of these proposals has consolidated in practice, demonstrating a broad
spectrum of application and showing great maturity to be considered as an alternative when
solving an optimization problem. Some of the most popular metaheuristic techniques are
Iterated Local Search (ILS) [56, 75], Simulated Annealing (SA) [64, 85], Tabu Search (TS)
[41, 43], Variable Neighborhood Search (VNS) [84], Greedy Randomized Adaptive Search
Procedure (GRASP) [34], the family of Evolutionary Algorithms methods [37, 44, 104], Ant
Colony Optimization (ACO) [32] and Particle Swarm Optimization (PSO) [60]. Several
taxonomies have been proposed that classify metaheuristic techniques according to their
characteristics [14].

One of the classification criteria distinguishes whether the source of inspiration of
the algorithm comes from nature (nature-inspired techniques) or not (non-nature inspired
techniques). This criteria is intuitive but there are difficulties in classifying some algorithms.
According to this criteria, SA, EAs and ACO are nature-inspired algorithms, while ILS and
TS are non-nature inspired techniques.

Another possible criterion distinguishes between algorithms that use memory or not.
Metaheuristics can incorporate short-term or long-term memory mechanisms. Short-term
memory is often used to recognize recently visited solutions, while long-term memory usually

3.2 Evolutionary Algorithms 21

is used to accumulate the overall experience gained during the search process. According
to this criteria, TS and ACO are algorithms that use memory, while SA, EAs and ILS are
algorithms that do not use memory.

The most popular taxonomy distinguishes whether the algorithm uses a single candidate
solution (trajectory-based techniques) or a set of candidate solutions (population-based
techniques).

Trajectory-based metaheuristics consider a single point of the search space in each
iteration of the algorithm. The algorithms in this category start from an initial point of the
search space and update the position of the candidate solution by exploring the neighborhood
of the solution (usually through the use of local search operators). Thus, the candidate
solution describes a trajectory in the search spaces. The search process finishes when a
maximum number of iterations is reached, a solution with an acceptable quality is found,
or the search process is stagnated. ILS, SA, TS, VNS and GRASP are trajectory-based
algorithms.

Population-based metaheuristics are characterized by using a set of solutions (population
of solutions) in each iteration of the algorithm instead of a single solution. For this reason,
these algorithms provide an intrinsic mechanism for the exploration of the search space.
The numerical efficiency of a metaheuristics of this category mainly depends on how the
algorithm manipulates the population in each iteration. EAs, ACO and PSO are population-
based metaheuristics.

3.2 Evolutionary Algorithms

Evolutionary algorithms [44] are stochastic search methods inspired by the natural process of
evolution of species. The origin of these methods dates back to the 1960s when John Holland
considered the possibility of incorporating the Darwinian mechanisms [27] of selection and
survival of the fittest to the resolution of problems in artificial intelligence [55]. This research
on the simulation of processes of natural evolution of the species lead to the design of a new
search and optimization algorithm that was later called evolutionary algorithms.

EAs iteratively evolve a population of individuals representing candidate solutions of the
optimization problem at hand. The evolution process is guided by a survival of the fittest
principle applied to the candidate solutions and it involves the probabilistic application of
evolutionary operators to find better solutions. The whole process involves the use of a fitness
function that is a metric closely related to the objective function of the optimization problem
being solved.

22 Evolutionary Algorithms and Their Parallelization

Algorithm 1 presents the pseudocode of an Evolutionary Algorithm. The initial population
is usually randomly generated. Then, every initial solution in the population is associated
with a fitness value that measures the quality of the candidate solution. Each iteration of the
algorithm can be divided into three main stages: selection, reproduction and replacement. In
the selection stage, a temporary population is created in which the solutions are selected based
on their fitness value, usually giving higher priority to higher quality solutions. After that, in
the reproduction stage, new solutions are constructed applying evolutionary operators to the
selected solutions. Typically, the evolutionary operators used are crossover (recombination
of parts of individuals) and mutation (random changes in a single individual). Then, in the
final stage, the new population is created, by replacing the worse adapted individuals of the
population with new solutions generated in the iteration. The iteration loop is repeated until a
certain stop criterion is reached. Finally, EAs return the best solution found during the whole
search process (see Algorithm 1).

1 t = 0
2 P(t) = generateInitialPopulation()
3 evaluate(P(t))
4 while not stopCondition() do
5 t = t +1
6 select P′ from P(t −1)
7 apply evolutionary operators to P′ forming P′′

8 evaluate(P′′)
9 form P(t) using P′′ and/or P(t −1) % replace

10 end
11 return the best solution found

Algorithm 1: Evolutionary Algorithm.

Evolutionary Algorithms are a family of techniques, among which Genetic Programming
(GP), Evolution Strategies (ES), and Genetic Algorithms (GAs) stand out. GP [65, 102] is an
evolutionary computation algorithm aimed for evolving computer programs. ES [10, 104]
are in general aimed for solving optimization problems in continuous search spaces and are
characterized by having a deterministic selection process. The next subsection is devoted to
presenting GAs, as they are the algorithms from which SGS has adopted several components.

3.2.1 Genetic Algorithms

This subsection presents the classical GA with binary encoding and generational replacement
since the evolutionary operators of this GA are used in SGS. GAs are one of the most
popular types of EAs due to their adaptability to a wide range of problems. GAs are

3.2 Evolutionary Algorithms 23

based on the general sketch of an Evolutionary Algorithm presented in Algorithm 1. The
evolutionary operators used by GAs are the crossover and the mutation. The former is the
main evolutionary operator of GAs and it allows to recombine the existing genetic material
in the solutions, while the latter allows to modify the genetic information of a solution,
introducing new genetic material in the solution. Both mutation and crossover operators are
applied probabilistically. In general, the application rate of the crossover operator is high,
while the application rate of the mutation operator is very low.

In GAs, the candidate solutions, which are also known as individuals, are usually repre-
sented using binary strings. The binary string with the genetic information of an individual is
known as a chromosome. Each chromosome is composed by genes and the possible values of
a gene are called alleles. The genotype of an individual is formed by the set of chromosomes
that define its characteristics. GAs usually have a single chromosome per individual, but
there are proposals with more than one chromosome per individual, such as diploid GA
[120]. On the other hand, the phenotype of an individual is the point of the search space
of the problem that is represented by the candidate solution. The GA uses a codification
and a decoding function that are used for obtaining the genotype from the phenotype of an
individual and vice versa, respectively. Each chromosome defines a single point of the search
space, but each solution can be encoded by more than one different chromosomes. Both
functions are of vital importance for the algorithm since selection operates on the phenotype,
while reproduction operates on the genotype.

In the binary string representation, the solutions are traditionally encoded as a string
of bits of a fixed length. The length of the string is associated with the features of the
problem instance. Binary encoding was originally considered as the standard representation
of GA. In fact, binary strings can be used for encoding integers, reals, graphs or sets.
Binary strings are also easy to handle, which greatly facilitates the design of crossover and
mutation operators. However, other encodings are also possible like real encoding [54] or
permutational encoding [118].

GAs use a selection mechanism that encourages the selection of the best adapted individ-
uals of the population. The probability of an individual of being selected for reproduction
is related to its fitness value, giving a greater probability to individuals with a fitness value
close to the fitness value of the optimal solution. In traditional sequential GAs (and EAs), the
population is organized into a single group, which is known as panmixia. In panmixia, the
population is not structured in groups of individuals, and therefore there are no restrictions in
the selection of individuals for reproduction. One of the most accepted selection mechanisms
is the binary tournament selection. In the binary tournament selection, two individuals are

24 Evolutionary Algorithms and Their Parallelization

chosen at random from the population, and the winner of the tournament, i.e., the one with
higher fitness value, is selected for reproduction.

The crossover operator uses the information of the search space gathered in current
solutions to find better solutions through the recombination of genetic material. The crossover
operator takes two parent solutions and produces one or two child solutions, depending on the
characteristics of the crossover operator used. GAs originally used the Single Point Crossover
(SPX) for the binary string representation. SPX randomly generates a crossover point and
exchanges the genetic information between the two chromosomes from the crossover point
to the end of the string, thus generating two potentially new individuals. SPX is the crossover
operator used by David Golberg in the seminal Simple Genetic Algorithm [44]. Figure 3.1
graphically shows how the SPX operates.

Parent 1

Parent 2

Child 1

Child 2

SPX

 Crossover point

Fig. 3.1 Single Point Crossover.

One of the most popular crossover operators for GAs is the Double Point Crossover
(DPX). In DPX, two crossover points are chosen randomly. This crossover exchanges the
genetic information between the two chromosomes from the first crossover point to the
second crossover point. Figure 3.2 graphically shows how the DPX operates. The SPX and
DPX operators can be generalized in the N-point crossover [28, 110], in which N random
crossover points are generated and then the swaps are made between the N +1 segments that
are determined by the crossover points.

Parent 1

Parent 2

Child 1

Child 2

DPX

 Crossover points

Fig. 3.2 Double Point Crossover.

3.3 Parallel Evolutionary Algorithms 25

The mutation operator helps to maintain the genetic diversity through the execution of the
GA, incorporating new genetic material into the solutions or reincorporating genetic material
that has been lost during the search process. The mutation operator takes one solution and
randomly modifies the values of the genes of the solution.

The mutation operator most commonly used in GAs for the binary string representation
is the bit-flip mutation. In the bit-flip mutation, some genes of the chromosome are chosen
randomly, and the value of the genes is inverted, i.e., if the value is one, it is changed to zero
and vice versa.

A sketch of a GA that is used in this thesis for the comparison with SGS is presented in
Algorithm 2. The initial population is randomly generated and then the algorithm iterates
until the maximum number of iterations is reached. In each iteration, a new generation of
popSize individuals is produced by the selection, recombination, and mutation loop, and then
replaces the old population, i.e., it is a generational GA. Two parents solutions p1 and p2
are selected from the population by binary tournament based on their previously computed
fitness value. Then, two new solutions p1 and p2 are created by applying the DPX to the
parents with a given probability cp. Finally, the bit-flip mutation is applied to the offspring
solutions with a probability mp.

3.3 Parallel Evolutionary Algorithms

Among parallel metaheuristics, Parallel Evolutionary Algorithms (PEAs) [4, 76] have been
extensively adopted and are nowadays quite popular, mainly because EAs are naturally
prone to parallelism. For this reason, the study of parallelization strategies for EAs have
laid the foundations for working in parallel metaheuristics. The most usual criterion for
categorizing PEAs distinguishes three main different categories [20, 77]: the master-slave
model, the distributed or island model, and the cellular model. In the master-slave model the
population is panmitic as in the traditional sequential implementation, while the other two
categories correspond to two population models that are markedly different from panmixia.
Some authors also identify a fourth category that corresponds to the parallel independent run
of the same sequential EA [20, 77]. However, these implementations have no interaction
between the independent executions and they can be considered embarrassingly parallel
algorithms [53].

The master-slave model corresponds to the functional distribution of the algorithm
[20, 77]. The master process executes the main loop of the EA and controls the search
procedure, computing the selection mechanism, the replacement of the population, and in
most cases the reproduction of the individuals. On the other hand, the slave processes only

26 Evolutionary Algorithms and Their Parallelization

input :The population size popSize, the crossover probability cp and the mutation
probability mp

output :The best solution found

1 generation = 0;
2 pop = generateRandomPopulation(popSize);
3 evaluate(P(t));
4 while not maximum number of iterations reached do
5 for i=1 to popSize

2 do
6 p1 = selectBinaryTournament(pop);
7 p2 = selectBinaryTournament(pop);
8 (p1′, p2′) = doublePointCrossover(p1, p2,cp);
9 p1′′ = bitFlipMutation(p1′,mp);

10 p2′′ = bitFlipMutation(p2′,mp);
11 newPop[2∗ i−1] = p1′′;
12 newPop[2∗ i] = p2′′;
13 end
14 pop = newPop;
15 evaluate(pop);
16 generation = generation+1;
17 end
18 return the best solution found

Algorithm 2: Genetic algorithm

perform subordinate tasks that are usually associated with the evaluation of fitness of the
solutions. The master process sends the candidate solutions to several slaves processes, and
the slaves return the corresponding fitness values. Figure 3.3 illustrates the master-slave
model for EAs. This parallelization strategy for EAs when is synchronously implemented has
exactly the same behaviour than the sequential implementation of the EA. As a consequence,
this model can only reduce the runtime of the sequential implementation, profiting from the
additional hardware resources available.

In the distributed or island model [20, 77], the population is partitioned into a small
number of subpopulations, called islands or demes, that evolve in semi-isolation. Each
subpopulation works independently as a sequential EA and they can even apply different
evolutionary operators. As a consequence, the selection for reproduction and the application
of the evolutionary operators is local for each island. For this reason, each subpopulation
usually explores different regions of the search space. The only exchange of information
among the subpopulations is produced through a migration operator that exchanges individu-
als between the islands, thus increasing the diversity of the subpopulation. The island model
for EAs is illustrated in Figure 3.4.

3.3 Parallel Evolutionary Algorithms 27

Master process
(evolutionary operators)

Individuals

Fitness
value

Fitness
evaluation

Slaves
process

Fitness
evaluation

Fitness
evaluation

value

Fig. 3.3 Master-slave model for EAs.

Migration

Fig. 3.4 Island model for EAs.

Fig. 3.5 Cellular model for EAs.

28 Evolutionary Algorithms and Their Parallelization

Finally, the cellular model [2] works with a single population structured in many small
overlapped neighborhoods. Each individual is placed in a cell on a toroidal n-dimensional
grid and belongs to several neighborhoods. The interactions between individuals are limited
since the selection of parents for reproduction is local to each neighborhood. Therefore,
mating is restricted to each of the neighborhoods. The effect of finding high-quality solutions
gradually spreads to other neighborhoods along the grid due to the use of a diffusion model
that is a consequence of the neighborhoods overlapping [2]. The cellular model for EAs on a
2D grid is illustrated in Figure 3.5.

As it was already stated in the motivation of this thesis presented in Chapter 1, all the
parallelization strategies for EAs have already been ported to GPU architectures in previous
works. For instance, the cellular model GA is studied in [109, 114], the island model GA is
discussed in [123], while the master-slave implementation is addressed in [78].

Chapter 4

Systolic Genetic Search

Systolic Computing is inspired by the behavior of the cardiovascular system [49, 74]. In
physiology, the term systole is used to refer to the cyclic contraction of the heart that pumps
blood through the body. In each cardiac cycle, the heart first relaxes in the diastole phase to
refill with circulating blood and then it contracts in the systole phase. Due to the systolic
contraction, oxygenated blood is ejected from the heart into the arterial system with a regular
cadence or rhythmically to meet the metabolic needs of the tissues [49, 74].

Systolic computing architectures [67, 69] are composed by data processing units (also
known as cells) that are connected through a network enabling a data flow between neigh-
boring units. The processing units are able to compute relatively simple operations to data
received from neighboring units, that is then passed through the next cell in the topology.
Each processing unit of a systolic computing architecture is analogous to the heart, regularly
receiving data, processing and pumping data out, in order to keep a constant flow of data in
the system [68].

In this thesis, the optimization algorithm Systolic Genetic Search is proposed. SGS adapts
the operation of genetic algorithms to a systolic computing architecture. The algorithm is
characterized by the flow of solutions through data processing units following a synchronous
and structured plan. Each processing unit applies evolutionary operators to the circulating
tentative solutions in order to obtain new solutions that continue moving across the units. In
this way, solutions are refined again and again by simple low complexity search operators.

The rest of this chapter is structured as follows. First, in the next section the SGS
algorithm is described. Then, and since SGS is specially conceived for GPUs, Section 4.2
provides a brief description of the GPU implementation of SGS. Section 4.3 discusses related
papers with similar ideas to SGS. Finally, Section 4.4 presents the methodology followed in
this work for conducting the evaluation of the numerical and computational performance of
the algorithms.

30 Systolic Genetic Search

4.1 Systolic Genetic Search Algorithm

In a SGS algorithm, the solutions are synchronously pumped through a bidimensional grid
of cells, circulating through an horizontal and a vertical data streams. At each step of
SGS, two solutions enter to the cell at position (i, j), si,j-1

H from the horizontal data stream
(cell at position (i, j−1)) and si-1,j

V from the vertical data stream (cell at position (i−1, j)).
Then, the cell computation is performed generating two (potentially new) solutions that
continue moving through the grid, si,j+1

H through the horizontal data stream (cell at position
(i, j+1)) and si+1,j

V through the vertical data stream (cell at position (i+1, j)), as it is shown
in Figure 4.1.

sH sH

sV

sV

i,j-1
i,j+1

i+1,j

i-1,j

cell(i,j)

Fig. 4.1 Ingoing and outgoing solutions from cell at position(i, j).

The computation performed by the cells is described next. At the very beginning of the
operation, each cell generates two random solutions which are aimed at moving horizontally
and vertically, respectively. At each step of SGS, which is known as systolic step, two
solutions enter to each cell, one from the horizontal data stream and one from the vertical
data stream. Then, adapted evolutionary/genetic operators (crossover and mutation) are
applied to the incoming solutions in order to generate two potentially new solutions. SGS
is commonly used with crossover operators that take two parent solutions and produce two
children solutions. However, it is easy to adapt the cell computation for using crossover
operators that only produce one child solution, e.g., applying the crossover operator twice.
Later, the cell uses elitism to determine the outgoing solutions that continue moving through
the grid, choosing for each data stream between the incoming solution and a newly generated
one. The use of elitism is critical, as there is no global selection process like in standard
EAs/GAs. Finally, each cell sends the outgoing solutions to the next cells of each of the data
streams. The pseudocode of SGS is presented in Algorithm 3.

It is important to highlight that the general idea of the SGS algorithm described can be
adapted to any solution representation and any particular operator. Since in this thesis the
problems addressed are all binary problems, the solutions are encoded as binary strings, as in

4.1 Systolic Genetic Search Algorithm 31

1 foreach cell c do
2 sH = generateRandomSolution()
3 sV = generateRandomSolution()
4 sendSolutionThroughHorizontalDataStream(SH ,c)
5 sendSolutionThroughVerticalDataStream(SV ,c)
6 end
7 for i = 1 to maxGeneration do
8 foreach cell c do
9 sH = receiveSolutionFromHorizontalDataStream(c)

10 sV = receiveSolutionFromVerticalDataStream(c)
11 (newH ,newV) = crossover(sH ,sV)
12 newH = mutation(newH)
13 newV = mutation(newV)
14 newH = elitism(sH ,newH)
15 newV = elitism(sV ,newV)
16 sendSolutionThroughHorizontalDataStream(newH ,c)
17 sendSolutionThroughVerticalDataStream(newV ,c)
18 end
19 end

Algorithm 3: Systolic Genetic Search.

classical GAs. For this reason, we use the bit-flip mutation and the two-point crossover as
evolutionary search operators of SGS.

Several aspects have to yet be precisely defined to fully characterize the SGS algorithm.
These aspects include: the flow of solutions through the grid (i.e., how is the complete
interconnection topology of the systolic structure and how do the solutions move through
this structure), the size and the dimensions (i.e., the number of rows and columns) of the grid,
and how the crossover points and the mutation point of each cell are calculated.

Throughout this thesis and specially in the three articles compiled in this document, dif-
ferent alternatives for each of these aspects were studied. In [98] (presented in Appendix A),
four different strategies for the flow of solutions through the grid are analyzed. Regarding the
selection of the crossover points and the mutation point, in [98] the points are preprogrammed
at fixed positions of the tentative solutions (according to the location of the cell in the grid),
in [100] (presented in Appendix C) the points are chosen randomly for each cell, and in [99]
(presented in Appendix B) an hybrid approach is used. Finally, four different grid sizes
with different dimensions where studied in [98–100]. This is presented in greater detail in
Chapter 5 and in the referred articles.

32 Systolic Genetic Search

4.2 GPU Implementation of SGS

This section is devoted to presenting the general idea of the implementation of SGS on GPU.
Algorithm 4 presents the pseudocode of SGS for the host side (CPU). Initially, the seed for
the random number generation is transferred from the CPU to the global memory of the GPU
and the constant data associated with the problem required for computing the fitness values
is also transferred from the CPU to the GPU memory. Then, the population is initialized on
the GPU (Step 3) and the fitness of the initial population is computed afterwards (Step 4).
At each iteration, the crossover and mutation of the solutions of each cell of the grid are
executed (Step 6), and the systolic step is completed by calculating the fitness evaluation
and applying the elitist replacement (Step 8). Finally, when the algorithm reaches the stop
condition, the results are transferred from the GPU to the CPU.

1 transfer seed for random number generation to GPU
2 transfer problem data to GPU’s memory
3 call initPopulation kernel to initialize population
4 call fitnessCalculation kernel to calculate fitness of the population
5 for i = 1 to maxGeneration do
6 call crossoverAndMutation kernel to compute crossover and mutation operators
7 call fitnessCalculation kernel to calculate fitness of the population
8 call elitism kernel to calculate elitism
9 end

10 transfer final results from GPU to CPU
Algorithm 4: SGS Host Side Pseudocode

Now, the organization of the data on the GPU memory is detailed. As it is shown in
Figure 4.2, two independent memory spaces of the GPU global memory are used to store
the population and its associated fitness value. While the memory space that contains the
population/the fitness values in generation t is read, the new solutions/fitness values from
generation t + 1 can be written in the other memory space allowing concurrent access to
the data (disjoint storage). Each memory space stores an struct containing an array with
the solutions moving horizontally, an array with the solutions moving vertically, an array
with the fitness values corresponding to the solutions moving horizontally, and an array
with the fitness values corresponding to the solutions moving vertically, following the well
known software pattern for vectorization, struct of array (SoA) [80]. Depending on the
characteristics of the problem and the size of the instance, the problem data can be stored in
texture memory or global memory (in Figure 4.2 it is shown allocated in global memory).
Finally, a memory space for auxiliary data is also allocated in the global memory that is

4.2 GPU Implementation of SGS 33

used for storing the states of the random number generators, intermediate calculations of the
computation of the fitness evaluation, etc.

GPU’s Global Memory

Solutions moving
horizontally

Solutions moving
vertically

Horizontal Fitness values

n
popSize


2

n
popSize


2

Vertical Fitness values

Generation t Generation t+2

Solutions moving
horizontally

Solutions moving
vertically

Horizontal Fitness values

n
popSize


2

n
popSize


2

Vertical Fitness values

Generation t+1 Generation t+1

Problem data Auxiliary data

Fig. 4.2 Data organization on the GPU.

The kernel operation is explained next. The initPopulation kernel initializes the
population in the GPU using the CUDA CURAND Library [90] to generate random numbers.
The kernel is launched with a configuration that depends on the total number of bits that have
to be initialized, following the guidelines recommended in [91].

The crossoverAndMutation, fitnessCalculation and elitism kernels are imple-
mented following the idea used in [94], in which operations are assigned to a whole block
and all the threads of the block cooperate to perform a given operation. As a consequence,
these kernels are launched with as many blocks as the number of cells of the grid of SGS,
i.e., each block processes one cell of the grid. If the solution length is larger than the number
of threads in the block, each thread processes more than one element of the solution but the
elements used by a single thread are not contiguous. Thus, each operation is applied to a
solution in chunks of the size of the thread block (T in the following figure), as it is shown
in Figure 4.3. Depending on the characteristics of the problem and the size of the instance,
these three kernels can be merged into a single kernel in order to increase the performance.
This allows to temporarily store the two solutions being constructed in shared memory, which
reduces the accesses to global memory, even though it restricts the size of the instances that
could be resolved.

The crossoverAndMutation kernel initially calculates the global memory location of
the two ingoing (the two solutions that have to read and processed by the cell) and the two

34 Systolic Genetic Search

X1 X2 XT XT+1 ... XT+2 ... X2T X2T+1 X2T+2 X3T

Y1 Y2 YT YT+1 ... YT+2 ... Y2T Y2T+1 Y2T+2 Y3T

First
loop iteration

Second
loop iteration

Third
loop iteration

T
h
r
e
a
d

1

T
h
r
e
a
d

2

T
h
r
e
a
d

T

T
h
r
e
a
d

1

T
h
r
e
a
d

2

T
h
r
e
a
d

T

T
h
r
e
a
d

1

T
h
r
e
a
d

2

T
h
r
e
a
d

T

...

Fig. 4.3 Threads organization.

resulting solutions (the memory location where the solutions have to be stored) from the
block identifiers and determines the crossover points and the mutation point. These values
are calculated by thread zero of the block and they are stored in shared memory in order to
make them available for the rest of the threads of the block. Then, the kernel applies the
crossover operator, processing the solution components in chunks of size of the thread block
(as it was explained above). Finally, the thread zero of the block mutates the two intermediate
solutions.

The fitnessCalculation kernel first calculates the global memory location of the two
solutions of the cell and the global memory location where the fitness values have to be
stored from the block identifiers. Then, partial fitness values are computed by each thread in
chunks of size of the thread block, using the solutions and the problem data. The kernel uses
the shared memory of the GPU to temporarily store the partial fitness values computed by
each thread. Then, the kernel applies the well-known reduction pattern [80] to these values
to calculate the full fitness value of each of the solutions. The fitness evaluation, when the
problem data is a matrix, could involve irregular computations that are not suitable for GPU.
In such case, the evaluation can be transformed into a matrix-matrix multiplication operation
that follows a more structured pattern of computation and it is well suited for GPU. This
transformation involves the use of the auxiliary data memory space for storing intermediate
results and external libraries that compute linear algebra operations efficiently [89].

Finally, the elitism kernel determines the best solution for each data stream, considering
the fitness values from the new solutions and from the ingoing solutions. If a new solution

4.3 Related Work 35

is better than the ingoing solution, the new solution and its fitness value are copied to the
memory space of the next generation. Otherwise, the ingoing solution and its fitness value
are the ones that are copied. The copy is made in chunks of size of the thread block.

4.3 Related Work

Besides the context of this thesis already presented in Chapter 1, there are some additional
relevant works that should be briefly commented. This section analyzes published material
which is related to the SGS algorithm presented in this thesis.

Few efforts have been devoted to design optimization algorithms based on systolic
computing-like architectures [67, 69, 70]. Indeed, only in [23] and in the works of Bland
and Megson [11–13, 82, 83] an implementation of a GA on VLSI and FPGA architectures in
a systolic fashion is proposed. However, this research line was early discarded due to the
complexity of translating the GA operations into the recurrent equations required for the
hardware definition.

A direct antecedent of SGS is Systolic Neighborhood Search (SNS) [5, 115, 116]. As a
matter of fact, SGS can be seen as an advanced version of SNS, exploring a more sophisticated
approach and involving more diverse operations. Both algorithms share the arrangement
of solutions into a grid, but SNS only circulates solution through an horizontal data stream,
whereas SGS moves solutions not only through an horizontal data stream but also through a
vertical data stream. This means that SNS manages a single solution on each cell instead of a
pair of solutions as in SGS. As a consequence, SNS uses a more simple search strategy than
in SGS. Indeed, SNS is based on using a local search as the working operation in the cells,
while SGS is based on using the crossover and the mutation operators of GAs.

During the development of this thesis, a hardware-oriented GA for FPGA architectures
was presented in [48, 106] with matching points with the proposal of this thesis. The
algorithm introduced in these works is called Pipelined Genetic Propagation (PGP), and is
based on propagating and circulating a group of individuals in a directed graph structure.
Data is transported in a pipelined manner between the nodes of the graph that perform genetic
operations on the circulating data. However, in PGP there are different types of nodes,
which perform a different specific operation. There are selection nodes, crossover nodes and
mutation nodes, which substantially distinguishes PGP with respect to SGS.

SGS have similarities with the cellular model of EAs [2], but there are strong conceptual
design goals that make the two underlying search models fairly different. Although in a
first impression the models look alike, the only point of contact of both models is that the
solutions are placed in a structured grid. Two main differences emerge.

36 Systolic Genetic Search

In the first place, the information flow in both models is quite different. While the
solutions remain static in the same position of the grid and all the exchange of information
among solutions is caused by the overlapping of neighborhoods in the cellular model, SGS is
based on the flow of solutions. That is, the constant movement of all the solutions through
the grid produces the exchange of information between the solutions. As a consequence, the
solutions that could be mated in SGS are dynamic during the execution of the algorithm,
while in the cellular model the mating is in general static, i.e., a given solution can only be
mated with the same set of solutions for the whole execution. Secondly, each cell applies the
evolutionary operators to produce new solutions independently of the other cells in SGS, i.e.,
when a cell is applying those operators it can be considered isolated from the rest of the grid,
while in the cellular model each cell needs the neighboring cells to be able to produce new
solutions.

SGS also differs from the two other parallelization strategies for EAs (besides the cellular
model). In the first place, SGS restricts mating to the pair of solutions that are on a cell,
while in the master-slave model the population is panmitic and there are no restrictions for
mating. Second, the population of SGS is divided into two subpopulations, the solutions
that are moving horizontally and the solutions that are moving vertically. In SGS, mating is
limited by the subpopulations, being only possible interactions between two solutions that
belong to the two different subpopulations, while in the island model the mating process is
local to each of the subpopulations.

Finally, a major difference with the three classical parallelization strategies for EAs is
that SGS does not have an explicit selection process. As a matter of fact, the selection of
parents for reproduction in SGS is implicit, and it is determined by the flow of solutions
through the grid, while the other parallelization strategies have a explicit selection process.

4.4 Methodology for the Evaluation of the Numerical and
Computational Performance

The experiments conducted in this thesis include the study of the numerical efficiency of SGS
and the study of the computational performance of the parallel GPU implementation of SGS.
Since the algorithm proposed in this thesis and most of the algorithms used for comparison
purpose are stochastic algorithms, statistical tests are used to assess the significance of the
experimental results obtained. First, at least fifty independent runs for each algorithm and
each problem instance have been performed [103]. Two different statistical procedures are
considered, one analyzing the statistical difference for each problem and instance indepen-

4.4 Methodology for the Evaluation of the Numerical and Computational Performance 37

dently, and one involving the statistical differences for the algorithms across the multiple
instances. The criterion for deciding which approach is used is related to the number of
instances available for the problem considered.

For the former approach, the following statistical procedure is used [107] to determine if
the distribution of a particular metric for each algorithm and each instance independently is
statistically different. First a Kolmogorov-Smirnov test and a Levene test are performed in
order to check, respectively, whether the samples are distributed according to a normal distri-
bution and whether the variances are homogeneous (homocedasticity). If the two conditions
hold, an ANOVA I test is performed; otherwise a Kruskal-Wallis test is performed. Since
more than two algorithms are involved in the study, a post-hoc testing phase consisting in a
pairwise comparison of all the cases compared using a correction method (either Bonferroni-
Dunn or Holm) on either the Student’s t-test (if the samples follow a normal distribution
and the variances are homogeneous) or the Wilcoxon-Mann-Whitney test (otherwise) is also
performed.

For the latter approach, the Friedman’s test is used for ranking the algorithms according
to some particular metric [31, 107]. This test is used to check if the differences in the metric
are statistically significant among the algorithms for the whole set of instances of a particular
problem. Since more than two algorithms are involved in the study, a multiple comparison
using the Holm’s post-hoc procedure is performed.

Chapter 5

Articles Supporting this PhD Thesis

The results of the research of this PhD thesis have been validated with several peer-reviewed
publications both in international journals and conferences, and a book chapter. In particular,
three articles have been published in international journals indexed in ISI-JCR, which serve
as support for this thesis. In addition to this, three papers have been presented at international
conferences and one book chapter has also been published. The structure of the chapter is as
follows. The next section presents a summary of each one of the three articles compiled in
this thesis. Then, Section 5.2 describes the other publications that have been produced in this
work.

5.1 Articles Compiled in this PhD Thesis

This section presents the summary of the three articles that support this thesis. All of them
address the subject of the thesis and as a whole give coherence to the research work developed.
Thus, in the first place, a new algorithm is designed combining ideas from systolic computing
and evolutionary computation and it is validated over three different problems. Then, from
the feedback of the first article, the original design is adjusted, and SGS is used for solving a
real-world problem from the field of software engineering. Finally, as the behavior of the
new algorithm proposed has been studied only empirically, a theoretical and experimental
analysis on the flow of solutions of SGS is conducted. A brief summary of the articles is
presented next.

[98] Pedemonte, M., Luna, F., and Alba, E. (2015). Systolic genetic search, a systolic
computing-based metaheuristic. Soft Computing, 19(7):1779–1801

This article is included in Appendix A. The starting point for the design of SGS is the
proposal of SNS in [5, 115, 116]. On the basis of the interesting results obtained by SNS, the

40 Articles Supporting this PhD Thesis

purpose of our research has been to extend the idea of SNS to more complex search strategies.
With this goal in mind, the design of SGS has incorporated a bidimensional grid, and the
crossover and the mutation operators of GAs within each cell, thus allowing the algorithm to
manipulate two solutions on each cell. The proposal of SGS is consolidated in this work,
after some preliminary explorations of the idea in [95, 96].

In order to validate the proposal of SGS, two classic benchmark problems, the Knapsack
Problem (KP) [101] and the Massively Multimodal Deceptive Problem (MMDP) [45], and
one real-world problem, the Next Release Problem [8] from the field of software engineering,
have been used as testbed. The experimental evaluation has also included two GAs and a
Random Search to be used as a basis for comparison. The GAs have been chosen because
they share the same basic search operators and use a panmitic population, so the underlying
search engine of the techniques can be compared.

The experimental evaluation have shown that three instantiations of SGS have a great
potential regarding the quality of the solutions obtained. With respect to the performance of
the parallel implementation of SGS on GPU, even though the three aforementioned instanti-
ations of SGS have achieved large runtime reductions from the sequential implementation
and exhibited a good scalability with high dimensional instances, the instantiation named
SGSB has systematically obtained the shortest runtime for all the problems and instances
considered.

[99] Pedemonte, M., Luna, F., and Alba, E. (2016). A systolic genetic search for reducing
the execution cost of regression testing. Applied Soft Computing, 49:1145 – 1161

This article is included in Appendix B. After the validation of the SGS in the previous
work, the focus of this new paper has been addressing a real-world problem and evaluating
whether the proposed algorithm is competitive with the state-of-the-art for the problem or
not. For this, the Test Suite Minimization Problem (TSMP), a software testing problem that
arises in regression testing, has been selected as an application case. A first approach based
on a simpler formulation of this problem using SGS was made in [97]. The original design
of SGS has been adjusted in this paper from the feedback of the first article [98].

The experimental evaluation has been conducted on instances generated for eight real-
world software programs and it also included two GAs (similar to the ones used in the
previous work [98]) and four heuristics specially designed for the TSMP that are the state-of-
the-art for this problem. The experimental results confirm the virtues of SGS, being worthy
of mentioning that SGS is the algorithm with the best numerical performance (outperforming
the state-of-the-art algorithm for this problem) and that the GPU implementation of SGS has
the best computational performance among the EAs studied.

5.2 Other Peer-reviewed Publications 41

[100] Pedemonte, M., Luna, F., and Alba, E. (2018). A theoretical and empirical study of
the trajectories of solutions on the grid of systolic genetic search. Information Sciences,
445-446:97 – 117

This article is included in Appendix C. The two previous articles were centered in the
design of the newly proposed algorithm and in the application of SGS for solving a real-world
problem. For this reason, the behavior of the new algorithm proposed has been studied only
empirically. The focus of this new work lies in studying the flow of solutions through the
theoretical analysis of the trajectories described by the solutions along the grid of SGS.

The theoretical analysis has found that, in the grids used thus far, there are cells in which
the two incoming solutions are direct descendants of a pair of solutions that have already
been mated in another cell of the grid. For this reason, a new grid that does not have this
limitation is designed.

In addition to the theoretical analysis, an experimental evaluation has been also con-
ducted to examine how the different features of the grids impact in the effectiveness of the
algorithm. The experimental evaluation has been performed on three deceptive problems (the
MMDP [45], the six-bit fully deceptive subfunction of Deb and Goldberg [29, 30], and the
four-bit fully deceptive subfunction of Whitley [119]) and it has also included two GAs with
similar features to the ones used in the two previous works.

The experimental results has confirmed that SGS is able to outperform the GAs, which
use a panmitic population, corroborating that the underlying search engine of SGS is highly
effective. The results have also shown that the use of grids limiting the mating of descendants
of pairs of solutions that have already been mated benefits the search engine of SGS. Indeed,
the grids so-designed guarantee a better diffusion of highly fitted genetic material through
the grid, which produces a higher diversity on the cells of the grid that avoid the algorithm to
get stuck and, thus, reaching better solutions.

5.2 Other Peer-reviewed Publications

The following subsections list the rest of the publications grouped according to the type of
publication, providing a brief summary of their contents.

42 Articles Supporting this PhD Thesis

5.2.1 Proceedings of International Conferences

[94] Pedemonte, M., Alba, E., and Luna, F. (2011). Bitwise operations for GPU imple-
mentation of genetic algorithms. In Genetic and Evolutionary Computation Conference,
GECCO’11 - Companion Publication, pages 439 – 446

This work addresses the influence on the performance of a GA of how the population of
the GA is stored in the memory of the GPU. Individuals are often represented using binary
strings in GAs and thus there are two alternatives for storing the binary strings in the memory.
The former approach consists in using the boolean data type, which is easier to implement but
wastes memory (seven out of eight bits) that is a valuable and limited resource in GPUs. The
latter approach consists in packing multiple bits in a non-boolean data type, which almost
does not waste memory but involves working at bit level (using bitwise operations) that is
more complicated.

The GA used in this work have similar features to that used in the rest of the thesis:
binary tournament, either SPX or DPX, bit-flip mutation and generational replacement. The
results obtained in the experimental evaluation have shown that the use of bit packing for
storing binary strings is able to reduce the execution time up to 50% on the GPU.

Although bit packing was not finally used in the GPU implementation of SGS, the thread
organization that processes the solution components in chunks (assigning the operation to a
whole block and making all the threads of the block cooperate to perform the operation) was
conceived in this work. This strategy has been then used throughout the entire thesis.

[95] Pedemonte, M., Alba, E., and Luna, F. (2012). Towards the design of systolic ge-
netic search. In IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, pages 1778–1786. IEEE Computer Society

This work is the first approach to the design of Systolic Genetic Search algorithm. The
basic idea of the algorithm outlined in this work, remained unchanged along the entire thesis.

The experimental evaluation was conducted on instances of the KP and it included two
panmitic GAs and a Random Search algorithm. SGS showed promising results both in the
quality of the solutions obtained and in the performance of the GPU implementation.

[97] Pedemonte, M., Luna, F., and Alba, E. (2014). Systolic genetic search for software
engineering: The test suite minimization case. In Esparcia-Alcázar, A. I. and Mora, A. M.,
editors, Applications of Evolutionary Computation - 17th European Conference, EvoApplica-
tions 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers, volume 8602 of
Lecture Notes in Computer Science, pages 678–689. Springer

5.2 Other Peer-reviewed Publications 43

After setting the foundations of the SGS algorithm in [98], a survey on relevant real-world
problems from the field of software engineering was conducted to identify and select an
application case for SGS. The problem selected was the TSMP.

This work presents the first approach followed to tackle the TSMP with SGS. The
formulation used in this work for the TSMP is more simple than the formulation that was
then used in [99]. In this case, the goal is to find a set of test cases that maximizes the number
of test requirements covered, while in the other work the set of test cases not only has to
cover all the set of test requirements but also has to minimize a cost associated with the
execution of the test cases.

The experimental evaluation was conducted on instances of seven real-world software pro-
grams and it also included two panmitic GAs. The experimental results showed that SGS was
both effective and efficient for tackling the TSMP. This effort was later consolidated in [99].

5.2.2 Book Chapters

[96] Pedemonte, M., Luna, F., and Alba, E. (2013). New ideas in parallel metaheuristics
on GPU: Systolic genetic search. In Tsutsui, S. and Collet, P., editors, Massively Parallel
Evolutionary Computation on GPGPUs, Natural Computing Series, chapter 10, pages 203–
225. Springer

This book chapter is chronologically the second publication on SGS. The focus of the
work is analyzing how the features of different GPUs impact on the performance of the
parallel GPU implementation of SGS. The characteristics of both the SGS algorithm and the
GPU implementation of SGS used in this work are exactly the same than in [95].

The experimental evaluation was conducted on instances of the KP and it included two
panmitic GAs and a Random Search algorithm. The experiments were executed in four
different GPUs.The evaluation showed that the changes produced in GPUs in a period of less
than two years impacted on a runtime reduction of the algorithm of more than 26× for the
largest instances considered. Taking into account, the results in a broader perspective, it also
shows the impressive progress on the design and computing power of the GPUs.

Chapter 6

Conclusions

The main goal of this thesis has been the design, implementation and evaluation of new
parallel metaheuristic algorithms and/or new parallel models for GPUs, taking advantage
of the high degree of parallelism present in modern GPU architectures. This objective was
motivated by the challenge that represents the current and future scenarios of application of
metaheuristic techniques and by the disruptive emergence of the massively parallel, widely
available and low-cost GPUs. In order to address such a scenario, in this thesis we have
engineered a new optimization algorithm, which combines ideas from Systolic Computing
and Evolutionary Algorithms. The optimization algorithm is aimed at being both effective
and efficient, taking specially advantage of the particular features of the GPU architecture.

The structure of this chapter is described next. First, Section 6.1 presents the general
conclusions of this thesis and, second, the lines of future work that have been identified
during this research are included in Section 6.2.

6.1 Concluding Remarks

The very first conclusion drawn from this work developed in this thesis is that the newly
proposed algorithm is highly effective for tackling both benchmark and real world problems,
finding optimal or near optimal solutions in short execution times. In particular, SGS
has outperformed two competitive Evolutionary Algorithms. These EAs use a panmitic
population and evolutionary operators that are similar to those used by SGS. This highlights
the importance of the underlying search engine of SGS, which has shown to be highly
accurate.

Second, the results obtained by SGS for the two real-world problems are relevant. In
the NRP, the SGS algorithm has been competitive with the state-of-the-art algorithms for
this problem, finding the set of Pareto optimal solutions. These results are achieved even

46 Conclusions

though the problem is multi-objective, whereas SGS is a mono-objective algorithm. In the
TSMP, SGS is able to provide better solutions than four heuristics specially designed for this
problem. In particular, the results obtained by SGS are superior than the results obtained by
GREEDYE, which is the previous state-of-the-art algorithm for solving such problem.

It is interesting to note that the quality of the numerical results obtained by SGS is quite
independent of the execution platform used, i.e., the CPU and GPU implementations present
similar results for all the problems studied as the behaviour of the algorithm is basically the
same (if there were significant differences, they could be produced by the use of different
random number generators and/or by the parallelism). As a consequence, and despite being
conceived for its execution in GPU, the CPU implementation of SGS is also an interesting
alternative as an optimization algorithm.

In the third place, a general strategy for the thread organization of the GPU implementa-
tion has been conceived based on assigning the operations to a whole block, and processing
the solutions components in chunks and cooperatively among the threads of the block. This
strategy is aligned with the guidelines for efficient GPU implementation [91, 92]. The GPU
implementation of SGS has achieved a high performance, obtaining large runtime reductions
with respect to the CPU counterparts for solutions with similar quality. The strategy for
thread organization has not only allowed SGS to achieve a high performance, but also to the
two other EAs implemented on GPU. However, the GPU implementation of SGS is the best
performing algorithm among the EAs studied, having systematically the shortest runtime
for all the instances of all the problems considered. This can be explained because SGS has
a more regular computation (all the cells do basically the same computation), whereas in
the other EAs there are other aspects that drop the efficiency down, such as the selection
operation. Moreover, the GPU implementation of SGS has also shown an excellent scalability
behavior when solving instances of increasing size.

Throughout this thesis, two other interesting ideas for GPU-based implementations
have been evaluated that deserve to be highlighted. First, when the fitness evaluation
involves irregular computation patterns that are not suitable for GPU, this evaluation can
be transformed into a matrix-matrix multiplication operation. This operation has a more
structured pattern of computation that is well suited for the GPU. Also, there are available
linear algebra libraries able to compute this operation efficiently like CUBLAS [89]. Second,
the use of bit packing in non-boolean data types for storing the population on the memory can
additionally reduce the execution time of GPU implementations up to 50%. This approach
helps to avoid wasting memory, but it is more difficult to implement as it involves the use of
bitwise operations.

6.2 Open Research Lines and Future Work 47

Finally, the theoretical analysis has identified the issue in which there are cells in the
grids where the two incoming solutions are direct descendants of a pair of solutions that have
already been mated in another cell of the grid. The experimental evaluation of a new grid,
which prevents mating descendants of pairs of solutions that have already been mated, shows
that the use of this grid benefits the search engine of SGS. Moreover, this grid guarantees
a better diffusion of highly fitted genetic material, thus producing a higher diversity on the
cells that makes SGS to be able to find better solutions.

6.2 Open Research Lines and Future Work

This thesis have fulfilled the general initial goal of designing, implementing and evaluating a
new parallel metaheuristic algorithm and/or new parallelism model for GPUs. During this
work several issues has been identified, which could become lines of future work of this
thesis. The following list details some of the research lines that deserve further study.

Further study of the TSMP and similar problems: In the TSMP, there are available
heuristics with acceptable numerical results and short execution times. The approach followed
thus far for addressing the TSMP can be considered purist as SGS does not incorporate any
knowledge of the problem in its operation. It is interesting to study the effect of initializing
some solutions of the population of SGS with these heuristics. SGS can also incorporate
a local search mechanism designed from such heuristics. This could help to speed up the
search of the SGS, specially considering the resolution of larger instances, and even lead to
reach new best-known solutions.

In addition to this, there are other optimization problems from software testing that are
similar to the TSMP, for instance the Test Case Selection Problem [121]. This problem
consists in choosing a subset of the test suite based on which test cases are relevant for testing
the changes between the previous and the current version of a piece of software. Due to the
matching points between this problem and TSMP and the excellent results obtained by SGS
for the TSMP, it is also attractive to address this problem with SGS.

Study of additional problems with SGS: The results of SGS have already shown to be
promising, but it is desirable to extend the analysis by solving additional problems with SGS
to increase the existing evidence of the benefits of this line of research. This can also serve to
obtain more feedback on SGS and thus revealing potential shortcomings in the algorithm.

48 Conclusions

Enhancing the design of the search engine of SGS: The theoretical study on the flow of
solutions has provided valuable information on the behavior of the algorithm, in particular
with regard to the diversity of the solutions in the cells. Even though the numerical results
obtained by SGS are noteworthy, it would be interesting to incorporate a mechanism to detect
a loss of diversity in the solutions managed by the algorithm and thus enabling SGS to react
by introducing new genetic material (e.g., generating completely new solutions throughout
the grid). Using this type of ideas can potentially help to speed up the search of the SGS and
even enhance the search engine of the algorithm, leading to better solutions.

Other studies can be devised to analyze several aspects of SGS that have not been studied
in depth during this work, for instance, the use of elitism on the cells of the grid. It is
interesting to understand how often elitism is used in each cell. If there is an overuse of
elitism, i.e., many new solutions are discarded, a memory mechanism could be incorporated
into SGS so that each cell stores its best generated solutions and use them afterwards to
reduce or directly remove elitism.

Extension of SGS algorithm to other encodings: The general idea of SGS is not tied to
a particular representation, however the use of other representations can constitute a new
challenge for the GPU implementation of SGS: real encoding could present performance
problems if the problem requires to use the double precision floating point data type as the
performance with this precision is much slower than single precision. Also, it is not trivial to
use the idea of processing a solution by chunks for the permutation encoding.

Design and development of a library with generic components for GPU implementa-
tions of metaheuristics: The development of a framework for implementing metaheuris-
tics on GPU has some practical difficulties since the implementation of the fitness function
on the GPU has to be provided by the user of the framework. The implementation of this
function on the GPU is critical and it could compromise the overall performance of the
algorithm. This issue partly explains why there are few metaheuristic frameworks that
support GPU implementations. However, there are components that can be abstracted in
a library for providing generic operations that could be useful for other efforts. Two of
such components can be the use of bit packing for the binary encoding and the use of the
matrix-matrix multiplication for the fitness evaluation.

It is interesting to note that the use of the matrix-matrix multiplication is not compatible
with the use of bit packing. The libraries that provide efficient matrix-matrix multiplication
store data using float or double data types. As a consequence, it is not possible to directly
combine in a GPU implementation the use of bit packing in non-boolean data types for storing

6.2 Open Research Lines and Future Work 49

the population on the memory and the use of the matrix-matrix multiplication for fitness
evaluation. For this reason, it is interesting to conduct an experimental study to determine
in which cases is better to use one idea or the other. In addition to this, a matrix-matrix
multiplication that support working with bit packing in non-boolean data types can also be
developed as a future work.

References

[1] Alba, E., editor (2005). Parallel Metaheuristics: A New Class of Algorithms. Wiley.

[2] Alba, E. and Dorronsorso, B. (2008). Cellular Genetic Algorithms. Springer.

[3] Alba, E. and Nebro, A. J. (2005). New Technologies in Parallelism. In Alba, E., editor,
Parallel Metaheuristics, pages 63–78. Wiley.

[4] Alba, E. and Tomassini, M. (2002). Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443 – 462.

[5] Alba, E. and Vidal, P. (2011). Systolic optimization on GPU platforms. In 13th
International Conference on Computer Aided Systems Theory (EUROCAST 2011).

[6] Arora, S. and Barak, B. (2009). Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 1st edition.

[7] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan,
N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., and Yelick, K. (2009). A view of
the parallel computing landscape. Commun. ACM, 52(10):56–67.

[8] Bagnall, A., Rayward-Smith, V., and Whittley, I. (2001). The next release problem.
Information and Software Technology, 43(14):883 – 890.

[9] Benner, P., Ezzatti, P., Kressner, D., Quintana-Ortí, E. S., and Remón, A. (2011). A
mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU
platforms. Parallel Computing, 37(8):439–450.

[10] Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies - a comprehensive
introduction. 1(1):3–52.

[11] Bland, I. M., Megson, G., et al. (1996). Implementing a generic systolic array for
genetic algorithms. In Proceedings of the First Online Workshop on Soft Computing
(WSC1), pages 268–273.

[12] Bland, I. M. and Megson, G. M. (1996). Systolic random number generation for genetic
algorithms. Electronics Letters, 32(12):1069–1070.

[13] Bland, I. M. and Megson, G. M. (1998). The systolic array genetic algorithm, an
example of systolic arrays as a reconfigurable design methodology. In Proceedings. IEEE
Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251), pages
260–261.

52 References

[14] Blum, C. and Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison. ACM Computing Surveys, 35(3):268–308.

[15] Bojanczyk, A., Brent, R. P., and Kung, H. (1984). Numerically stable solution of dense
systems of linear equations using mesh-connected processors. SIAM journal on scientific
and statistical computing, 5(1):95–104.

[16] Brent, R. P. and Kung, H. T. (1984). Systolic VLSI arrays for polynomial GCD
computation. IEEE Trans. Computers, 33(8):731–736.

[17] Breß, S., Heimel, M., Siegmund, N., Bellatreche, L., and Saake, G. (2014). GPU-
Accelerated Database Systems: Survey and Open Challenges, pages 1–35. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[18] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanra-
han, P. (2004a). Brook for GPUs: Stream computing on graphics hardware. In ACM
SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 777–786, New York, NY, USA. ACM.

[19] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan,
P. (2004b). Brook for GPUs: Stream computing on graphics hardware. ACM Trans.
Graph., 23(3):777–786.

[20] Cantu-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers.

[21] Cecilia, J. M., García, J. M., Nisbet, A., Amos, M., and Ujaldón, M. (2013). Enhancing
data parallelism for ant colony optimization on GPUs. Journal of Parallel and Distributed
Computing, 73(1):42 – 51.

[22] Cecilia, J. M., García, J. M., Ujaldón, M., Nisbet, A., and Amos, M. (2011). Paral-
lelization strategies for ant colony optimisation on GPUs. In 25th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2011, Workshop Proceedings,
pages 339–346.

[23] Chan, H. and Mazumder, P. (1995). A systolic architecture for high speed hypergraph
partitioning using a genetic algorithm. In Progress in Evolutionary Computation, volume
956 of Lecture Notes in Computer Science, pages 109–126. Springer Berlin / Heidelberg.

[24] Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158,
New York, NY, USA. ACM.

[25] Darema, F. (2001). The SPMD Model: Past, Present and Future, pages 1–1. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[26] Darema, F., George, D., Norton, V., and Pfister, G. (1988). A single-program-multiple-
data computational model for epex/fortran. Parallel Computing, 7(1):11 – 24.

[27] Darwin, C. (1859). On the Origin of Species by Means of Natural Selection or the
Preservation of Favored Races in the Struggle for Life. John Murray, London.

References 53

[28] De Jong, K. A. and Spears, W. M. (1992). A formal analysis of the role of multi-
point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence,
5(1):1–26.

[29] Deb, K. and Goldberg, D. E. (1992). Analyzing Deception in Trap Functions. In
Foundations of Genetic Algorithms, pages 93–108.

[30] Deb, K. and Goldberg, D. E. (1994). Sufficient conditions for deceptive and easy binary
functions. Annals of Mathematics and Artificial Intelligence, 10(4):385–408.

[31] Derrac, J., García, S., Molina, D., and Herrera, F. (2011). A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3–18.

[32] Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press, Cambridge,
MA, USA.

[33] Ezzatti, P., Quintana-Ortí, E. S., and Remón, A. (2011). Using graphics processors
to accelerate the computation of the matrix inverse. The Journal of Supercomputing,
58(3):429–437.

[34] Feo, T. and Resende, M. (1995). Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, 6:109–133.

[35] Fernando, R. and Kilgard, M. J. (2003). The Cg Tutorial: The Definitive Guide to
Programmable Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[36] Flynn, M. (1972). Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers, 21(9):948–960.

[37] Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence Through Simulated
Evolution. John Wiley and Sons, New York.

[38] Furber, S. (2000). ARM System-on-Chip Architecture. Addison-Wesley Longman
Publishing Co., Inc., 2nd edition.

[39] Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory
of NP–Completeness. Freeman, San Francisco.

[40] Gaster, B., Howes, L., Kaeli, D., Mistry, P., and Schaa, D. (2012). Heterogeneous
computing with OpenCL, 2nd Edition. Morgan Kaufmann.

[41] Gendreau, M. and Potvin, J.-Y. (2010). Tabu search. In Gendreau, M. and Potvin, J.-Y.,
editors, Handbook of metaheuristics, pages 41–60. Springer.

[42] Gentleman, W. M. and Kung, H. (1982). Matrix triangularization by systolic arrays.
In 25th Annual Technical Symposium, pages 19–26. International Society for Optics and
Photonics.

[43] Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial
Intelligence. Computers & Operations Research, 13(5):533–549.

54 References

[44] Goldberg, D. (1989a). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

[45] Goldberg, D., Deb, K., and Horn, J. (1992). Massively multimodality, deception and
genetic algorithms. In Proceedings of the International Conference on Parallel Problem
Solving from Nature II (PPSNII), pages 37–46.

[46] Goldberg, D. E. (1989b). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

[47] Guibas, L., Kung, H., and Thompson, C. (1979). Direct VLSI implementation of
combinatorial algorithms. In Proc. Conf. Very Large Scale Integration: Architecture,
Design, Fabrication, pages 509–525. California Institute of Technology.

[48] Guo, L., Guo, C., Thomas, D., and Luk, W. (2015). Pipelined genetic propagation. In
Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual
International Symposium on, pages 103–110.

[49] Guyton, A. C. and Hall, J. E. (2006). Textbook of medical physiology. Elsevier Saunders,
11 edition.

[50] Harding, S. and Banzhaf, W. (2011). Implementing cartesian genetic programming
classifiers on graphics processing units using GPU.NET. In 13th Annual Genetic and
Evolutionary Computation Conference, GECCO 2011, Companion Material, pages 463–
470.

[51] Harman, M., Mansouri, S. A., and Zhang, Y. (2012). Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv., 45(1):11:1–11:61.

[52] Hennessy, J. and Patterson, D. (2011). Computer Architecture: A Quantitative Approach.
The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kaufmann.

[53] Herlihy, M. and Shavit, N. (2012). The Art of Multiprocessor Programming, Revised
Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

[54] Herrera, F., Lozano, M., and Verdegay, J. L. (1998). Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis. Artif. Intell. Rev., 12(4):265–
319.

[55] Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press,
Cambridge, MA, USA.

[56] Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations & Applica-
tions. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[57] Jeffers, J. and Reinders, J. (2013). Intel Xeon Phi Coprocessor High Performance
Programming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

[58] Johnson, K. T., Hurson, A. R., and Shirazi, B. (1993). General-purpose systolic arrays.
Computer, 26(11):20–31.

References 55

[59] Kapasi, U. J., Rixner, S., Dally, W. J., Khailany, B., Ahn, J. H., Mattson, P. R., and
Owens, J. D. (2003). Programmable stream processors. IEEE Computer, 36(8):54–62.

[60] Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of
the 1995 IEEE International Conference on Neural Networks, volume 4, pages 1942–1948.

[61] Khronos Group (2017). OpenGL Website. http://www.opengl.org. Accessed: February,
2017.

[62] Khronos OpenCL Working Group (2015). The OpenCL Specification, version 2.0.
Editors: Lee Howes and Aaftab Munshi.

[63] Kirk, D. and Hwu, W. (2012). Programming Massively Parallel Processors, Second
Edition: A Hands-on Approach. Morgan Kaufmann.

[64] Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by Simulated Anneal-
ing. Science, 220:671–680.

[65] Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[66] Krömer, P., Platoš, J., and Snášel, V. (2014). Nature-inspired meta-heuristics on modern
GPUs: State of the art and brief survey of selected algorithms. Int. J. Parallel Program.,
42(5):681–709.

[67] Kung, H. T. (1982). Why systolic architectures? Computer, 15(1):37 – 46.

[68] Kung, H. T. and Lehman, P. L. (1980). Systolic (VLSI) arrays for relational database
operations. In Chen, P. P. and Sprowls, R. C., editors, Proceedings of the 1980 ACM
SIGMOD International Conference on Management of Data, Santa Monica, California,
May 14-16, 1980., pages 105–116. ACM Press.

[69] Kung, H. T. and Leiserson, C. E. (1978). Systolic arrays (for VLSI). In Sparse Matrix
Proceedings, pages 256 – 282.

[70] Kung, S. Y. (1987). VLSI Array Processors. Prentice-Hall, Inc.

[71] Langdon, W. B. (2011). Graphics processing units and genetic programming: an
overview. Soft Computing, 15(8):1657 – 1669.

[72] Langdon, W. B. and Banzhaf, W. (2008). A SIMD interpreter for genetic programming
on GPU graphics cards. In Genetic Programming, 11th European Conference, EuroGP
2008, Naples, Italy, March 26-28, 2008. Proceedings, volume 4971 of Lecture Notes in
Computer Science, pages 73–85. Springer.

[73] Lewis, T. E. and Magoulas, G. D. (2009). Strategies to minimise the total run time
of cyclic graph based genetic programming with GPUs. In Genetic and Evolutionary
Computation Conference, GECCO 2009, pages 1379–1386.

[74] Libby, P., Bonow, R., Mann, D., and Zipes, D. (2007). Braunwald’s Heart Disease: A
Textbook of Cardiovascular Medicine. Elsevier Health Sciences.

http://www.opengl.org

56 References

[75] Lourenço, H., Martin, O., and Stützle, T. (2002). Iterated Local Search. In Glover,
F. and Kochenberger, G., editors, Handbook of Metaheuristics, pages 321–353. Kluwer
Academic Publisher.

[76] Luque, G. and Alba, E. (2011). Parallel Genetic Algorithms: Theory and Real World
Applications, volume 367 of Studies in Computational Intelligence. Springer.

[77] Luque, G., Alba, E., and Dorronsoro, B. (2005). Parallel Metaheuristics: A New Class
of Algorithms, chapter 5. Parallel Genetic Algorithm, pages 107–126. Wiley Series on
Parallel and Distributed Computing. Wiley.

[78] Maitre, O., Krüger, F., Querry, S., Lachiche, N., and Collet, P. (2012). EASEA:
specification and execution of evolutionary algorithms on GPGPU. Soft Computing,
16(2):261–279.

[79] Maitre, O., Lachiche, N., and Collet, P. (2010). Fast evaluation of GP trees on GPGPU
by optimizing hardware scheduling. In Genetic Programming, 13th European Conference,
EuroGP 2010, Istanbul, Turkey, April 7-9, 2010. Proceedings, volume 6021 of Lecture
Notes in Computer Science, pages 301–312. Springer.

[80] McCool, M., Reinders, J., and Robison, A. (2012). Structured Parallel Programming:
Patterns for Efficient Computation. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition.

[81] Mead, C. and Conway, L. (1979). Introduction to VLSI Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[82] Megson, G. and Bland, I. (1998). Synthesis of a systolic array genetic algorithm. In
Parallel Processing Symposium, 1998. IPPS/SPDP 1998, pages 316 –320.

[83] Megson, G. M. and Bland, I. M. (1997). Generic systolic array for genetic algorithms.
In Computers and Digital Techniques, IEE Proceedings-, volume 144, pages 107–119.
IET.

[84] Mladenović, N. and Hansen, P. (1997). Variable Neighborhood Search. Computers &
Operations Research, 24(11):1097–1100.

[85] Nikolaev, A. G. and Jacobson, S. H. (2010). Simulated annealing. In Gendreau, M. and
Potvin, J.-Y., editors, Handbook of metaheuristics, pages 1–39. Springer.

[86] Nvidia Corporation (2012). NVIDIA GeForce GTX 680 Whitepaper. Nvidia Corpora-
tion.

[87] Nvidia Corporation (2016a). NVIDIA GeForce GTX 1080 Whitepaper. Nvidia Corpora-
tion.

[88] Nvidia Corporation (2016b). NVIDIA Tesla P100 Whitepaper. Nvidia Corporation.

[89] Nvidia Corporation (2017a). CUDA Toolkit 8.0 CUBLAS Library User Guide. Nvidia
Corporation.

[90] Nvidia Corporation (2017b). CUDA Toolkit 8.0 CURAND Library Programming Guide.
Nvidia Corporation.

References 57

[91] Nvidia Corporation (2017c). NVIDIA CUDA C Best Practices Guide Version 8.0.
Nvidia Corporation.

[92] Nvidia Corporation (2017d). NVIDIA CUDA C Programming Guide Version 8.0. Nvidia
Corporation.

[93] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., and
Purcell, T. J. (2007). A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113.

[94] Pedemonte, M., Alba, E., and Luna, F. (2011). Bitwise operations for GPU imple-
mentation of genetic algorithms. In Genetic and Evolutionary Computation Conference,
GECCO’11 - Companion Publication, pages 439 – 446.

[95] Pedemonte, M., Alba, E., and Luna, F. (2012). Towards the design of systolic genetic
search. In IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, pages 1778–1786. IEEE Computer Society.

[96] Pedemonte, M., Luna, F., and Alba, E. (2013). New ideas in parallel metaheuristics on
GPU: Systolic genetic search. In Tsutsui, S. and Collet, P., editors, Massively Parallel
Evolutionary Computation on GPGPUs, Natural Computing Series, chapter 10, pages
203–225. Springer.

[97] Pedemonte, M., Luna, F., and Alba, E. (2014). Systolic genetic search for software
engineering: The test suite minimization case. In Esparcia-Alcázar, A. I. and Mora,
A. M., editors, Applications of Evolutionary Computation - 17th European Conference,
EvoApplications 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers,
volume 8602 of Lecture Notes in Computer Science, pages 678–689. Springer.

[98] Pedemonte, M., Luna, F., and Alba, E. (2015). Systolic genetic search, a systolic
computing-based metaheuristic. Soft Computing, 19(7):1779–1801.

[99] Pedemonte, M., Luna, F., and Alba, E. (2016). A systolic genetic search for reducing
the execution cost of regression testing. Applied Soft Computing, 49:1145 – 1161.

[100] Pedemonte, M., Luna, F., and Alba, E. (2018). A theoretical and empirical study of
the trajectories of solutions on the grid of systolic genetic search. Information Sciences,
445-446:97 – 117.

[101] Pisinger, D. (1999). Core problems in knapsack algorithms. Operations Research,
47:570 – 575.

[102] Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A Field Guide to Genetic
Programming. Lulu Enterprises, UK Ltd.

[103] Rardin, R. L. and Uzsoy, R. (2001). Experimental evaluation of heuristic optimization
algorithms: A tutorial. Journal of Heuristics, 7(3):261–304.

[104] Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart, Germany.

58 References

[105] Schrijver, A. (2005). On the history of combinatorial optimization (till 1960). Hand-
books in Operations Research and Management Science, 12:1 – 68.

[106] Shao, S., Guo, L., Guo, C., Chau, T., Thomas, D., Luk, W., and Weston, S. (2015).
Recursive pipelined genetic propagation for bilevel optimisation. In Field Programmable
Logic and Applications (FPL), 2015 25th International Conference on, pages 1–6.

[107] Sheskin, D. J. (2011). Handbook of Parametric and Nonparametric Statistical Proce-
dures. Chapman and Hall/CRC, fifth edition edition.

[108] Silva, J. P., Hagopian, J., Burdiat, M., Dufrechou, E., Pedemonte, M., Gutiérrez, A.,
Cazes, G., and Ezzatti, P. (2014). Another step to the full GPU implementation of the
weather research and forecasting model. The Journal of Supercomputing, 70(2):746–755.

[109] Soca, N., Blengio, J. L., Pedemonte, M., and Ezzatti, P. (2010). PUGACE, a cel-
lular evolutionary algorithm framework on GPUs. In IEEE Congress on Evolutionary
Computation, pages 1–8.

[110] Spears, W. M. and Jong, K. A. D. (1990). An analysis of multi-point crossover. In
Rawlins, G. J. E., editor, Proceedings of the First Workshop on Foundations of Genetic
Algorithms. Bloomington Campus, Indiana, USA, July 15-18 1990., pages 301–315.
Morgan Kaufmann.

[111] Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. Wiley Publish-
ing.

[112] Tsutsui, S. and Fujimoto, N. (2011). Fast QAP solving by ACO with 2-opt local
search on a GPU. In 2011 IEEE Congress of Evolutionary Computation, CEC 2011, pages
812–819.

[113] Veronese, L. D. P. and Krohling, R. A. (2010). Differential evolution algorithm on the
GPU with C-CUDA. In Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2010, pages 1–7.

[114] Vidal, P. and Alba, E. (2010). Cellular genetic algorithm on graphic processing units.
In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pages 223 –
232.

[115] Vidal, P., Alba, E., and Luna, F. (2016). Solving optimization problems using a hybrid
systolic search on GPU plus CPU. Soft Computing, pages 1–19.

[116] Vidal, P., Luna, F., and Alba, E. (2014). Systolic neighborhood search on graphics
processing units. Soft Computing, 18(1):125–142.

[117] Weiser, U. and Davis, A. (1981). A Wavefront Notation Tool for VLSI Array Design,
pages 226–234. Springer Berlin Heidelberg, Berlin, Heidelberg.

[118] Whitley, D. and wook Yoo, N. (1995). Modeling simple genetic algorithms for
permutation problems. In in Foundations of Genetic Algorithms, pages 163–184. Morgan
Kaufmann.

References 59

[119] Whitley, L. D. (1990). Fundamental Principles of Deception in Genetic Search. In
Foundations of Genetic Algorithms, pages 221–241.

[120] Yang, S. (2006). On the design of diploid genetic algorithms for problem optimization
in dynamic environments. In 2006 IEEE International Conference on Evolutionary
Computation, pages 1362–1369.

[121] Yoo, S. and Harman, M. (2012). Regression testing minimization, selection and
prioritization: a survey. Softw. Test. Verif. Reliab., 22(2):67–120.

[122] Zhang, S. and He, Z. (2009). Implementation of parallel genetic algorithm based on
CUDA. In ISICA 2009, LNCS 5821, pages 24 – 30.

[123] Zheng, L., Lu, Y., Guo, M., Guo, S., and Xu, C. (2014). Architecture-based design and
optimization of genetic algorithms on multi- and many-core systems. Future Generation
Comp. Syst., 38:75–91.

[124] Zhou, Y. and Tan, Y. (2009). GPU-based parallel particle swarm optimization. In
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2009, pages
1493–1500.

Appendix A

Systolic Genetic Search, a Systolic
Computing-Based Metaheuristic

Soft Comput
DOI 10.1007/s00500-014-1363-0

METHODOLOGIES AND APPLICATION

Systolic genetic search, a systolic computing-based metaheuristic

Martín Pedemonte · Francisco Luna · Enrique Alba

© Springer-Verlag Berlin Heidelberg 2014

Abstract In this paper, we propose a new parallel optimiza-
tion algorithm that combines ideas from the fields of meta-
heuristics and Systolic Computing. The algorithm, called
Systolic Genetic Search (SGS), is designed to explicitly
exploit the high degree of parallelism available in modern
Graphics Processing Unit (GPU) architectures. In SGS, solu-
tions circulate synchronously through a grid of processing
cells, which apply adapted evolutionary operators on their
inputs to compute their outputs that are then ejected from
the cells and continue moving through the grid. Four dif-
ferent variants of SGS are experimentally studied for solv-
ing two classical benchmarking problems and a real-world
application. An extensive experimental analysis, which con-
sidered several instances for each problem, shows that three
of the SGS variants designed are highly effective since they
can obtain the optimal solution in almost every execution
for the instances and problems studied, as well as they out-
perform a Random Search (sanity check) and two Genetic

Communicated by V. Loia.

M. Pedemonte (B)
Instituto de Computación, Facultad de Ingeniería,
Universidad de la República, Julio Herrera y Reissig 565,
11300 Montevideo, Uruguay
e-mail: mpedemon@fing.edu.uy

F. Luna
Depto. de Ingeniería de Sistemas Informáticos y Telemáticos,
Centro Universitario de Mérida, Universidad de Extremadura,
Santa Teresa de Jornet, 28, 06800 Mérida, Spain
e-mail: fluna@unex.es

E. Alba
Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, E.T.S. Ingeniería Informática,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: eat@lcc.uma.es

Algorithms. The parallel implementation on GPU of the pro-
posed algorithm has achieved a high performance obtain-
ing runtime reductions from the sequential implementation
that, depending on the instance considered, can arrive to
around a hundred times, and have also exhibited a good scal-
ability behavior when solving highly dimensional problem
instances.

Keywords Systolic genetic search ·
Evolutionary algorithms · Systolic computing ·
Parallel computing · Graphics processing units · CUDA ·
GPGPU

1 Introduction

In the last ten years, computing platforms have undergone
revolutionary changes (Hennessy and Patterson 2011). Par-
allel hardware is no longer an infrastructure reserved for a
few research laboratories, but it is widely available for the
general public. On one hand, the architecture of CPU proces-
sors has changed, being now multi-core (a single computing
unit composed of at least two independent processors). As
a consequence, modern desktop computers are at least dual-
core (the more common hardware configuration) and even
hexa-core. On the other hand, the parallel hardware that can
be used for computation has diversified notably. Nowadays,
it is possible to use devices like multi-core processors with
ARM architecture (Furber 2000), which have become mas-
sively available in smart cell phones and tablet computers,
as well as Graphics Processing Units (GPUs) as general-
purpose parallel platforms (Owens et al. 2007).

The number of cores available in modern hardware is
growing steadily and will undoubtedly continue to do so in
the foreseeable future. For instance, Nvidia has launched

123

Author's personal copy

M. Pedemonte et al.

its new generation of GPUs, Kepler (Nvidia Corporation
2012d), with up to 2,688 CUDA cores at 732 MHz and
a single precision floating point peak performance of 3.95
TFlops; while Intel has released the Xeon Phi coprocessor
(Intel Corporation 2013a,b), with up to 61 cores operating at
least 1 GHz and a single precision floating point peak per-
formance of 2.15 TFlops. As a consequence, the design of
parallel algorithms able to exploit the new capabilities avail-
able in modern hardware is indispensable.

In this context, in which remarkable changes are taking
place in the devices used for computing and device capabili-
ties will stay growing, the design of new parallel algorithms
that profit from them is certainly an interesting, promis-
ing research line. This is specially relevant in the field of
metaheuristics (Blum and Roli 2003) and their paralleliza-
tion (Alba 2005). Unlike exact methods, metaheuristics are
stochastic algorithms which are able to provide optimiza-
tion problems with very accurate solutions in a reasonable
amount of time. However, as the problem instances in today’s
research are becoming very large, even metaheuristics may be
highly computationally expensive. This is where parallelism
comes out as an actual, reliable strategy to speed up the search
of those kind of optimizers. The truly interesting point is that
parallel metaheuristics do not only allow the runtime of the
algorithms to be reduced, but also allow to improve the qual-
ity of results obtained by traditional sequential algorithms
due to their (often new) enhanced search engine (Alba 2005).
As a consequence, research on this topic has grown sub-
stantially in the last years, motivated by the excellent results
obtained in their application to the resolution of problems in
search, optimization, and machine learning.

In particular, the use of GPUs has represented an inspir-
ing domain for the research in parallel metaheuristics, expe-
riencing a tremendous growth in the last five years. This
growth has been based on its wide availability, low eco-
nomic cost, and inherent parallel architecture, and also on
the emergence of general-purpose programming languages,
such as CUDA (Kirk and Hwu 2012) and OpenCL (Gaster
et al. 2012).

The first works on parallel metaheuristics on GPUs have
gone in the direction of taking a standard existing family
of algorithms and porting them to this new kind of hard-
ware (Langdon 2011). Thus, many results show the time
savings of running master–slave (Maitre et al. 2012), dis-
tributed (Zhang and He 2009), and cellular (Soca et al.
2010; Vidal and Alba 2010a) metaheuristics on GPU (mainly
Genetic Algorithms (Maitre et al. 2012; Pedemonte et al.
2011) and Genetic Programming (Harding and Banzhaf
2011; Langdon and Banzhaf 2008; Lewis and Magoulas
2009) but also other types of techniques like Ant Colony
Optimization (Cecilia et al. 2011; Tsutsui and Fujimoto
2011), Differential Evolution (Veronese and Krohling 2010),
Particle Swarm Optimization (Zhou and Tan 2009), etc.).

A different approach, followed in this paper, lies in propos-
ing and designing new techniques that explicitly exploit the
high degree of parallelism available in modern GPU architec-
tures. Following this course of action, two new optimization
algorithms (Systolic Neighborhood Search (Alba and Vidal
2011; Vidal et al. 2013) and Systolic Genetic Search (Pede-
monte et al. 2012, 2013)) have recently been proposed that
are based on combining ideas from the fields of metaheuris-
tics and Systolic Computing. The concept Systolic Com-
puting was coined at Carnegie-Mellon University by Kung
(1982), and Kung and Leiserson (1978). The basic idea of
this concept focuses on creating a network of different simple
processors or operations that rhythmically compute and pass
data through the system. Systolic computation offers several
advantages, including simplicity, modularity, and repeata-
bility of operations. This kind of architecture also offers
transparent, understandable and manageable, but still quite
powerful parallelism. In Systolic Genetic Search (SGS) solu-
tions circulate synchronously through a grid of cells. When
two solutions meet in a cell, adapted evolutionary operators
are applied to generate new solutions that continue moving
through the grid. SGS has shown its potential for tackling the
Knapsack Problem finding optimal solutions in short execu-
tion times in Pedemonte et al. (2012, 2013).

The goal of the present work is to characterize the gen-
eral SGS optimization algorithm and study four novel vari-
ants that follow the premises of this general optimization
algorithm. An exhaustive experimental evaluation has been
undertaken to provide the reader with insights on both the
search capabilities of the SGS algorithms and their paral-
lel performance when deployed on a GPU card. The results
have shown that three out of the four systolic algorithms
devised are highly effective as they are able to reach the
optimal solution in almost every execution for the instances
and problems studied, outperforming the other algorithms
involved in the experiment (namely, Random Search, and two
Genetic Algorithms). The testbed is composed of different
instances of two classical benchmark problems, Knapsack
Problem (Pisinger 1999) and Massively Multimodal Decep-
tive Problem (Goldberg et al. 1992), and a real-world applica-
tion, the Next Release Problem (Bagnall et al. 2001). On the
other hand, the parallel implementation on GPU of SGS has
achieved a high performance obtaining runtime reductions
from the sequential implementation that, depending on the
problem and the instance considered, can scale up to around
a hundred times.

Finally, it should be highlighted that parallel SGS also
exhibits a good scalability behavior when solving high-
dimensional problem instances.

This article is organized as follows. The next section intro-
duces the SGS algorithm and the four different variants stud-
ied. Section 3 describes the implementation of the SGS on a
GPU. Then, Sect. 4 presents the experimental study consid-

123

Author's personal copy

Systolic genetic search

ering the three different problems aforementioned. Section 5
shows how our approach differs from the existing popula-
tion models for evolutionary algorithms. Finally, in Sect. 6,
we outline the conclusions of this work and suggest future
research directions.

2 Systolic genetic search

Systolic computing-based metaheuristics, as well as Systolic
Computing, are inspired by the same biological phenomenon.
The idea is to mimic the systolic contraction of the heart that
makes it possible to inject blood back on the body rhythmi-
cally according to the metabolic needs of the tissues. This
biological phenomenon is briefly described next.

The cardiovascular system consists of the heart, that is
responsible for pumping blood with each beat, and a special-
ized conduction system composed of arteries, which trans-
port and distribute blood from the heart to the body, and the
veins that transport the blood back to the heart. The cardiovas-
cular system can be seen as two pumps that work in parallel;
the first pump corresponds to the right heart, which receives
deoxygenated blood from the tissues and sends it to the lungs
to be oxygenated (pulmonary circulation). On the other hand,
the second pump corresponds to the left heart that receives
oxygenated blood from the lungs and sends it to all tissues
to distribute oxygen to the different parenchyma (systemic
circulation). The human heart pumps through the body more
than 6,000 l of blood daily (Guyton and Hall 2006; Libby et
al. 2007).

In each cardiac cycle, the heart first relaxes to refill with
circulating blood (this phase is known as diastole) and then
it contracts (this phase is known as systole), increasing the
pressure inside the cavities. As a consequence, the heart
ejects blood into the arterial system. Due to the systolic con-
traction, the blood is ejected from the heart with a regular
cadence or rhythmically according to the metabolic needs of
the tissues. If the cardiac cycle is regular, i.e., there are no
pathological situations (called cardiac dysrhythmia), we can
define as a normal heart rate for an adult a value between
60 and 100 cycles/min (Guyton and Hall 2006; Libby et al.
2007).

In Systolic Computing-based metaheuristics, solutions
flow across processing units (cells) according to a synchro-
nous, structured plan. When two tentative solutions (or one
single solution in Systolic Neighborhood Search algorithm)
meet in a cell, operators are applied to obtain new solutions
that continue moving across the processing units. In this way,
solutions are refined again and again by simple low complex-
ity search operators.

In the leading work on Systolic Computing-based meta-
heuristics, the Systolic Neighborhood Search algorithm has
been proposed that is based on using a local search as the

working operation in cells (Alba and Vidal 2011; Vidal et
al. 2013). In subsequent works, we have explored a more
sophisticated approach that involves more diverse opera-
tions: the Systolic Genetic Search algorithm (Pedemonte et
al. 2012, 2013). Closely related works are further analyzed
in Sect. 5.

The rest of this section is structured as follows. First, in
the next subsection the SGS algorithm is described. Then, the
four different instantiations or flavors of SGS that are used
in the experimental evaluation are introduced.

2.1 Systolic genetic search algorithm

In a SGS algorithm, the solutions are synchronously pumped
through a bidimensional grid of cells. At each step of SGS,
two solutions enter each cell, one from the horizontal data
stream (Si, j

H) and one from the vertical data stream (Si, j
V),

as it is shown in Fig. 1a. Then, adapted evolutionary/genetic
operators (crossover shown in Fig. 1b and mutation shown
in Fig. 1c) are applied to generate two new solutions. Later,
the cell uses elitism (shown in Fig. 1d) to determine which
solutions continue moving through the grid, one through the
horizontal data stream (Si, j+1

H) and one through the vertical

data stream (Si+1, j
V), as it is shown in Fig. 1e.

The pseudocode of SGS is presented in Algorithm 1. At
the very beginning of the operation, each cell generates two
random solutions which are aimed at moving horizontally
and vertically, respectively. Then, it applies the basic evolu-
tionary search operators (crossover and mutation) but to dif-
ferent, preprogrammed fixed positions of the tentative solu-
tions that circulate throughout the grid. This is the major
contribution of SGS: it performs a stochastic yet structured
exploration of the search space. The cells use elitism to pass
on the best solution (between the incoming solution and the
newly generated one by the genetic operators) to the next
cells. The incorporation of elitism is critical, as there is no
global selection process like in standard Evolutionary Algo-
rithms (EAs). Each cell sends the outgoing solutions to the
next cells of the data streams, which have been computed
previously.

We want to remark that the idea of the SGS algorithm
can be adapted to any solution representation and any par-
ticular operator. In this work, we address binary problems,
for this reason we encoded the solutions as binary strings,
and use bit-flip mutation and two-point crossover as evolu-
tionary search operators. In this case (binary representation),
the positions in which operators are applied in each cell are
defined by considering the location of the cell in the grid,
thus avoiding the generation of random numbers during the
execution. Some key aspects of the algorithm such as the size
of the grid and the calculation of the crossover points and the
mutation point are discussed next.

123

Author's personal copy

M. Pedemonte et al.

(a)

(b)

(c)

(d)

(e)

Fig. 1 SGS processing at cell (i, j)

2.1.1 Size of the grid

The length and width of the grid considered, respectively, as
the number of cells in a row and in a column, should allow the
algorithm to achieve a good exploration, but without increas-
ing the population size up to values that compromise per-
formance. To generate all possible mutation point values at
each single row and considering that each cell uses a different
mutation point value, the grid length is l (the length of the
tentative solutions, i.e., the size of the problem instance). As

Algorithm 1 Systolic Genetic Search
1: for all c Cell do
2: c.h =generateRandomSolution();
3: c.v =generateRandomSolution();
4: end for
5: for i = 1 to maxGeneration do
6: for all c Cell do
7: (tempH , tempV) =crossover(c.h, c.v);
8: tempH =mutation(tempH);
9: tempV =mutation(tempV);
10: c1 =calculateNextHorizontalCell(c);
11: c2 =calculateNextVerticalCell(c);
12: tempH =elitism(c.h, tempH);
13: tempV =elitism(c.v, tempV);
14: moveSolutionToCell(tempH , c1.h);
15: moveSolutionToCell(tempV , c2.v);
16: end for
17: end for

a consequence, each cell in a given row modifies a different
position of the arriving solutions.

If a similar strategy would have been used for the columns
(generate all possible mutation point values at each single
column), the natural value for the width of the grid is also
l. However, that would lead SGS to use a population with
2 × l × l (2 solutions per cell) for solving problem instances
of size l. For this reason, and to keep the total number of
solutions of the population within an affordable value, the
width of the grid has been reduced to τ = �lg l�. Therefore,
the number of solutions of the population is 2 × l × τ (2
solutions per cell).

2.1.2 Crossover operator

As the crossover operator used is the two-point crossover,
two different crossover point values (preprogrammed at fixed
positions of the tentative solutions) have to be calculated for
each cell. In each row, to sample different sections of the indi-
viduals, the second crossover point is calculated increasing
the distance to the first crossover point with the column, and
two different values for the first crossover point are used.
Figure 2 shows the general idea followed to distribute the
crossover points over the entire grid, using different crossover
points in each cell to exchange different sections of the solu-
tions through the grid.

For the first crossover point, two different values are used
in each row, one for the first l

2 cells and another one for the
last l

2 cells. These two values differ by div(l, 2τ), while cells
of successive rows in the same column differ by div(l, τ).
This allows using a large number of different values for the
first crossover point following a pattern known a priori. If
x ≥ 0 and y > 0, then div(x, y) = � x

y �, so we use div in
the text but we prefer to use floor notation in the equations
for the sake of clarity. Figure 3 illustrates the first crossover
point calculation.

123

Author's personal copy

Systolic genetic search

Fig. 2 Distribution of crossover points across the grid

First l
2 tsaLsnmuloc l

2 columns

1

2

i

2 2 + div(l, 2τ)

2 + div(l, τ +2) div(l, τ) + div(l, 2τ)

2 + (i− 1) × div(l, τ) 2 + (i− 1) × div(l, τ) + div(l, 2τ)

Fig. 3 First crossover point calculation

The general expression for calculating the first crossover
point at cell (i, j) is:

2 +
⌊

l

τ

⌋
(i − 1) +

⌊
j − 1⌊ l

2

⌋
⌋⌊

l

2τ

⌋
(1)

For the second crossover point, the distance to the first
crossover point increases with the column index, from a
minimum distance of two positions to a maximum distance
of div(l, 2) + 1 positions. In this way, cells in contiguous
columns exchange a larger portion of the solutions. Figure 4
illustrates the second crossover point calculation, being F1

the first crossover point for the first l
2 cells and F2 the first

crossover point for the last l
2 cells. If the value of second

crossover point is smaller than the first one, the values are
swapped.

The general formula for calculating the second crossover
point for the cell (i, j) is presented in Eq. 2, where mod is
the modulus of the integer division.

1 +
(

3 +
⌊

l

τ

⌋
(i − 1) +

⌊
j − 1⌊ l

2

⌋
⌋ ⌊

l

2τ

⌋

+
(

(j − 1) mod

⌊
l

2

⌋))
mod l (2)

2.1.3 Mutation

The mutation operator flips a single bit in each solution. Fig-
ure 5 shows the general idea followed to distribute the points
of mutation over the entire grid, using different mutation
points in each cell in order to change different bits of the
solutions through the grid.

Each cell mutates a different bit of the solutions in the hor-
izontal data stream in order to generate diversity by encour-
aging the exploration of new solutions. On the other hand,
cells in the same vertical data stream should not mutate the
same bit in order to avoid deteriorating the search capability
of the algorithm. For this reason, the mutation points on each
row are shifted div(l, τ) places. Figure 6 shows an example
of the mutation points for the cells of column j .

Fig. 4 Second crossover point
calculation First l

2
tsaLsnmuloc l

2
columns

i F1 + 2 F1 + 3 F1 + l
2 + 1 F2 + 2 F2 + 3 F2 + l

2 + 1

123

Author's personal copy

M. Pedemonte et al.

Fig. 5 Distribution of mutation points across the grid

j

1

2

3

i

j

j + div(l, τ)

j + 2 × div(l, τ)

j + (i− 1) × div(l, τ)

Fig. 6 Mutation points for column j

The general formula for calculating the mutation point of the
cell (i, j) is:

1 +
(

(i − 1)

⌊
l

τ

⌋
+ j − 1

)
mod l, (3)

where mod is the modulus of the integer division.

2.2 SGS flavors

So far, we have described the complete algorithm of SGS,
but one important detail is still missing: what happens when

a solution reaches the end of the grid either horizontally (hor-
izontal outgoing solution from a cell of the last column) or
vertically (vertical outgoing solution from a cell of the last
row)? Four different flavors have been devised attending to
this design decision.

The first alternative is to use a bidimensional toroidal grid
of cells (first subsection below). However, we quickly iden-
tify a major issue with this approach as solutions moving
vertically lack diversity (remind that the width of the grid
is lower than the length, i.e., l > τ) because they are only
mutated in τ positions. Three enhanced versions have then
been engineered aiming at overcoming this issue. They are
presented in the last three subsections.
Toroidal Systolic Genetic Search (SGST). The solutions flow
across a bidimensional toroidal grid (as it is shown in Fig. 7a)
either horizontally, moving always in the same row, or ver-
tically, moving always in the same column. The horizontal
outgoing solutions from the cells of the last column of the
grid are passed on to the cells of the first column of the grid
in the same row. In the same way, the vertical outgoing solu-
tions from the cells of the last row of the grid are passed on
to the cells of the first row of the grid in the same column.
Toroidal Systolic Genetic Search with Exchange of directions
(SGSE). The solutions flow across a bidimensional toroidal
grid as it is shown in Fig. 7a). As the length of the grid is
larger than the width of the grid, the solutions moving through
the columns would be limited to only τ different mutation
and crossover points, while those moving horizontally use
a wider set of values. To avoid this issue, every τ iterations
the two solutions being processed in each cell exchange their
directions. That is, the solution received through the horizon-

123

Author's personal copy

Systolic genetic search

(a)

(b)

(c)

Fig. 7 Interconnection topology for the different flavors. a Toroidal
grid. b Grid with horizontal toroidal flow and vertical flow to the next
column. c Grid with vertical flow to the next column and horizontal
flow to the next row

tal input leaves the cell through the vertical output, while the
one moving vertically continues through the horizontal. This
flavor has already been used in previous works (Pedemonte
et al. 2012, 2013).
Systolic Genetic Search with horizontal toroidal flow and ver-
tical flow of solutions to the next column (SGSV). In SGSV ,
the grid is toroidal regarding the horizontal axis, but to avoid
the low diversity in the mutation points of the solutions mov-
ing vertically, a vertical outgoing solution from a cell of the
last row of the grid is passed on to the cell of the first row of

the next column of the grid. The interconnection topology of
the cells is shown in Fig. 7b.
Systolic Genetic Search with vertical flow of solutions to the
next column and horizontal flow of solutions to the next row
(SGSB).1 In SGSB, together with the modification of the
vertical flow that happens in SGSV with respect to SGST, a
horizontal outgoing solution from a cell of the last column of
the grid is passed on to the cell of the first column of the next
row of the grid. The interconnection topology of the cells is
shown in Fig. 7c.

3 SGS implementation on GPU

This section is devoted to presenting how SGS has been
deployed on a GPU. First, we provide a general snapshot
of GPU devices and highlight some relevant features of the
card used in this work (Nvidia’s GeForce GTX 480). Then,
all the implementation details are thoroughly explained.

3.1 CUDA graphics processing units

In recent years, GPUs have significantly diversified their
field of application because they are no longer just special-
ized fixed-function graphics platforms. At present, GPUs
have become general computing devices composed by highly
parallel programmable cores. The architecture of GPUs is
designed by following the idea of devoting more transistors
to computation than traditional CPUs (Kirk and Hwu 2012).
As a consequence, current GPUs have a large number of small
cores and are usually considered as many-core processors.

CUDA is the general framework that enables to work with
Nvidia’s GPUs. The CUDA architecture abstracts GPUs as
a set of shared memory multiprocessors (MPs) that are able
to run a large number of threads in parallel. Each MP fol-
lows the SIMT (Single Instruction Multiple Threads) paral-
lel programming paradigm. SIMT is similar to SIMD (Sin-
gle Instruction Multiple Data) but in addition to data-level
parallelism (when threads are coherent) it allows thread-
level parallelism (when threads are divergent, see Kirk and
Hwu (2012), and Nvidia Corporation (2012c)). The number
of threads that modern GPUs can execute in parallel is in
the order of thousands and is expected to continue growing
rapidly; what makes these devices a powerful and low cost
platform for implementing parallel algorithms.

When a kernel is called in CUDA, a large number of
threads are generated on the GPU. The group of all the
threads generated by a kernel invocation is called a grid,
which is partitioned into many blocks. Each block groups
threads that are executed concurrently on a single MP. There
is no fixed order of execution between blocks. If there are

1 The B stands for Both flows.

123

Author's personal copy

M. Pedemonte et al.

enough multiprocessors available on the card, they are exe-
cuted in parallel. Otherwise, a time-sharing strategy is used.
The blocks are divided for their execution into warps that
are the basic scheduling units in CUDA and consist of 32
consecutive threads.

Threads can access data on multiple memory spaces dur-
ing their life time. CUDA architecture has six different mem-
ory spaces: registers, shared memory, local memory, global
memory, constant memory and texture memory (Kirk and
Hwu 2012).

Registers are the fastest memory on the card and are only
accessible by each thread. Shared memory is almost as fast
as registers and can be accessed by any thread of a block; its
lifetime is equal to the lifetime of the block. Each thread has
its own local memory but is one of the slowest memories on
the card, because it is located in the device memory. Local
memory and registers are entirely managed by the compiler.
The compiler places variables in local memory when regis-
ter spilling occurs, i.e., the kernel needs more registers than
available. All the threads executing on the GPU have access
to the same global memory on the card that is one of the
slowest memory on the GPU. Constant memory is a read-
only space with only 64 kB accessible by all threads that
is located in the device memory. Each multiprocessor has a
constant cache of 8 kB that makes access to constant memory
space faster. Finally, the texture memory has the same fea-
tures that of constant memory, but it is optimized for certain
access patterns (Nvidia Corporation 2012c).

In this work, we use a GeForce GTX 480 (Compute Capa-
bility 2.0 Nvidia Corporation 2012c), which has a Fermi
architecture (CUDA’s third-generation architecture, Nvidia
Corporation 2009). Each multiprocessor on the Fermi archi-
tecture consists of 32 CUDA cores that are organized into two
blocks with 16 CUDA cores each. Moreover, each MP has
two warp schedulers that could handle two warps at once, one
for each block of CUDA cores. Figure 8 shows the architec-
ture of the GeForce GTX 480 card, as well as the maximum
bandwidth of the access to global GPU memory, CPU mem-
ory and transfers between CPU and GPU of the infrastructure
used in this work. It should be noted that access to global GPU
memory is more than sixteen times faster than access to CPU

Fig. 8 CPU–GPU system used in this work

Fig. 9 GeForce GTX 480 (Fermi architecture) memory hierarchy

memory and more than forty times faster than data transfers
between CPU and GPU. In fact, the transfers between CPU
and GPU are usually one of the most important bottlenecks
on CPU–GPU heterogeneous computing.

Each multiprocessor has also an on-chip memory of only
64 kB. A portion of this memory is used as shared memory
and the rest is used as a first-level cache for global memory.
It can be divided as 16–48 kB or 48–16 kB between cache
and shared memory. The Fermi architecture also incorporates
a second-level cache with 768 kB shared among all multi-
processors to access the global memory. Figure 9 presents
the memory hierarchy of the GeForce GTX 480.

3.2 Implementation details

The approach followed for the GPU implementation of SGS
in previous works (Pedemonte et al. 2012, 2013) was targeted
to validating the algorithmic proposal, but without neglecting
performance. However, little attention was paid in the devel-
opment of a highly optimized code. For this reason, several
design decisions have been reconsidered for this work. One of
the most important improvements lies in the kernel design.
In the first SGS implementations, each step of the search
loop was computed using three different kernels (namely,
crossoverAndMutation, evaluate and elitism
kernels), while in the present implementation the code of
the kernels has been merged into a single kernel to increase
the performance. Another important difference is that the
pseudorandom number generation has been moved from the

123

Author's personal copy

Systolic genetic search

CPU2 to the GPU. The source code of SGS is publicly avail-
able in http://www.fing.edu.uy/~mpedemon/SGS.html. The
GPU implementation details are commented next.

Algorithm 2 presents the pseudocode of the SGS algo-
rithm for the host side (CPU). Initially, the seed for the ran-
dom number generation is transferred from the CPU to the
global memory of the GPU and the constant data associ-
ated with the problem required for computing the fitness
values are transferred from the CPU to texture memory of
the GPU. Then, the population is initialized on the GPU
(initPop kernel) and the fitness of the initial population is
computed afterwards (fitness kernel). At each iteration,
the crossover and mutation operators, the fitness function
evaluation, and the elitist replacement are executed on the
GPU in a single kernel (systolicStep kernel). Addition-
ally, in the SGSE flavor the exchange of directions operator
(exchange kernel) is applied on the GPU in given iter-
ations (when div(generation, τ) == 0). Finally, when the
algorithm reaches the stop condition, the results are trans-
ferred from the GPU to the CPU.

Algorithm 2 SGS Host Side Pseudocode
1: transfer seed for random number generation to GPU
2: transfer constant data to GPU’s texture memory
3: invoke initPop kernel to initialize population
4: invoke fitness kernel to calculate fitness of the population
5: for i = 1 to maxGeneration do
6: invoke systolicStep kernel to compute systolic step
7: if div(generation, τ) == 0 then % only in SGSE
8: invoke exchange kernel to exchange directions
9: end if
10: end for
11: transfer results from GPU to CPU

3.2.1 Data organization

Two independent memory spaces of the GPU global mem-
ory are used to allow concurrent access of data. While the
memory space that contains the population in generation t is
read, the new solutions from generation t + 1 can be writ-
ten in the other memory space without requiring any type of
concurrency control (disjoint storage). Each memory space
stores a struct, containing an array with the solutions moving
horizontally, an array with the solutions moving vertically, an
array with the fitness values corresponding to the solutions
moving horizontally, and an array with the fitness values cor-
responding to the solutions moving vertically.

2 The random number generation on the CPU guarantees that, using
the same seed, the results obtained by a stochastic algorithm in a CPU
and in a GPU are the same.

3.2.2 Kernel operation

The initPop kernel initializes the population in the GPU
using the CUDA CURAND Library (Nvidia Corporation
2012b) to generate random numbers. The kernel is launched
with a configuration that depends on the total number of bits
that have to be initialized, following the guidelines recom-
mended in Nvidia Corporation (2012a).

The fitness, systolicStep and exchange ker-
nels are implemented following the idea used in Pedemonte
et al. (2011), in which operations are assigned to a whole
block and all the threads of the block cooperate to perform a
given operation. If the solution length is larger than the num-
ber of threads in the block, each thread processes more than
one element of the solution but the elements used by a single
thread are not contiguous. Thus, each operation is applied to
a solution in chunks of the size of the thread block (T in the
following figure), as it is shown in Fig. 10.

The systolicStep kernel is launched with l × τ

blocks, i.e., each block processes one cell of the grid. Ini-
tially, the global memory location of the two solutions that
have to be processed by the cell,3 the global memory location
where the resulting solutions should be stored,4 the crossover
points and the mutation point are calculated from the block
identifiers by thread zero of the block. These values are stored
in shared memory to make them available for the rest of the
threads of the block.5 This kernel uses shared memory to tem-
porarily store the two solutions being constructed and partial
fitness values computed by each thread. The amount of shared
memory used by each kernel (8×threads Per Block+2×l)
ensures that at least four blocks can work concurrently in
a multiprocessor with solutions of up to 3,800 bit length.
The use of shared memory has the advantage that reduces
the accesses to global memory, which is a costly operation,
even though it restricts the size of the instances that could be
resolved.

Initially, systolicStep kernel applies the crossover
operator, processing the solution components in chunks of
size of the thread block (as it was explained above), taking the
two solutions from the first memory space of the GPU global
memory and storing the intermediate solutions in the shared
memory. The thread zero of the block mutates the two inter-

3 The two solutions are read from the first memory space of the GPU
global memory, one from the array that stores the solutions moving
horizontally and the other from the array that stores the solutions moving
vertically.
4 It should be noted that the two solutions are written in the second
memory space of the GPU global memory, one in the array that stores
the solutions moving horizontally and the other in the array that stores
the solutions moving vertically.
5 We made this decision, rather than making each thread calculate these
values redundantly, in order to reduce the number of registers used by
the block.

123

Author's personal copy

M. Pedemonte et al.

p1

p2

X1

Y1

T
h
re
a
d
1

X2

Y2

T
h
re
a
d
2

XT

YT

T
h
re
a
d
T

XT+1

YT+1

T
h
re
a
d
1

XT+2

YT+2

T
h
re
a
d
2

X2T

Y2T

T
h
re
a
d
T

X2T+1

Y2T+1

T
h
re
a
d
1

X2T+2

Y2T+2

T
h
re
a
d
2

X3T

Y3T

T
h
re
a
d
T

First loop iteration Second loop iteration Third loop iteration

Fig. 10 Threads organization

mediate solutions. Then, partial fitness values are computed
by each thread using the data from the texture memory of the
GPU and those values are stored in shared memory. Then,
the kernel applies the well-known reduction pattern (McCool
et al. 2012) to these values to calculate the full fitness value
of each intermediate solution. Finally, the best solutions for
each flow are copied to the second memory space of the GPU
global memory, considering the fitness values calculated for
the intermediate solutions and the fitness values from the
original solutions. If an intermediate solution is better than
the original solution in one cell, the intermediate solution is
directly copied from the shared memory to the global mem-
ory. Otherwise, the original solution is copied from the first
memory space of the global memory to the second one.

The fitness and exchange kernels follow the same
idea regarding the thread organization and behavior than
systolicStep kernel, and are also launched for execution
organized in l × τ blocks.

4 Experimental study

This section describes the problems used for the experimental
study, the parameters setting, and the execution platforms.
Then, the results obtained are presented and analyzed.

4.1 Test problems

For the experimental evaluation of SGS, we use two classi-
cal benchmark problems, Knapsack Problem and Massively
Multimodal Deceptive Problem, plus a real-world applica-
tion, the Next Release Problem. These problems and the test
instances used are briefly introduced next.

4.1.1 Knapsack problem

The Knapsack Problem (KP) is a classical combinatorial opti-
mization problem that belongs to the class ofNP-hard prob-

lems (Pisinger 1999). It is defined as follows. Given a set of
n items, each of them having associated an integer value
pi called profit or value and an integer value wi known as
weight, the goal is to find the subset of items that maximizes
the total profit keeping the total weight below a fixed maxi-
mum capacity (W) of the knapsack or bag. It is assumed that
all profits and weights are positive, that all the weights are
smaller than W (items heavier than W do not belong to the
optimal solution), and that the total weight of all the items
exceeds W (otherwise, the optimal solution contains all the
items of the set).

The most common formulation of the KP is the integer
programming model presented in Eqs. 4a, 4b, and 4c, being
xi the binary decision variables of the problem that indicate
whether the item i is included or not in the knapsack.

(KP) maximize f (x) =
n∑

i=1

pi xi (4a)

subject to:
n∑

i=1

wi xi � W (4b)

xi ∈ {0, 1},∀i = 1, . . . , n (4c)

Table 1 presents the instances used in this work. These
instances have been generated with no correlation between
the weight and the profit of an item (i.e., wi and pi are chosen
randomly in [1, R]) using the generator described in Pisinger
(1999). The Minknap algorithm (Pisinger 1997), an exact
method based on dynamic programming, was used to find
the optimal solution for each of the instances.

All the algorithms studied use a penalty approach to man-
age infeasibility. In this case, the penalty function subtracts
W to the total profit for each unit of the total weight that
exceeds the maximum capacity. The formula for calculating
the fitness with penalty is:

f (x) =
n∑

i=1

pi xi −
(

n∑

i=1

wi xi − W

)
× W. (5)

123

Author's personal copy

Systolic genetic search

Table 1 Knapsack instances
used in the experimental
evaluation and their exact
optimal solutions

Instance n R W Profit of Opt. Sol Weight of Opt. Sol

100–1,000 100 1,000 1,001 5,676 983

100–10,000 100 10,000 10,001 73,988 9,993

200–1,000 200 1,000 1,001 10,867 1,001

200–10,000 200 10,000 10,001 100,952 9,944

500–1,000 500 1,000 1,001 19,152 1,000

500–10,000 500 10,000 10,001 153,726 9,985

1,000–1,000 1,000 1,000 1,001 27,305 1,000

1,000–10,000 1,000 10,000 10,001 231,915 9,996

Table 2 MMDP basic deceptive subfunction

Number of ones (unitation) Subfunction value

0 1.000000

1 0.000000

2 0.360384

3 0.640576

4 0.360384

5 0.000000

6 1.000000

4.1.2 Massively multimodal deceptive problem

The Massively Multimodal Deceptive Problem (MMDP) is
a problem that has been specifically designed to make EAs
converge to regions of the search space where the optimal
solution cannot be found (Goldberg et al. 1992). MMDP is
made up of k deceptive subproblems of 6 bits each one. The
function value of each of these subproblems is independent
from each other and only depends on the number of ones
it has (Unitation), following Table 2. The optimal solution
of a MMDP with k subproblems is accomplished if every
subproblem has either zero or six ones, and in that case the
function value and the fitness value are k. We use for the
experimental evaluation instances with strings of 300, 600,
900, 1,200 and 1,500 bits and therefore, the optimal solutions
are 50, 100, 150, 200 and 250, respectively.

4.1.3 Next release problem

The Next Release Problem (NRP) is a real-world problem
that arises in the software development industry (Bagnall et
al. 2001). In NRP, a company involved in the development of
a large software system has to determine which requirements
should be targeted in the next release of the software. The set
of costumers has different requirements that provide some
value to the company, while fulfilling each requirement has
an associated cost for the company.

NRP can be stated in the following terms (Durillo et
al. 2011). There is a set C of m customers and a set R
of n requirements. The economical cost of satisfying each
requirement is denoted by r j . Each customer has associated
a value ci that reflects the importance of the customer to the
company. There is also a value associated with each costumer
and each requirement (vi j) that represents the importance for
the customer i of the requirement j .

NRP was originally formulated as a single-objective prob-
lem using an integer programming model that is closely
related with the knapsack problem (Bagnall et al. 2001).
The formulation of the single-objective NRP is presented
in Eqs. 6a, 6b, and 6c, being x j the binary decision variables
of the problem that indicate whether the requirement j is
satisfied or not and B a given bound for the total cost.

(NRP) maximize f (x) =
m∑

i=1

c j

n∑

j=1

x jvi j (6a)

subject to:
n∑

j=1

x jr j � B (6b)

x j ∈ {0, 1},∀ j = 1, . . . , n (6c)

Later on, NRP was reformulated as a bi-objective problem
to avoid imposing the artificial constraint presented in Eq. 6b.
The formulation of the bi-objective NRP (Durillo et al. 2011;
Zhang et al. 2007) is presented in Eqs. 7a, 7b, and 7c.

(NRP) minimize f1(x) =
n∑

j=1

x jr j (7a)

maximize f2(x) =
m∑

i=1

c j

n∑

j=1

x jvi j (7b)

subject to: x j ∈ {0, 1},∀ j = 1, . . . , n (7c)

Since SGS is a single-objective algorithm, we followed a
similar approach that Zhang et al. (2007), who also solved
the NRP using a single-objective GA.

To that end, the authors transform the first-objective func-
tion in a maximization, as shown in Eq. 8, and use the

123

Author's personal copy

M. Pedemonte et al.

weighted sum method (Deb 2001; Marler and Arora 2004)
that combines both objective functions into a single-objective
using w as a weighting factor (0 ≤ w ≤ 1), as shown in Eq. 9.

maximize f1(x) = −
n∑

j=1

x jr j (8)

maximize F(x) = (1 − w) · f1(x) + w · f2(x) (9)

However, there is a great difference between the magni-
tudes of f1 and f2, so we normalized both objective func-
tions (Deb 2001; Marler and Arora 2004) to map them in
[0,1]. The formula for normalization in a maximization is:

f Trans
i (x) = fi (x) − zNadir

i

zIdeal
i − zNadir

i

, (10)

being zNadir the Nadir point, i.e., the point with the worse
(minimal) value for each fi and zIdeal the Ideal or utopian
point, i.e., the point with the best (maximal) value for each
fi .

Since ∀x f1(x) ≤ 0 and f2(x) ≥ 0, then zIdeal
1 = 0 and

zNadir
2 = 0, thus resulting in the objective functions shown in

Eqs. 11a and 11b.

f Trans
1 (x) = f1(x)−zNadir

i
−zNadir

i
(11a)

f Trans
2 (x) = f2(x)

zIdeal
i

(11b)

To obtain a better distribution on the Pareto Front of the
solutions obtained with a single-objective algorithm, we pre-
ferred to use the Tchebycheff approach (Marler and Arora
2004; Miettinen 1999; Zhang and Li 2007) rather than using
the weighted sum method. This will avoid the usual issue
of not being able to solve non-convex problems. Thus, the
resulting problem formulation is:

minimize g(x) = max(f Tch
1 (x), f Tch

2 (x)) (12a)

where: f Tch
1 (x) = (1 − w) · (1 − f Trans

1 (x)) (12b)

f Tch
2 (x) = w · (1 − f Trans

2 (x)) (12c)

Since the original problem has been transformed in a min-
imization and g(x) ≤ 1, the fitness function is defined as
follows:

f (x) = 1 − g(x). (13)

Additionally, as it is possible that x dominates y and
g(x) = g(y) (Zhang and Li 2007), when two different solu-
tions with the same fitness value are compared (e.g., when
elitism is applied), it is checked whether a solution dominates
the other.

The instances used in this work for the experimental eval-
uation of the NRP are taken from Durillo et al. (2011), and
Zhang et al. (2007). The instance name indicates the number
of costumers and requirements (m−n stands for m costumers
and n requirements). The instances used are 100–20, 100–
25, 35–35 (real-world instance from Durillo et al. 2011),
15–40, 50–80, 100–140 and 2–200. The optimal value for
each instance and weighting factor w is unknown since the
approach followed in the previous work (Zhang et al. 2007)
for solving the NRP using single-objective algorithms is dif-
ferent from the one used in this work.

4.2 Algorithms

In addition to the SGS algorithms proposed in this paper,
we have included two algorithms, a Random Search and a
simple Genetic Algorithm (GA) with and without elitism, to
compare the quality of the solutions obtained. The former
is used as a sanity check, just to show that our algorithmic
proposals are more intelligent that a pure random sampling.
On the other hand, the GAs have been chosen because of
their popularity in the literature and also because they share
the same basic search operators so we can properly compare
the underlying search engine of the techniques. Briefly, the
details of these algorithms are:

– Random Search (RS): The RS algorithm processes each
bit of the solution vector sequentially. Each bit is set to
1 at random with probability 0.5, except for the KP. In
the KP, if including an item in the knapsack exceeds the
maximum capacity, it is discarded. Otherwise, the item is
included in the knapsack at random with probability 0.5.

– Simple Genetic Algorithm (SGA): It is a generational GA
with binary tournament, two-point crossover, and bit-flip
mutation.

– Elitist Genetic Algorithm (EGA): It is similar to SGA but
with elitist replacement, i.e., each child solution replaces
its parent solution only if it has a better (higher) fitness
value.

Each of the algorithms studied has been implemented both
on CPU and GPU, except RS and SGST that have only been
implemented on CPU since they use a rather simple search
engine with low numerical efficiency. The CPU implemen-
tation is straightforward, so no further details are provided.
The SGA and EGA implementation on GPU follows the same
guidelines that the implementations of the SGS algorithms.

4.3 Parameters setting and test environment

The SGA and EGA parameter values used are 0.9 for the
crossover probability and 1/ l for the mutation probability,
where l is the length of the tentative solutions. The population

123

Author's personal copy

Systolic genetic search

size and the number of iterations are defined by considering
the features of SGS, using exactly the same values for the two
GA versions. In this study, the population size is 2 × l × τ

and the number of iterations is l × τ (recall that τ = �lg l�).
This number was chosen so that each solution returns to its
original cell in SGSB after that number of iterations. Finally,
2 × l2 × τ 2 solutions are generated by RS to perform a fair
comparison.

In the NRP, we use eleven different weight coefficients
w ranging from 0 to 1 with a step size of 0.1 to analyze the
importance of the two internal goal functions. Each execu-
tion reported in the article consists of eleven consecutive and
independent runs with the different possible values of w to
obtain different solutions within a single experiment. A sim-
ilar approach was previously used in Zhang et al. (2007), but
using only nine different values (ranging from 0.1 to 0.9 with
a step size of 0.1).

It is still a controversial issue how to make a fair compari-
son between traditional CPUs and modern GPUs. The selec-
tion of the execution platforms tries to follow the guidelines
suggested in Hennessy and Patterson (2011). The execution
platform for the CPU versions is a PC with a Quad Core Xeon
E5530 processor at 2.40 GHz with 48 GB RAM using Linux
operating system. The CPU versions have been compiled
using the -O3 flag and are run as single thread applications.
The execution platform for the GPU versions is a Nvidia’s
GeForce GTX 480 (480 CUDA Cores) connected to a PC
with a Core 2 Duo E7400 at 2.80 GHz with 2 GB RAM
using Linux operating system. The GPU versions were also
compiled using the -O3 flag.

All the results reported are mean values rounded to two
figures over 50 independent runs. The transference times of
data between CPU and GPU are included in the reported total
runtime of the GPU version.

4.4 Experimental analysis

This section describes the experimental analysis conducted to
validate SGS. The experiments include a study of the numer-
ical efficiency of the algorithm proposed and a study of the
performance of the parallel GPU implementation of SGS.

All the algorithms in this work are stochastic algorithms,
therefore, the results have to be provided with statistical sig-
nificance. The following statistical procedure has been used.
First, fifty independent runs for each algorithm and each
problem instance have been performed. The following sta-
tistical analysis has been carried out (Sheskin 2011). First, a
Kolmogorov–Smirnov test and a Levene test are performed
to check, respectively, whether the samples are distributed
according to a normal distribution and whether the variances
are homogeneous (homocedasticity). If the two conditions
hold, an ANOVA I test is performed; otherwise we perform
a Kruskal–Wallis test. All the statistical tests are performed

with a confidence level of 95 %. Since more than two algo-
rithms are involved in the study, a post hoc testing phase
which allows for a multiple comparison of samples has been
performed. The result is a pairwise comparison of all the
cases compared using the Bonferroni–Dunn method on either
the Student’s t test (if the samples follow a normal distribu-
tion and the variances are homogeneous) or the Wilcoxon–
Mann–Whitney test (otherwise). The results are displayed
in tabular form (see below), where ‘�’ states that the con-
figuration of the row has statistically lower values (i.e., it is
better) than the column and ‘�’ states that the opposite is
true. When no statistically significant differences are found,
the ‘−’ symbol is used.

4.4.1 Numerical efficiency

Let us first analyze the numerical efficiency for KP. Table 3
presents the experimental results regarding the quality of the
solutions (measured in terms of distance to the optimal solu-
tion) obtained for the KP, while Table 4 presents in which
instances the statistical confidence has been achieved.

The results obtained show that SGSE, SGSV and SGSB

are the best performing algorithms for the KP, as they are far
superior than RS, SGA and SGST in all the instances consid-
ered in this study. They are also superior than EGA in five out
of eight instances (the instances with more items). It should
also be noted that both SGSV and SGSB find the optimal solu-
tion on every run for all the instances, while SGSE reaches the
optimal solution on every run for six out of eight instances.
EGA also performs well, having a small mean error and being
superior to RS, SGA and SGST in all the instances studied.
Although the results obtained by SGST are not satisfactory
due to the rather high mean error, SGST performs better than
RS and SGA. SGA presents non-competitive results and it
is only better than the (non-intelligent) random search. It is
also remarkable the ability of SGSV and SGSB to scale prop-
erly with the size of the KP instances: they have consistently
reached the optimal solutions regardless of the number of
items (which ranges from 100 to 1,000).

Now, we analyze the numerical efficiency for the MMDP.
Table 5 presents the experimental results regarding the qual-
ity of the solutions obtained for MMDP, while Table 6
presents in which instances the statistical confidence has been
achieved.

The results obtained show that SGA, SGSE, SGSV and
SGSB are the best performing algorithms for MMDP. They
all reach the optimal solution in every independent run for
all the considered instances. EGA and SGST have a simi-
lar performance, having a small mean error and only being
superior to RS. It is interesting that EGA performs worse
than SGSE, SGSV and SGSB. Since MMDP is a deceptive
problem, it is reasonable that an algorithm with elitism is
especially attracted to local optima. However, the systolic

123

Author's personal copy

M. Pedemonte et al.

Table 3 Numerical efficiency of CPU versions for KP (mean error ± std. dev.)

Instance RS SGA EGA SGST SGSE SGSV SGSB

100–1,000 1.59e3 ± 8.56e1 4.79e2 ± 1.65e2 5.14e0 ± 2.60e1 2.56e2 ± 1.15e2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

100–10,000 1.96e4 ± 1.78e3 7.15e3 ± 2.24e3 0.00e0 ± 0.00e0 3.66e3 ± 2.03e3 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

200–1,000 5.27e3 ± 1.65e2 1.77e3 ± 3.07e2 3.64e0 ± 1.46e1 9.23e2 ± 2.71e2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

200–10,000 2.96e4 ± 1.77e3 1.12e4 ± 2.05e3 1.36e1 ± 3.86e1 8.15e3 ± 2.42e3 0.20e0 ± 1.41e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

500–1,000 1.19e4 ± 1.74e2 4.32e3 ± 4.12e2 2.21e1 ± 3.74e1 2.04e3 ± 3.73e2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

500–10,000 7.06e4 ± 2.20e3 3.44e4 ± 2.56e3 1.55e2 ± 1.65e2 1.55e4 ± 3.39e4 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,000–1,000 1.93e4 ± 2.89e2 7.93e3 ± 4.65e2 5.27e1 ± 4.19e1 6.59e3 ± 6.87e2 5.52e0 ± 1.71e1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,000–10,000 1.34e5 ± 2.63e3 6.55e4 ± 4.02e3 4.00e2 ± 6.36e2 5.73e4 ± 4.23e3 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

The best results are in bold

Table 4 Statistical significance for instances 100–1,000, 100–10,000, 200–1,000, 200–10,000, 500–1,000, 500–10,000, 1,000-1,000, 1,000–10,000

SGA EGA SGST SGSE SGSV SGSB

RS �
SGA �
EGA � � � � � � � � – – – � � � � � – – – � � � � � – – – � � � � �
SGST �
SGSE – – – – – – – – – – – – – – – –

SGSV – – – – – – – –

Table 5 Numerical efficiency of CPU versions for MMDP (mean error ± std. dev.)

Instance RS SGA EGA SGST SGSE SGSV SGSB

300 2.07e1 ± 3.88e−1 0.00e0 ± 0.00e0 1.44e−2 ± 7.11e−2 1.44e−2 ± 7.11e−2 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

600 4.63e1 ± 5.20e−1 0.00e0 ± 0.00e0 1.29e−1 ± 2.02e−1 3.95e−1 ± 2.32e−1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

900 7.26e1 ± 5.37e−1 0.00e0 ± 0.00e0 9.92e−1 ± 6.01e−1 7.69e−1 ± 2.81e−1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,200 9.95e1 ± 6.82e−1 0.00e0 ± 0.00e0 1.89e0 ± 9.49e−1 1.20e0 ± 4.63e−1 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

1,500 1.27e2 ± 8.42e−1 0.00e0 ± 0.00e0 4.08e0 ± 1.11e0 3.52e0 ± 1.37e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

The best results are in bold

Table 6 Statistical significance
for instances 300, 600, 900,
1,200, 1,500

SGA EGA SGST SGSE SGSV SGSB

RS �
SGA – � � � � – � � � � – – – – – – – – – – – – – – –

EGA – � – � – – � � � � – � � � � – � � � �
SGST – � � � � – � � � � – � � � �
SGSE – – – – – – – – – –

SGSV – – – – –

variants, which also use elitism, have managed to avoid get-
ting stuck in unpromising regions of the search space. SGSE,
SGSV and SGSB have been able to scale with the size of the
instances, showing the promising search engine devised.

Finally, we analyze the numerical efficiency for the NRP.
In a previous work, Zhang et al. (2007) used two single-
objective algorithms for solving the NRP, but they used a
different approach than the one used in this work. For this

reason, the optimal value for each instance and weighting fac-
tor w is unknown. Table 7 presents the best solution found
on all the executions for each pair instance weighting fac-
tor considered. These solutions will be considered the best
known solutions of the NRP for the experimental analysis.

Table 8 presents the experimental results regarding the
quality of the solutions obtained for the NRP. For each
instance, we measure the Euclidean distance between the

123

Author's personal copy

Systolic genetic search

Table 7 Best solution found for NRP

Instance Weight

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100–20

Cost 0 9 18 25 33 44 54 65 79 90 107

Value 0 495.55 762.19 1,004.11 1,238.43 1,472.86 1,599.37 1,816.68 1,964.12 2,181.44 2,408.56

100–25

Cost 0 4 8 12 18 22 27 33 40 48 58

Value 2,433 4,791 6,016 7,157 8,458 9,124 10,301 11,451 12,620 13,741 14,998

35–35

Cost 0 440 770 1,080 1,430 1,830 2,240 2,840 3,440 4,640 6,740

Value 0 33 42 47 52 56 60 64 68 72 78

15–40

Cost 0 15 29 42 55 69 84 101 124 147 185

Value 0 167.19 254.35 322.51 378.34 429.51 478.18 525.47 572.54 626.96 688.36

50–80

Cost 0 34 66 98 131 165 201 240 284 337 404

Value 0 1,061.73 1,614.07 2,049.91 2,446.10 2,821.81 3,184.76 3,552.58 3,925.87 4,323.95 4,761.10

100–140

Cost 0 58 110 162 216 271 332 397 471 562 572

Value 0 3,936.08 5,923.49 7,541.37 8,962.41 10,299.10 11,595.75 12,920.88 14,264.14 15,734.58 17,289.44

2–200

Cost 0 80 149 216 283 353 427 509 600 716 987

Value 0 128.29 185.24 228.57 265.37 298.49 329.66 360.84 392.05 424.53 461.04

Table 8 Numerical efficiency of CPU versions for NRP (mean error ± std. dev.)

Instance RS SGA EGA SGST SGSE SGSV SGSB

100–20 6.15e2 ± 4.31e2 0.02e0 ± 0.25e0 0.09e0 ± 0.60e0 0.11e0 ± 0.52e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

100–25 3.71e3 ± 2.49e3 0.11e0 ± 1.72e0 0.87e0 ± 2.03e1 1.15e0 ± 7.28e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

35–35 2.03e3 ± 1.24e3 0.01e0 ± 0.06e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

15–40 1.90e2 ± 1.14e2 0.28e0 ± 1.07e0 0.39e0 ± 1.38e0 0.24e0 ± 1.12e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

50–80 1.22e3 ± 7.99e2 5.43e0 ± 4.44e0 0.65e0 ± 2.15e0 0.98e0 ± 1.94e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

100–140 4.41e3 ± 2.84e3 2.44e1 ± 2.81e1 3.84e0 ± 1.08e1 5.07e0 ± 1.00e1 3.39e0 ± 1.01e1 2.23e0 ± 6.53e0 0.09e0 ± 0.28e0

2–200 3.01e2 ± 1.53e2 0.94e0 ± 0.91e0 0.05e0 ± 0.18e0 1.77e0 ± 1.94e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0 0.00e0 ± 0.00e0

The best results are in bold

solution obtained for each run and the best solution found,
using the same weighting factor, calculating the mean error
as the average of these distances.

Table 9 presents in which instances the statistical confi-
dence has been achieved.

The results obtained show that SGSE, SGSV and SGSB

are among the best performing algorithms for the NRP, as
their solutions are much closer to the best known than RS,
SGA, EGA and SGST in most of the instances considered in
this study; SGSB even outperforms SGSE and SGSV in one
instance. It should also be noted that those three algorithms
are able to find the best known solution in every run in six

out of seven instances, while EGA and SGST find the best
known solution in every run in one of the instances. EGA
also performs well, having a small mean error and being
superior to SGA and SGST in most instances and to RS in all
the instances studied. SGA and SGST have a similar perfor-
mance, having an acceptable mean error in most instances
and only being superior to RS.

From these results, it is clear that the structured search of
SGS performs an intelligent exploration of the search space,
allowing three out of four flavors of SGS to identify the region
where the optimal solution is located for the considered prob-
lem and instances. The key aspect that explains why SGST

123

Author's personal copy

M. Pedemonte et al.

Table 9 Statistical significance for instances 100–20, 100–25, 35–35, 15–40, 50–80, 100–140, 2–200

SGA EGA SGST SGSE SGSV SGSB

RS �
SGA – – – � � � � � � – � � � � – – – � � � � – – – � � � � – – – � � � �
EGA – � – – � � � � – – � � – � � – – � � – � � – – � � � �
SGST � � – � � � � � � – � � � � � � – � � � �
SGSE – – – – – – – – – – – – � –

SGSV – – – – – � –

Table 10 Runtime in seconds of the CPU versions for KP (mean ± std. dev.)

Instance SGA EGA SGST SGSE SGSV SGSB

100–1,000 1.27e0 ± 0.01e0 1.36e0 ± 0.01e0 0.69e0 ± 0.04e0 0.71e0 ± 0.04e0 0.66e0 ± 0.04e0 0.65e0 ± 0.03e0

100–10,000 1.35e0 ± 0.04e0 1.42e0 ± 0.04e0 0.76e0 ± 0.05e0 0.73e0 ± 0.02e0 0.66e0 ± 0.03e0 0.70e0 ± 0.04e0

200–1,000 1.30e1 ± 0.41e0 1.36e1 ± 0.09e0 6.07e0 ± 0.36e0 6.12e0 ± 0.33e0 5.54e0 ± 0.21e0 5.70e0 ± 0.13e0

200–10,000 1.29e1 ± 0.15e0 1.38e1 ± 0.10e0 6.25e0 ± 0.37e0 6.08e0 ± 0.20e0 5.85e0 ± 0.36e0 5.75e0 ± 0.04e0

500–1,000 2.52e2 ± 2.54e0 2.63e2 ± 4.57e0 1.09e2 ± 3.21e0 1.08e2 ± 2.97e0 1.03e2 ± 3.44e0 1.06e2 ± 3.69e0

500–10,000 2.48e2 ± 4.81e0 2.68e2 ± 8.05e0 1.08e2 ± 0.75e0 1.03e2 ± 0.20e0 9.82e1 ± 1.09e0 1.03e2 ± 1.38e0

1,000–1,000 2.42e3 ± 6.75e1 2.56e3 ± 4.84e1 9.10e2 ± 5.23e0 9.30e2 ± 2.54e1 8.82e2 ± 5.35e0 9.08e2 ± 1.04e1

1,000–10,000 2.39e3 ± 6.80e1 2.52e3 ± 4.54e1 8.98e2 ± 3.90e0 9.12e2 ± 3.27e1 8.66e2 ± 5.60e0 8.92e2 ± 1.72e1

The shortest runtimes are in bold

Table 11 Runtime in seconds of CPU versions for MMDP (mean ± std. dev.)

Instance SGA EGA SGST SGSE SGSV SGSB

300 5.62e1 ± 1.67e0 5.91e1 ± 2.08e0 2.64e1 ± 0.03e0 2.74e1 ± 1.29e0 2.50e1 ± 1.34e0 2.71e1 ± 0.66e0

600 5.37e2 ± 2.39e0 5.73e2 ± 7.70e0 2.44e2 ± 6.30e0 2.46e2 ± 2.45e0 2.40e2 ± 1.36e1 2.36e2 ± 1.20e1

900 1.85e3 ± 4.9e1 1.91e3 ± 2.78e1 7.63e2 ± 1.24e1 7.85e2 ± 7.83e0 7.72e2 ± 4.21e1 7.43e2 ± 1.95e1

1,200 5.25e3 ± 1.64e2 5.47e3 ± 1.74e2 2.13e3 ± 5.43e1 2.17e3 ± 5.78e1 2.11e3 ± 9.36e1 2.10e3 ± 9.38e1

1,500 1.02e4 ± 1.73e2 1.08e4 ± 3.39e2 4.10e3 ± 1.05e2 4.23e3 ± 1.36e2 4.04e3 ± 1.14e2 4.00e3 ± 4.64e1

The shortest runtimes are in bold

is not competitive with the other flavors of SGS is that SGST

has low diversity in the mutation and crossover points of the
solutions moving through the vertical data stream. Within the
context of the experimental evaluation of the KP, a deceptive
problem, like the MMDP, and a real-world problem like the
NRP, it has been shown the potential of SGSE, SGSV and
SGSB regarding the quality of the obtained solutions.

4.4.2 Parallel performance

In this section, we begin our study with the performance
analysis of the CPU versions of the algorithms studied.
Tables 10, 11 and 12 show the mean runtime in seconds and
the standard deviation of the algorithms executed on CPU for
the KP, MMDP and NRP, respectively. The runtime of RS is
not included due to its poor numerical results.

The results show that SGS algorithms are the best per-
forming algorithms. In particular, SGSV is the algorithm
with the shortest runtime in most instances of the KP, while

SGSB is the best performing algorithm in most instances
of the MMDP. This is mainly caused because the crossover
and mutation points of each cell are calculated according
to the coordinates of the cell on the grid, thus avoiding the
generation of random numbers during the execution of the
algorithm. In NRP, the behavior is somewhat different to the
behavior observed in the other two problems as SGSB and
SGSV are among the algorithms that take the longest runtime
to finish in several instances. This fact may be mainly pro-
voked by two reasons. On one hand, the fitness function is
the most computationally costly of the whole experimental
evaluation. On the other hand, in NRP each execution con-
sists of eleven consecutive runs with the different values of
the weighting factor. These two facts, as well as the reduced
number of requirements of the instances used, i.e., the num-
ber of decision variables, seem to compensate the possible
gain in performance that could be achieved by avoiding the
random number generation during its execution.

123

Author's personal copy

Systolic genetic search

Table 12 Runtime in seconds of CPU versions for NRP (mean ± std. dev.)

Instance SGA EGA SGST SGSE SGSV SGSB

100–20 4.54e−1 ± 2.16e−2 4.71e−1 ± 8.38e−3 4.19e−1 ± 2.54e−2 4.02e−1 ± 5.55e−4 4.81e−1 ± 4.90e−4 5.52e−1 ± 7.52e−3

100–25 9.12e−1 ± 4.80e−2 9.65e−1 ± 2.44e−2 8.43e−1 ± 1.86e−2 8.44e−1 ± 2.50e−2 9.80e−1 ± 1.16e−3 1.12e0 ± 3.38e−2

35–35 1.77e0 ± 8.03e−2 1.88e0 ± 3.62e−2 1.55e0 ± 4.43e−2 1.55e0 ± 1.83e−2 1.71e0 ± 8.06e−4 1.95e0 ± 3.48e−2

15–40 1.58e0 ± 7.16e−2 1.69e0 ± 2.72e−2 1.22e0 ± 7.29e−2 1.16e0 ± 1.07e−3 1.28e0 ± 1.00e−3 1.43e0 ± 4.27e−2

50–80 2.96e1 ± 1.91e0 3.15e1 ± 1.56e0 2.45e1 ± 1.28e0 2.52e1 ± 7.57e−1 3.08e1 ± 9.70e−1 3.47e1 ± 5.98e−1

100–140 3.64e2 ± 7.15e0 3.69e2 ± 2.08e0 3.22e2 ± 3.18e−1 3.42e2 ± 7.09e0 4.19e2 ± 7.09e0 4.28e2 ± 1.79e1

2–200 1.88e2 ± 1.12e0 2.01e2 ± 3.98e0 1.00e2 ± 8.04e−2 1.07e2 ± 1.91e0 1.06e2 ± 2.30e0 1.07e2 ± 5.84e0

The shortest runtimes are in bold

Table 13 Best TPB configuration of GPU versions for KP

Instances SGA EGA SGSE SGSV SGSB

100–1,000 32 32 64 64 64

100–10,000 32 32 64 64 64

200–1,000 32 32 64 64 64

200–10,000 32 32 64 64 64

500–1,000 64 64 128 128 128

500–10,000 64 64 128 128 128

1,000–1,000 64 64 128 128 128

1,000–10,000 64 64 128 128 128

Table 14 Best TPB configuration of GPU versions for MMDP

Instances SGA EGA SGSE SGSV SGSB

300 32/64 64 64 64 64

600 64 64 64 64 64

900 64 64 128 128 128

1200 64 64 128 128 128

1500 64 64 128 128 128

Now, we analyze the performance of the GPU versions.
Considering the features of the GPU platform used in this
work, executions with 32, 64, 128 and 256 Threads Per Block
(TPB) were made. Tables 13, 14, and 15 show the best con-
figuration of TPB of the algorithms studied for each problem
and instance, i.e., the TPB configuration with the shortest
execution time. The numerical efficiency of the GPU imple-
mentations was also studied, reaching similar conclusions as
those drawn for the CPU versions, but these results are not
included in this article because of its huge extension.

Tables 16, 17, and 18 show the mean runtime in seconds
and the standard deviation of the algorithms implemented
on GPU using the best TPB configuration on each problem
and instance for the KP, MMDP and NRP, respectively. The
results show that the SGS algorithms are also the best per-
forming algorithms when implemented on GPU. In partic-
ular, SGSB is the algorithm with the shortest runtime in all

Table 15 Best TPB configuration of GPU versions for NRP

Instances SGA EGA SGSE SGSV SGSB

100–20 32 32 32 32 32

100–25 32 32 32 32 32

35–35 32 32 32/64 64 64

15–40 32 32 32/64 64 64

50–80 32 32 32 32 32/64

100–140 32 32 64 64 64

2–200 32 64 64 64 64

the instances of the three problems studied, e.g., SGSB needs
only 14.70 s for instance 100–10,000 of the KP, 35.65 s for
instance 1,500 of MMDP and 1.32 s for instance 100–140 of
NRP, which is more than 2× faster than both GAs.

Let us now analyze the improvement in performance of
GPU over CPU implementations. To this end, we use the ratio
between the wall-clock time of the CPU and the GPU exe-
cutions of each algorithm. Even though some authors make
reference to this metric as speedup, we prefer to refer to
this ratio as runtime reduction. The use of the term speedup
can give a misleading idea on how parallelizable is the GPU
implementation of an algorithm since the execution times
are measured in two different platforms. Tables 19, 20 and
21 show the runtime reduction of GPU versions vs. the CPU
versions for KP, MMDP and NRP.

The runtime reduction of SGS algorithms is up to 62.86×
(SGSB in 1,000–1,000) for the KP, 112.74× (SGSV in 1,500)
for the MMDP and 324.08× (SGSB in 100–140) for the NRP,
while for GAs it is up to 72.22× (EGA in 1,000–1,000),
110.86× (EGA in 1,500) and 110.94× (EGA in 100–140),
respectively.

The tendency is clear, the larger the instance, the higher
the time reduction. The reason is twofold. On the one hand,
larger tentative solutions allow all the algorithms to better
profit from the parallel computation of the threads and, on
the other hand, the algorithms use larger populations when
the size of the instances increases (the grid has to be enlarged
to meet the SGS structured search model), so a higher num-

123

Author's personal copy

M. Pedemonte et al.

Table 16 Runtime in seconds of GPU versions for KP (mean ± std. dev.)

Instance SGA EGA SGSE SGSV SGSB

100–1,000 7.54e−2 ± 5.48e−4 7.02e−2 ± 4.31e−4 3.70e−2 ± 1.41e−4 3.44e−2 ± 4.99e−4 3.40e−2 ± 2.47e−4

100–10,000 7.68e−2 ± 4.60e−4 7.24e−2 ± 4.90e−4 3.70e−2 ± 3.48e−4 3.46e−2 ± 4.99e−4 3.41e−2 ± 3.73e−4

200–1,000 4.48e−1 ± 6.30e−4 4.41e−1 ± 4.63e−4 2.26e−1 ± 4.05e−4 2.11e−1 ± 4.63e−4 2.10e−1 ± 4.43e−4

200–10,000 4.52e−1 ± 5.55e−4 4.31e−1 ± 4.99e−4 2.22e−1 ± 4.31e−4 2.06e−1 ± 5.01e−4 2.05e−1 ± 4.71e−4

500–1,000 4.58e0 ± 2.17e−3 4.51e0 ± 6.13e−4 2.28e0 ± 7.51e−4 2.15e0 ± 8.18e−4 2.13e0 ± 7.42e−4

500–10,000 4.59e0 ± 2.20e−3 4.51e0 ± 5.28e−3 2.29e0 ± 6.52e−4 2.15e0 ± 6.69e−4 2.14e0 ± 8.48e−4

1,000–1,000 3.43e1 ± 1.67e−2 3.40e1 ± 9.52e−4 1.53e1 ± 2.39e−3 1.45e1 ± 2.70e−3 1.45e1 ± 2.87e−3

1,000–10,000 3.42e1 ± 1.71e−2 3.49e1 ± 1.53e−3 1.55e1 ± 3.33e−3 1.48e1 ± 3.18e−3 1.47e1 ± 3.19e−3

The shortest runtimes are in bold

Table 17 Runtime in seconds of GPU versions for MMDP (mean ± std. dev.)

Instance SGA EGA SGSE SGSV SGSB

300 1.15e0 ± 6.58e−4 1.12e0 ± 7.12e−4 5.43e−1 ± 3.25e−3 5.01e−1 ± 2.35e−3 4.97e−1 ± 1.72e−3

600 8.00e0 ± 9.86e−4 7.88e0 ± 4.10e−3 3.06e0 ± 3.02e−3 2.83e0 ± 1.37e−3 2.81e0 ± 2.68e−3

900 2.34e1 ± 1.58e−3 2.26e1 ± 4.77e−2 8.85e0 ± 4.68e−2 8.26e0 ± 2.47e−3 8.21e0 ± 1.63e−3

1,200 5.48e1 ± 4.96e−2 5.37e1 ± 8.02e−2 2.10e1 ± 4.60e−2 1.96e1 ± 2.89e−3 1.95e1 ± 2.60e−3

1,500 9.70e1 ± 7.10e−2 9.70e1 ± 1.89e−1 3.81e1 ± 2.88e−3 3.58e1 ± 3.08e−3 3.57e1 ± 5.65e−3

The shortest runtimes are in bold

Table 18 Runtime in seconds of GPU versions for NRP (mean ± std. dev.)

Instance SGA EGA SGSE SGSV SGSB

100–20 6.04e−2 ± 5.81e−4 5.72e−2 ± 5.66e−4 5.25e−2 ± 6.08e−4 5.15e−2 ± 5.38e−4 5.15e−2 ± 5.74e−4

100–25 7.68e−2 ± 5.39e−4 7.31e−2 ± 8.29e−4 6.36e−2 ± 5.38e−4 6.15e−2 ± 5.80e−4 6.15e−2 ± 5.42e−4

35–35 1.16e−1 ± 7.60e−4 1.11e−1 ± 4.04e−4 8.79e−2 ± 1.02e−3 8.46e−1 ± 5.35e−4 8.36e−2 ± 5.98e−4

15–40 1.30e−1 ± 1.09e−3 1.24e−1 ± 5.15e−4 9.52e−2 ± 5.35e−4 9.11e−1 ± 3.96e−4 9.07e−2 ± 6.00e−4

50–80 5.31e−1 ± 5.85e−4 5.11e−1 ± 4.20e−3 3.56e−1 ± 4.22e−4 3.37e−1 ± 5.75e−4 3.35e−1 ± 5.25e−4

100–140 3.79e0 ± 6.95e−3 3.66e0 ± 9.09e−3 1.40e0 ± 7.40e−4 1.33e0 ± 5.80e−4 1.32e0 ± 7.85e−3

2–200 6.71e0 ± 1.21e−2 6.42e0 ± 7.35e−3 4.65e0 ± 9.11e−3 4.20e0 ± 5.65e−3 4.18e0 ± 8.12e−3

The shortest runtimes are in bold

ber of blocks have to be generated and the algorithm takes
advantage of the computing capabilities offered by the GPU
architecture. The reductions obtained by SGS for the MMDP
and the NRP are larger than the ones obtained by GAs except
for instance 2–200. In KP, the reductions obtained by GAs
are slightly larger than the ones obtained by SGS, since both
implementations follow a similar scheme, while sequential
GAs are computationally more expensive than sequential
SGS and have some additional features that can be paral-
lelized (e.g., mutation, random number generation).

Finally, we study the comparative performance among
CPU and GPU implementations.

To this end, we analyze the normalized number of solu-
tions built and evaluated for each algorithm per second (the
unit is the number of solutions constructed by the slower
algorithm for each instance). Figures 11 and 12 graphically

Table 19 Runtime reduction of GPU vs CPU versions for KP

Instance SGA EGA SGSE SGSV SGSB

100–1,000 16.84 19.37 19.19 19.19 19.12

100–10,000 17.58 19.61 19.73 19.08 20.53

200–1,000 29.11 30.79 27.08 26.26 27.14

200–10,000 28.58 31.93 27.39 28.40 28.05

500–1,000 54.95 58.41 47.32 48.10 49.78

500–10,000 54.04 59.47 45.16 45.67 48.28

1,000–1,000 70.50 75.14 60.77 60.92 62.86

1,000–10,000 69.81 72.22 58.78 58.68 60.69

The best values are in bold

show the normalized number of solutions built and evaluated
by CPU implementations for KP and MMDP, while Figs. 13
and 14 graphically show the normalized number of solu-

123

Author's personal copy

Systolic genetic search

Table 20 Runtime reduction of GPU versions vs CPU versions for
MMDP

Instance SGA EGA SGSE SGSV SGSB

300 48.83 52.76 50.50 49.96 54.61

600 67.18 72.75 80.28 84.64 83.89

900 79.09 84.46 88.75 93.45 90.50

1,200 95.81 102.02 103.60 107.64 107.47

1,500 104.91 110.86 110.91 112.74 112.12

The best values are in bold

Table 21 Runtime reduction of GPU vs CPU versions for NRP

Instance SGA EGA SGSE SGSV SGSB

100–20 7.52 8.23 7.66 9.34 10.72

100–25 11.88 13.20 12.27 15.93 18.21

35–35 15.26 16.94 17.63 20.21 23.33

15–40 12.15 13.63 12.18 14.05 15.77

50–80 55.82 61.59 70.81 91.34 103.52

100–140 96.10 100.94 244.36 315.26 324.08

2–200 28.03 31.34 23.05 25.12 25.60

The best values are in bold

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

100−1000 200−1000 500−1000 1000−1000
100−10000 200−10000 500−10000 1000−10000

3
2

1

SGA
EGA
SGST

SGSE

SGSV

SGSB

Fig. 11 Performance of CPU implementations for KP

tions built and evaluated by GPU implementations for KP
and MMDP. For NRP, as the results of the CPU versions are
irregular and there are large differences between the magni-
tudes of the results of the GPU versions, we have chosen to
not include plots, and the results are summarized in Table 22.

The results obtained show that the CPU implementation
of SGS can build and evaluate solutions more than two times
faster than both GAs for almost all the instances considered
in the experimental evaluation of the KP and MMDP. Addi-
tionally, the trend can be clearly seen in the figure: the larger

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

300 600 900 1200 1500

3
2

1

SGA
EGA
SGST

SGSE

SGSV

SGSB

Fig. 12 Performance of CPU implementations for MMDP

50
10

0
15

0

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

100−1000 200−1000 500−1000 1000−1000
100−10000 200−10000 500−10000 1000−10000

SGA
EGA
SGSE

SGSV

SGSB

Fig. 13 Performance of GPU implementations for KP

the instance considered, the larger the improvement over the
number of solutions build and evaluated by both GAs. In
NRP, the results obtained regarding the number of solutions
built and evaluated per second for the CPU implementations
are somewhat irregular, having a great variability. The behav-
ior is fairly different from the behavior seen in the first two
problems analyzed. The improvement of the best perform-
ing algorithm (SGST in five out of seven instances and SGSE

in four out of seven instances) over the algorithm with the
longest execution time for each instance ranges from 1.26
(35–35) to 2.01 (2–200).

On the other hand, the results obtained show that the GPU
implementation of SGS can build and evaluate solutions up
to more than 150 and 260 times faster than the CPU imple-

123

Author's personal copy

M. Pedemonte et al.
50

10
0

15
0

20
0

25
0

30
0

Instance

N
um

be
r

of
 s

ol
ut

io
ns

 p
er

 s
ec

on
d

(n
or

m
al

iz
ed

)

300 600 900 1200 1500

SGA
EGA
SGSE

SGSV

SGSB

Fig. 14 Performance of GPU implementations for MMDP

mentation of both GAs for the largest instances considered in
the experimental evaluation of the KP and MMDP, respec-
tively. In particular, SGSB, the best performing algorithm,
improves upon the sequential SGA up to 166× and 284×,
and upon the sequential EGA up to 176× and 301× for KP
and MMDP, respectively. Additionally, the clear trend shown
in the figures is that, when the larger the instance considered,
the larger the improvement over the number of solutions build
and evaluated by both sequential GAs and, what is more rel-
evant, the larger the difference between the improvement of
the GPU implementation of SGS and the improvement of the
GPU implementations of both GAs.

Finally, to compare the improvement in performance for
different instances of the NRP, it should be taken into account
that the complexity of an instance is not only influenced by
the number of requirements but also is influenced by the num-
ber of customers. For this reason, it is not easy to exactly
establish which instances are larger than others. To analyze

the scalability of the GPU implementations, we consider that
the size of the instance can be inferred from the value of the
normalized number of solutions, i.e., the larger the value,
the larger the instance. Taking as a criterion the order of the
instances determined by the normalized number of solutions
of the GPU implementation of SGA, the tendency is sim-
ilar than the one obtained for the first two problems, when
the larger the instance considered, the larger the improvement
over the sequential algorithm with the longest execution time
on CPU and the larger the difference between the improve-
ment of the SGS over both GAs on GPU.

The results obtained in the study of the performance of
the GPU implementation of SGS are superior than reduc-
tions that are often found in the literature of metaheuristics
on GPUs (10–20×). Additionally, the idea of SGS has proven
that is highly scalable, making these algorithms an interest-
ing alternative to unleash the potential of GPU platforms for
new applications.

5 Related work

This section analyzes published material which is related to
the SGS algorithm presented in this work. First of all, to the
best of our knowledge, the SGS algorithm is a newly fresh
research line developed by the authors which has been pre-
liminary explored in Pedemonte et al. (2012), Pedemonte et
al. (2013). Besides the seminal works of Systolic Computing
by Kung (1982), and Kung and Leiserson (1978), only few
subsequent trials have been devoted to engineer optimiza-
tion algorithms based on this paradigm. Indeed, only Chan
and Mazumder (1995) and Megson and Bland (1998) imple-
mented a GA on VLSI and FPGA architectures in a systolic
fashion, but this lines were early discarded due to the com-
plexity of translating the GA operations into the recurrent
equations required to define the hardware. More recently,
Alba and Vidal (2011), and Vidal et al. (2013) have proposed
SNS (Systolic Neigborhood Search). SGS can be seen as an

Table 22 Normalized number of solutions constructed per second for NRP

Instance CPU versions GPU versions

SGA EGA SGST SGSE SGSV SGSB SGA EGA SGSE SGSV SGSB

100–20 1.22 1.17 1.32 1.37 1.15 1.00 9.14 9.65 10.51 10.72 10.72

100–25 1.23 1.16 1.33 1.33 1.14 1.00 14.58 15.32 17.61 18.21 18.21

35–35 1.10 1.04 1.26 1.26 1.14 1.00 16.81 17.57 22.18 23.05 23.33

15–40 1.07 1.00 1.39 1.46 1.32 1.18 13.00 13.63 17.75 18.55 18.63

50–80 1.17 1.10 1.41 1.38 1.13 1.00 65.31 67.87 97.42 102.91 103.52

100–140 1.17 1.16 1.33 1.25 1.02 1.00 112.87 116.88 305.56 321.65 324.08

2–200 1.07 1.00 2.01 1.88 1.91 1.88 29.99 31.34 43.28 47.91 48.14

The best values are in bold

123

Author's personal copy

Systolic genetic search

advanced version of SNS. They share the arrangement of
solutions into a grid, but SNS only circulates solutions in
a row fashion, whereas SGS moves solutions not only hor-
izontally but also vertically. This means that each cell has
to manage pairs of solutions and thus more complex search
strategies can be devised.

Finally, SGS (and SNS as well) have similarities with the
cellular model of EAs (Alba and Dorronsorso 2008), but there
are strong conceptual design goals that make the two under-
lying search models fairly different. In the cellular model, the
population is structured in overlapping neighborhoods with
interactions between individuals limited to those neighbor-
hoods. Although in a first impression the models look alike,
the only point of contact of both models is that the solutions
are placed in a structured grid. Two main differences emerge.

First, the information flow in both models is quite differ-
ent. While the solutions remain static in the same position
of the grid and all the exchange of information among solu-
tions is caused by the overlap of neighborhoods in the cellular
model, SGS is based on the flow of solutions. That is, the con-
stant movement of all the information through the grid pro-
duces the communication between the solutions. As a conse-
quence, the solutions that could be mated in SGS is dynamic
during the execution of the algorithm, while in the cellular
model the mating is static, i.e., a given solution can only be
mated with the same set of solutions for the whole execution.
This clearly introduces a higher diversity in the search.

Second, each cell applies the evolutionary operators to
produce new solutions independently of the other cells in
SGS, i.e., when a cell is applying those operators it can be
considered isolated from the rest of the grid, while in the
cellular model each cell needs the neighboring cells to be
able to produce new solutions. Also, the SGS search aims
at being systematic: the search operators in each cell has an
structured pattern rather than the pure stochastic approach of
cellular EAs. As a final remark, we would like to point out
that the cellular model has been ported to CUDA too, so as to
allow its deployment on GPU cards (Vidal and Alba 2010a,b).

6 Conclusions and future work

In this work, we have presented a new parallel optimization
algorithm that combines ideas from the fields of metaheuris-
tics and Systolic Computing, the Systolic Genetic Search
algorithm. The algorithm is inspired by the systolic contrac-
tion of the heart that makes possible that it pumps blood
rhythmically according to the metabolic needs of the tissues
and is designed to explicitly exploit the high degree of paral-
lelism available in modern devices such as Graphics Process-
ing Units. An exhaustive experimental evaluation was con-
ducted using four different instantiations of SGS, a Random
Search and two GAs for solving two classical benchmarking

problems (including one deceptive problem) and a real-world
application on twenty different instances.

The experimental evaluation shows that SGSE, SGSV and
SGSB flavors have a great potential. These algorithms have
shown to be highly effective for solving the three problems
considered as they are able to find the optimal solution in
almost every run for each instance. Additionally, these three
instantiations of SGS outperform the remaining algorithms
involved in the experiment for KP and NRP, as well as RS
and EGA for MMDP.

The parallel implementation on GPU of these three algo-
rithms has achieved a high performance obtaining runtime
reductions from their corresponding sequential implementa-
tion that, depending on the instance considered, can arrive to
hundred times. In particular, parallel GPU-based implemen-
tation of SGSB is the best performing algorithm of the whole
experimental evaluation, having systematically the shortest
runtime for all the instances of all the problems considered.
The runtime reduction of the parallel GPU-based implemen-
tation of SGSB with respect to its sequential implementation
is up to 62× for the KP, 112× for the MMDP and 324× for
the NRP. Additionally, if the performance is evaluated using
the improvement in the number of solutions constructed and
evaluated relative to the sequential algorithm with the longest
runtime on CPU, the parallel GPU-based implementation of
SGSB improvement in performance is up to 176× for the
KNSP, 301× for the MMDP and 324× for the NRP. Finally,
it should be highlighted that SGSE, SGSV and SGSB on GPU
have shown a good scalability behavior when solving high-
dimension problem instances.

Three main areas that deserve further study are identified.
A first issue is to customize the GPU implementation of SGS
to the new Kepler architecture to assess the improvement in
performance that can be obtained in these new devices. A sec-
ond line of interest is to study theoretically and empirically
the impact of the values of the crossover and mutation points,
and how these values are distributed in the systolic grid, in the
quality of the solutions obtained by SGS. Given the results
obtained, we also want to go for an accurate scalability study
of this search model. Finally, we aim to perform a wider
impact analysis by solving additional problems to extend the
existing evidence of the benefits of this line of research.

Acknowledgments Martín Pedemonte acknowledges support from
Programa de Desarrollo de las Ciencias Básicas, Universidad de
la República, and Agencia Nacional de Investigación e Innovación,
Uruguay. Francisco Luna and Enrique Alba acknowledge partial sup-
port from the Spanish Ministry of Economy and Competitiveness and
FEDER under contract TIN2011-28194. Francisco Luna also acknowl-
edges partial support from TIN2011-28336. The authors would like
to thank to M.Sc. Leonella Luzardo for her valuable comments and
suggestions to improve the description of the biological phenomenon
that inspires Systolic Computing and systolic based metaheuristics. The
authors would also like to thank to the anonymous reviewers for their
insightful and constructive suggestions.

123

Author's personal copy

M. Pedemonte et al.

References

Alba E (ed) (2005) Parallel metaheuristics: a new class of algorithms.
Wiley, New York

Alba E, Dorronsorso B (eds) (2008) Cellular genetic algorithms.
Springer, New York

Alba E, Vidal P (2011) Systolic optimization on GPU platforms. In: 13th
international conference on computer aided systems theory (EURO-
CAST 2011)

Bagnall A, Rayward-Smith V, Whittley I (2001) The next release prob-
lem. Inf Softw Technol 43(14):883–890

Blum C, Roli A (2003) Metaheuristics in combinatorial optimiza-
tion: overview and conceptual comparison. ACM Comput Surv
35(3):268–308

Cecilia JM, García JM, Ujaldon M, Nisbet A, Amos M (2011) Par-
allelization strategies for ant colony optimisation on gpus. In: 25th
IEEE international symposium on parallel and distributed process-
ing, IPDPS 2011, workshop proceedings, pp 339–346

Chan H, Mazumder P (1995) A systolic architecture for high speed
hypergraph partitioning using a genetic algorithm. In: Yao X (ed)
Progress in evolutionary computation, vol 956., Lecture Notes in
Computer ScienceSpringer, Berlin, pp 109–126

Deb K (2001) Multi-objective optimization using evolutionary algo-
rithms. Wiley, New York

Durillo JJ, Zhang Y, Alba E, Harman M, Nebro AJ (2011) A study of the
bi-objective next release problem. Empirical Softw Eng 16(1):29–60

Furber S (2000) ARM system-on-chip architecture, 2nd edn. Addison-
Wesley Longman Publishing Co., Inc.

Gaster B, Howes L, Kaeli D, Mistry P, Schaa D (2012) Heterogeneous
computing with OpenCL, 2nd edn. Morgan Kaufmann

Goldberg D, Deb K, Horn J (1992) Massively multimodality, deception
and genetic algorithms. In: Proceedings of the international confer-
ence on parallel problem solving from nature II (PPSNII), pp 37–46

Guyton AC, Hall JE (2006) Textbook of medical physiology, 11th edn.
Elsevier Saunders

Harding S, Banzhaf W (2011) Implementing cartesian genetic program-
ming classifiers on graphics processing units using gpu.net. In: 13th
annual genetic and evolutionary computation conference, GECCO
2011, companion material, pp 463–470

Hennessy J, Patterson D (2011) Computer architecture: a quantitative
approach. The Morgan Kaufmann Series in Computer Architecture
and Design. Morgan Kaufmann

Intel Corporation (2013a) Intel xeon phi core micro-architecture. White
paper, Intel Corporation. http://software.intel.com/en-us/articles/
intel-xeon-phi-core-micro-architecture

Intel Corporation (2013b) Intel xeon phi product family: performance
brief. White paper, Intel Corporation. http://www.intel.com/content/
www/us/en/benchmarks/xeon-phi-product-family-performance-
brief.html

Kirk D, Hwu W (2012) Programming Massively parallel processors. A
hands-on approach. 2nd edn. Morgan Kaufmann

Kung HT (1982) Why systolic architectures? Computer 15(1):37–46
Kung HT, Leiserson CE (1978) Systolic arrays (for VLSI). In: Sparse

matrix proceedings, pp 256–282
Langdon WB (2011) Graphics processing units and genetic program-

ming: an overview. Soft Comput 15(8):1657–1669
Langdon WB, Banzhaf W (2008) A simd interpreter for genetic pro-

gramming on gpu graphics cards. In: Genetic programming, 11th
European conference, EuroGP 2008. Proceedings, Springer, Lecture
Notes in Computer Science, vol 4971, pp 73–85

Lewis TE, Magoulas GD (2009) Strategies to minimise the total run time
of cyclic graph based genetic programming with gpus. Genetic and
evolutionary computation conference, GECCO 2009, pp 1379–1386

Libby P, Bonow R, Mann D, Zipes D (2007) Braunwald’s heart disease:
a textbook of cardiovascular medicine. Elsevier Health Sciences

Maitre O, Krüger F, Querry S, Lachiche N, Collet P (2012) Easea:
specification and execution of evolutionary algorithms on gpgpu.
Soft Comput 16(2):261–279

Marler R, Arora J (2004) Survey of multi-objective optimization meth-
ods for engineering. Struct Multidiscip Optim 26(6):369–395

McCool MD, Robison AD, Reinders J (2012) Structured parallel pro-
gramming, patterns for efficient computation. Morgan Kaufmann

Megson G, Bland I (1998) Synthesis of a systolic array genetic algo-
rithm. In: Parallel processing symposium, 1998. IPPS/SPDP 1998,
pp 316–320

Miettinen K (1999) Nonlinear multiobjective optimization. Interna-
tional series in operations research and management science. Kluwer
Academic Publishers

Nvidia Corporation (2009) NVIDIA’s next generation CUDA compute
architecture: fermi. Nvidia Corporation, Whitepaper

Nvidia Corporation (2012a) CUDA C Best Practices Guide Version 5.0.
Nvidia Corporation

Nvidia Corporation (2012b) CUDA Toolkit 5.0 CURAND Guide.
Nvidia Corporation

Nvidia Corporation (2012c) NVIDIA CUDA C Programming Guide
Version 5.0. Nvidia Corporation

Nvidia Corporation (2012d) NVIDIA’s next generation CUDA compute
architecture: Kepler GK110. Whitepaper, the fastest, most efficient
HPC architecture ever built. Nvidia Corporation

Owens JD, Luebke D, Govindaraju N, Harris M, Krnger J, Lefohn
A, Purcell TJ (2007) A survey of general-purpose computation on
graphics hardware. Comput Graphics Forum 26(1):80–113

Pedemonte M, Alba E, Luna F (2011) Bitwise operations for gpu imple-
mentation of genetic algorithms. In: Genetic and evolutionary com-
putation conference, GECCO’11. Companion Publication, pp 439–
446

Pedemonte M, Alba E, Luna F (2012) Towards the design of systolic
genetic search. In: IEEE 26th international parallel and distributed
processing symposium workshops and PhD Forum. IEEE Computer
Society, pp 1778–1786

Pedemonte M, Luna F, Alba E (2013) New ideas in parallel metaheuris-
tics on gpu: systolic genetic search. In: Tsutsui S, Collet P (eds)
Massively parallel evolutionary computation on GPGPUs, Natural
Computing Series, chap 10. Springer, Berlin, pp 203–225

Pisinger D (1997) A minimal algorithm for the 0–1 knapsack problem.
Oper Res 45:758–767

Pisinger D (1999) Core problems in knapsack algorithms. Oper Res
47:570–575

Sheskin DJ (2011) Handbook of parametric and nonparametric statis-
tical procedures, 5th edn. Chapman and Hall/CRC

Soca N, Blengio J, Pedemonte M, Ezzatti P (2010) PUGACE, a cel-
lular evolutionary algorithm framework on GPUs. In: 2010 IEEE
world congress on computational intelligence. WCCI 2010–2010
IEEE Congress on Evolutionary Computation, CEC 2010, pp 1–8

Tsutsui S, Fujimoto N (2011) Fast qap solving by aco with 2-opt local
search on a gpu. In: 2011 IEEE congress of evolutionary computa-
tion, CEC 2011, pp 812–819

Veronese LDP, Krohling RA (2010) Differential evolution algorithm
on the gpu with c-cuda. In: Proceedings of the IEEE congress on
evolutionary computation, CEC 2010, pp 1–7

Vidal P, Alba E (2010a) Cellular genetic algorithm on graphic process-
ing units. In: Nature inspired cooperative strategies for optimization
(NICSO 2010), pp 223–232

Vidal P, Alba E (2010b) A multi-gpu implementation of a cellular
genetic algorithm. In: IEEE congress on evolutionary computation,
pp 1–7

Vidal P, Luna F, Alba E (2013) Systolic neighborhood search on graph-
ics processing units. Soft Computing, pp 1–18

Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm
based on decomposition. IEEE Trans Evol Comput 11(6):712–731

123

Author's personal copy

Systolic genetic search

Zhang S, He Z (2009) Implementation of parallel genetic algorithm
based on CUDA. In: ISICA 2009, LNCS 5821, pp 24–30

Zhang Y, Harman M, Mansouri SA (2007) The multi-objective next
release problem. In: Proceedings of the 9th annual conference on
genetic and evolutionary computation, ACM, GECCO ’07, pp 1129–
1137

Zhou Y, Tan Y (2009) Gpu-based parallel particle swarm optimization.
In: Proceedings of the IEEE congress on evolutionary computation,
CEC 2009, pp 1493–1500

123

Author's personal copy

Appendix B

A Systolic Genetic Search for Reducing
the Execution Cost of Regression Testing

Applied Soft Computing 49 (2016) 1145–1161

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A Systolic Genetic Search for reducing the execution cost
of regression testing

Martín Pedemontea,∗, Francisco Lunab, Enrique Albab

a Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay
b Depto. de Lenguajes y Ciencias de la Computación, Univ. de Málaga, E.T.S. Ingeniería Informática, Campus de Teatinos, 29071 Málaga, Spain

a r t i c l e i n f o

Article history:
Received 31 December 2015
Received in revised form 16 June 2016
Accepted 4 July 2016
Available online 15 July 2016

Keywords:
Regression testing
Evolutionary algorithms
Parallel metaheuristics
GPU
CUDA

a b s t r a c t

The Test Suite Minimization Problem (TSMP) is a NP-hard real-world problem that arises in the field of
software engineering. It consists in selecting a minimal set of test cases from a large test suite, ensuring
that the test cases selected cover a given set of requirements of a piece of software at the same time
as it minimizes the amount of resources required for its execution. In this paper, we propose a Systolic
Genetic Search (SGS) algorithm for solving the TSMP. SGS is a recently proposed optimization algorithm
capable of taking advantage of the high degree of parallelism available in modern GPU architectures.
The experimental evaluation conducted on a large number of test suites generated for seven real-world
programs and seven large test suites generated for a case study from a real-world program shows that
SGS is highly effective for the TSMP. SGS not only outperforms two competitive genetic algorithms, but
also outperforms four heuristics specially conceived for this problem. The results also show that the
GPU implementation of SGS has achieved a high performance, obtaining a large runtime reduction with
respect to the CPU implementation for solutions with similar quality. The GPU implementation of SGS
also shows an excellent scalability behavior when solving instances with a large number of test cases.
As a consequence, the GPU-based SGS stands as a state of the art alternative for solving the TSMP in
real-world software testing environments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Software testing is one of the core activities of the software
development process. It involves the execution of a piece of soft-
ware to gather information for evaluating the quality of that soft-
ware. In general, this execution uses test cases that are designed for
exercising at least one feature (functional or non-functional) of the
piece of software under evaluation. Although initially testing was
considered necessary evil, it has become a key aspect of software
development process. Testing has been reported to represent more
than fifty percent of the cost of software development [1], while
the total labor resources spent in testing range from 30 to 90% [2].

Regression testing is a testing activity performed to ensure that
changes made to an existing piece of software do not introduce
errors. During the evolution of a piece of software, the software
tends to grow in size and complexity. This evolution also provokes
that new test cases are continually generated and added to the
test suite to validate the latest modifications to the piece of soft-
ware. For this reason, the execution of the entire test suite can be

∗ Corresponding author. Tel.: +598 27114244x1048.
E-mail addresses: mpedemon@fing.edu.uy (M. Pedemonte), flv@lcc.uma.es

(F. Luna), eat@lcc.uma.es (E. Alba).

impracticable. For instance, in a real-world test suite for regression
testing from Cisco containing 2320 test cases [3], the runtime of
each test case takes about 10–100 min, yielding a final total exe-
cution time of the test suite of around 5 weeks. In consequence,
different approaches have been proposed in order to reduce the
effort devoted to regression testing [4].

Search-based software engineering (SBSE) [5] is one recent field
in Software Engineering that is based in applying search-based opti-
mization techniques (as Evolutionary Algorithms, EAs) to software
engineering problems. SBSE has been successfully used to solve
problems from all the phases of the software development pro-
cess, being software testing one of the most addressed issues [5].
In particular, the Test Suite Minimization Problem (TSMP) is a NP-
hard real-world software testing problem that arises in regression
testing. It is based on reducing a large test suite by removing redun-
dant test cases, ensuring that a set of test goals are satisfied [4]. The
goal is to find a reduced test suite that minimizes the overall cost
of the suite and that covers a given set of elements of the piece of
software that is being tested.

As realistic software programs involve thousands of lines of code
(and so the test suites used for their testing have thousands of
test cases) exact algorithms are discarded for this problem because
they could lead to huge computing times. Even metaheuristics may

http://dx.doi.org/10.1016/j.asoc.2016.07.018
1568-4946/© 2016 Elsevier B.V. All rights reserved.

1146 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

be highly computationally expensive when addressing real-world
TSMP instances. In order to tackle this problem properly, we make
use of parallel metaheuristics [6]. These algorithms do not only
allow to reduce the runtime of the algorithms, but also usually
provide new enhanced search engines that could lead to improve
the quality of results obtained by traditional sequential algorithms.
Despite their advantages, there are very few works that use parallel
metaheuristics for solving SBSE problems [7].

Systolic Genetic Search (SGS) is a new optimization algorithm
that merges ideas from systolic computing and metaheuristics [8].
SGS was conceived to exploit the high degree of parallelism avail-
able in modern GPU architectures. It has already shown its potential
for the knapsack problem, the massively multimodal deceptive
problem, and the next release problem, finding optimal or near
optimal solutions in short runtimes [8].

In the present article we investigate the use of a SGS algorithm
for solving the cost-aware Test Suite Minimization Problem. Our
first concern is to show whether SGS is effective for this problem.
With this in mind, a comparative study on the numerical perfor-
mance is conducted between SGS, two EAs and four heuristics
specially designed for the problem at stake. Since SGS is explicitly
designed for GPU architectures, a second issue is to evaluate if the
GPU implementation of the proposed SGS is efficient and what kind
of performance benefits can be obtained by such implementation
with respect to a CPU implementation. To this end, we compara-
tively analyze the performance of the implementation on GPU of
SGS and two evolutionary algorithms. Finally, our third concern
is how well the number of test cases and test goals impact in the
performance of the CPU and GPU implementations of SGS. We can
summarize the contributions of this work as follows:

• It presents a new success of SGS for solving an optimization prob-
lem in a unexplored domain. The results obtained are not only
relevant for the SGS but also are relevant for the cost-aware TSMP.
Because SGS is highly effective for solving instances from seven
real-world programs and a case study from a real-world program,
without using any problem-specific knowledge, outperforming
four heuristics specifically designed for this problem.

• It shows that the GPU implementation of SGS is able to achieve a
high performance, obtaining a large runtime reduction compared
to the sequential implementation for similar solutions. Moreover,
the GPU-based SGS is the EA with the best performance of this
study. In consequence, the GPU-based SGS is able to both obtain
excellent quality solutions and execute in a short runtime.

• It shows that the GPU-based SGS has an excellent scalability
behavior when solving instances with a larger number of test
cases. On the other hand, when a larger number of test goals is
considered, the performance of the GPU-based SGS is just mini-
mally degraded.

This article is organized as follows. Section 2 reviews the pre-
liminaries of this work. Then, in Section 3, we describe the SGS
algorithm and how it is instantiated for tackling the TSMP. Section 4
presents state of the art heuristic techniques for the cost-aware
TSMP that are used for comparison in this work. Then, Section 5
describes the details of the empirical study and analyzes the results
of the experimental evaluation. Threats to validity are discussed on
Section 6. Then, Section 7 discusses the related papers in the liter-
ature. Finally, in Section 8, we outline the conclusions of this work
and suggest future research directions.

2. Preliminaries

In this section we present some background on the TSMP and
on the architecture of the GPUs.

2.1. Test Suite Minimization Problem

Three different problem formulations have been proposed for
test suite reduction in regression testing [4]. The Test Case Selection
Problem consists in choosing a subset of the test suite based on
which test cases are relevant for testing the changes between the
previous and the current version of the piece of software. Another
approach is known as the Test Case Prioritization Problem, which
consists in finding an ordering of the test cases according to some
specific criteria, such that test cases ordered first should be run
first. In this formulation, it is assumed that all the test cases could be
executed but the testing process could be stopped at some arbitrary
point. As a consequence, if the test processing is stopped, the test
cases that maximize the specific criteria used for ordering them
have already been executed.

In the present work, we adopt the problem formulation known
as Test Suite Minimization Problem (TSMP) [4,9]. TSMP belongs to
the class of NP-hard problems since it is equivalent to the Minimal
Hitting Set Problem. It lies in reducing a test suite by eliminating
redundant test cases, and the goal is to select a minimal set of test
cases that cover a set of test goals and minimizes the amount of
resources required for its execution. It is formally defined as fol-
lows.

Let T = {t1, . . ., tn} be a test suite with n test cases for a piece
of software and R = {r1, . . ., rm} be the set of m test goals (require-
ments) that has to be covered with the test cases. Each test case
covers several test goals and this relation is represented by a cov-
erage matrix M = [mij] of dimension n × m, whose entries are either
0 or 1. If mij = 1 the test case i covers the test goal j, otherwise it
does not covers the test goal. Also, each test case ti has associated
a positive cost ci that measures the amount of resources required
for its execution.

The single objective TSMP consists in finding a subset of test
cases of the original test suite that covers all the test goals (100%
of coverage) and minimizes its overall cost. The single objective
TSMP can be formulated as the integer programming model pre-
sented in Eqs. (1)–(3), being xi the binary decision variables of the
problem that indicate whether the test case ti is included or not in
the reduced test suite.

minimize
n∑

i=1

cixi (1)

subject to:
n∑

i=1

mijxi � 1, ∀j = 1, . . ., m (2)

xi ∈ {0, 1}, ∀i = 1, . . ., n (3)

There are several alternatives that can be considered for the
cost associated to the test cases. A classical option [10–15] is to
consider all costs equal to one (ci = 1, ∀i = 1, . . ., n). In such case,
the problem is equivalent to find a reduced test suite with a min-
imum number of test cases. However, the cost is often associated
with a specific metric that is related to the cost of executing the
test case, as the number of virtual code instructions that are run
in a profiling tool [16] or the runtime measured in a particular
platform [17]. This formulation is also known as the cost-aware
TSMP.

Recently, the research community has also paid attention to the
multi-objective TSMP. It has been proposed a bi-objective formu-
lation [7,16] in which the conflicting objectives are the number
of virtual code instructions executed in a profiling tool and the
percentage of coverage of the test goals.

In spite of the existence of this multi-objective formulation,
in our opinion the single-objective TSMP is still a relevant and
important problem. For this reason, in this paper we adopt the

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1147

classical single-objective formulation of the TSMP. In particular,
we use a cost-aware formulation in which the cost of a test case
corresponds to the wall-clock time of execution of the test case.
The goal is minimizing the total runtime of the test suite ensur-
ing that all the test goals of the piece of software under test
are covered. This allows us to compare the SGS proposed in this
work with classical specific heuristics previously proposed for this
problem.

2.2. Graphics processing units

Since 2006, when Nvidia launched its first graphics card with an
architecture with unified shaders, the rise in the use of GPUs as gen-
eral purpose parallel platforms has never stopped growing. A key
aspect for the widespread adoption of these devices is the emer-
gence of general purpose programming languages, such as CUDA
and OpenCL. These languages have enabled to unleash the power of
GPUs for a wide range of users, including researchers. Other aspects
that have contributed to the rise of general purpose computing on
GPU are that GPUs are widely available, have a low economic cost,
and have an inherent parallel architecture.

The GPU architecture follows a design philosophy that is rad-
ically different to CPU. While GPUs are designed with the idea
of devoting most of the transistors to computation, in a CPU a
large part of the transistors are dedicated to other tasks such as
branch prediction, out-of-order execution, etc. In consequence,
GPUs have a large number of small cores and are usually con-
sidered many-core platforms. The number of cores available in
modern GPUs is growing steadily and will undoubtedly continue
to do so in the foreseeable future. The number of threads that
recent GPUs can run in parallel is in the order of thousands
and is expected to continue growing rapidly, what makes these
devices a powerful and low cost platform for implementing parallel
algorithms.

CUDA is the general framework that enables to work with
Nvidia’s GPUs. The CUDA architecture abstracts GPUs as a set
of shared memory multiprocessors (MPs) that follow the Sin-
gle Instruction Multiple Threads (SIMT) parallel programming
paradigm. SIMT is similar to Single Instruction Multiple Data but
in addition to data-level parallelism (when threads are coherent)
it allows thread-level parallelism (when threads are divergent, see
[18]).

CUDA allows to define C/C++ functions, called kernels, that could
be run in parallel by a large number of threads on the GPU. The
group of all the threads generated by a kernel invocation is called
a grid, which is partitioned into blocks. Each block groups threads
that are run concurrently on a single MP. There is no fixed order of
execution between blocks. The blocks are divided for their execu-
tion into warps that are the basic scheduling units and consist of 32
consecutive threads.

Threads can access data on multiple memory spaces during their
life time [18]. All the threads running have access to the same global
memory on the GPU that is one of the slowest memories. However,
access to global GPU memory is usually more than one order of
magnitude faster than data transfers between CPU and GPU. Reg-
isters are the fastest memory available on the card but are entirely
managed by the compiler. They are only accessible by each thread
independently. Shared memory is almost as fast as registers and
can be accessed by any thread of a block; its lifetime is equal to the
lifetime of the block. In the last years, the GPUs have incorporated
two levels of cache for accessing to global memory, but both caches
are really small.

In this work, we use a GeForce GTX 780 (Kepler architecture)
that has a single precision floating point peak performance of 3977
GFlops.

3. Systolic computing based metaheuristics

The Systolic Computing [19,20] architecture emerged in the late
1970s. This architecture is composed by simple data processing
units that are connected in a simple and regular fashion allowing
a data flow between neighboring units. The units, which are also
called cells, are capable of performing simple operations to data
that is then passed through the next cell in the topology. This kind
of architecture offers an understandable and manageable, but still
quite powerful parallelism.

The source of inspiration of systolic computing architecture is
the behaviour of the cardiovascular system. As part of the cardiac
cycle, in the systole phase, the heart contracts, thus increasing the
pressure inside the cavities. As a consequence, the heart ejects oxy-
genated blood into the arterial system to meet the metabolic needs
of the tissues. Due to the systolic contraction, the blood is ejected
from the heart with a regular cadence [21].

Systolic computing based metaheuristics adapt the concept of
systolic computing to optimization. This family of algorithms are
characterized by the flow of solutions through data processing
units following a synchronous and structured plan. Each cell applies
operators to the circulating tentative solutions in order to obtain
new solutions that continue moving across the processing units.
In this way, the circulating solutions are refined again and again
by means of simple search operators. In particular, Systolic Genetic
Search (SGS) [8,14,22,23] uses adapted evolutionary operators in
the cells for refining the tentative solutions.

3.1. Systolic Genetic Search Algorithm

Several aspects have to be precisely defined to characterize a
systolic computing based optimization algorithm as the intercon-
nection topology of the systolic structure, the data flow of solutions,
the size of the grid, and the computation of the cells.

SGS uses a bidimensional grid of cells in which solutions circu-
late synchronously through an horizontal and a vertical data flow.
In this work, we use the SGSB data flow (B stands for both flows), in
which a solution moving through the vertical data flow that reaches
the last row of the grid is passed on to the cell of the first row of the
next column of the grid, while a solution moving through the hor-
izontal data flow that reaches the last column of the grid is passed
on to the cell of the first column of the next row of the grid. The
interconnection topology and solution flows of SGSB are shown in
Fig. 1. Other data flows have been studied in [22,23]. From now on,
we will refer to SGSB as SGS since it is the only SGS algorithm that
it is used in this work.

Although the idea is to have a relatively large number of cells
to allow SGS to achieve a good exploration and to take advan-
tage of the parallel computation capabilities offered by GPUs, the
number of cells should not increase up to values that compromise

Fig. 1. Interconnection topology and solution flows of SGSB.

1148 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

performance. We consider that a proper balance is to have at least l
cells (the length of the tentative solutions). The minimum grid with
that number of cells is a �

√
l� × �

√
l� grid, but, in that case, every pair

of solutions that coincide in a cell will coincide every �
√

l� + 1 steps.
For this reason, in this work, we use a �

√
l� ×

(
�
√

l� + 1
)

grid.
The computation performed by the cells is described next. Ini-

tially, each cell generates two random solutions which are aimed
at moving horizontally and vertically, respectively. At each step of
SGS, two solutions enter each cell, one from the horizontal data flow
and one from the vertical data flow. Then, adapted genetic oper-
ators (crossover and mutation) are applied to generate two new
solutions. SGS is commonly used with crossover operators that take
two parent solutions and produce two children solutions. How-
ever, it is easy to adapt the cell computation for using crossover
operators that only produce one child solution, e.g., applying the
crossover operator twice. Later, the cell uses elitism to determine
which solution continues moving through the grid for each flow,
choosing between the incoming solution and the newly generated
one. The use of elitism is critical, as there is no selection process like
in standard genetic algorithms. Finally, each cell sends the outgoing
solutions to the next cells of the data flows. Algorithm 1 presents
the pseudocode of the SGS algorithm.

Algorithm 1. Systolic Genetic Search

3.2. A SGS for TSMP

SGS can be adapted to any solution representation and any par-
ticular operator. Since we are addressing a binary problem, we
encode the solutions as binary strings. The length of the tentative
solutions is equal to the number of test cases of the original test
suite (l = n). The evolutionary search operators are the two-point
crossover and the bit-flip mutation.

The two-point crossover selects two points from the binary
strings of both parents. The two children solutions are calculated by
swapping the binary string segments from the first crossover point
to the second crossover point between the two parents. As the two-
point crossover is applied on each cell, two different crossover point
values are chosen randomly for each cell.

The bit-flip mutation operator flips a single bit in each solution
of each cell. The mutation point for each cell is preprogrammed
at fixed positions of the tentative solutions, which is defined by
considering the location of the cell in the grid. In order to change
different bits of the solutions through the grid, the formula for

calculating the mutation point of the cell (i, j) is i × �
√

l� + j mod l,
where mod is the modulus of the integer division.

The fitness function used for the TSMP is described next. Since
it is possible to build solutions that are not feasible, i.e., that do
not cover all the test goals, the fitness function has to deal with
this issue. Our approach applies a penalty term for each test goal
that it is not satisfied. Eq. (4) shows the fitness function, where
n is the number of test cases of the test suite, m is the number
of test requirements that has to be covered with the test cases, ci
is the amount of resources required for the execution of the test
case i (i.e., the wall-clock time of execution of the test case), xi is
the binary decision variables of the problem that indicate whether
the test case i is included or not in the test suite, and r is the
number of test goals covered by (x1, . . ., xn). We use a multiplica-
tive penalty function (1/(m − r + 1)) that divides the original fitness
value (

∑n
i=1ci −

∑n
i=1cixi) by the number of test goals that are not

covered plus one, reducing the fitness value with each uncovered
test goal.

f (�x) =
∑n

i=1ci −
∑n

i=1cixi

m − r + 1
. (4)

3.3. CPU implementation of SGS

The CPU implementation of SGS is straightforward, so no fur-
ther details are provided. However, the function for computing the
fitness value in CPU has a peculiarity that deserves attention.

Algorithm 2 implements the fitness function on CPU. The algo-
rithm iterates through a loop in Step 6 processing, in each iteration,
a different test case i. If the test case is part of the solution (Step 7),
another loop is used in Step 9 for iterating in the number of test
goals m. This loop is used for calculating how many additional test
goals are covered by the test case. As a consequence, the compu-
tation time of the fitness function evaluation is variable and highly
sensitive to number of test cases that are part of the solution (i.e.,
the bit value is one) since for each of these tests it has to be com-
puted which test goals are covered. For this reason, the computation
time of the fitness function is long when a solution has many test
cases, while it is short when the solution has fewer test cases.

Algorithm 2. Fitness function calculation on CPU

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1149

Fig. 2. Data organization on the GPU.

3.4. GPU implementation of SGS

A straightforward implementation of the fitness function would
not be suitable for GPU since the presence and absence of test
cases in a solution would produce thread divergence [18] within
the warps and would not properly exploit the massive parallelism
available on the GPU. For this reason, we followed an idea pre-
viously proposed in [7,16] that transforms the evaluation into a
matrix–matrix multiplication operation. In this way, even though
the multiplication requires a larger number of computations than
the direct implementation, it follows a more structured pattern of
computation with a better data access that it is well suited for GPU.

Algorithm 3 presents the pseudocode of the SGS algorithm for
the host side. Initially, the seed for the random number generation
and the constant data associated with the TSMP (i.e., the coverage
matrix and the set of costs) are transferred from the CPU to the
global memory of the GPU. Then, the population is initialized on
the GPU (Step 3) and the fitness of the initial population is com-
puted afterwards. The fitness evaluation involves two steps, the
matrix–matrix multiplication (Step 4) that calculates which test
goals are covered and the cost of the solution for all the population,
and a reduction (Step 5) that calculates the number of test goals
covered and the fitness value for all the population. At each iter-
ation, the crossover and mutation of the solutions of each cell of
the grid are executed (Step 7), and the systolic step is completed by
computing the matrix-matrix multiplication, and completing the
fitness calculation and applying the elitist replacement (Step 9).
Finally, when the algorithm reaches the stop condition, the results
are transferred from the GPU to the CPU.

Algorithm 3. SGS host side pseudocode

Fig. 2 shows how data is organized on the GPU. Two indepen-
dent memory spaces of the GPU global memory are used to store
the population and its associated fitness value. While the mem-
ory space that contains the population in generation t is read, the
new solutions from generation t + 1 can be written in the other
memory space allowing concurrent access to the data (disjoint stor-
age). Each memory space independently stores an array with the

Fig. 3. Threads organization.

solutions moving horizontally, an array with the solutions mov-
ing vertically, an array with the fitness values corresponding to the
solutions moving horizontally, and an array with the fitness values
corresponding to the solutions moving vertically. Problem data is
stored in a single (m + 1) × n matrix, where in the m × n matrix is
placed the coverage matrix and in the additional row is stored the
cost of each test case. An auxiliary (m + 1) × popSize matrix is used
to store the matrix–matrix multiplication result.

Now, we explain the kernel operation. initPopulation ker-
nel initializes the population in the GPU using the CURAND Library
to generate random numbers. The kernel is launched with a con-
figuration that depends on the total number of bits that have to
be initialized, following the guidelines recommended in [18]. The
remaining kernels are implemented following the idea used in [8],
in which operations are assigned to a whole block and all the
threads of the block cooperate to perform a given operation, i.e.,
each block processes one cell of the grid. If the solution length is
larger than the number of threads in the block, each thread pro-
cesses more than one element but the elements used by a single
thread are not contiguous. Thus, each operation is applied in chunks
of the size of the thread block (T in the following figure), as it is
shown in Fig. 3.

In the previous works from the literature [7,16] the
matrix–matrix multiplication was programmed by hand by
the authors. However, since there are already available libraries
that compute linear algebra operations efficiently, we decided
to use the matrix–matrix multiplication routine from CUBLAS
library. The multiplication is invoked with the problem data
matrix and the population matrix (n × popSize matrix composed
by the array of the solutions moving horizontally and the array
of the solutions moving vertically). The result is stored in an
auxiliary (m + 1) × popSize matrix that is then used by the kernels
(fitnessReduction and fitnessReductionAndElitism) for
completing the fitness calculation.

4. Heuristics for the cost-aware TSMP

Several specific heuristics for the TSMP with costs equal to one
have been proposed in the literature, as a greedy algorithm [10],
the HGS algorithm [11] and the GRE algorithm [12,15]. These algo-
rithms, as well as their adaptations for the cost-aware TSMP, are
described next.

4.1. Greedy algorithm

In the greedy algorithm, initially, all tests goals are marked as
not covered and the reduced test suite is empty. While there is at
least one test goal that is marked as not yet covered, the algorithm
finds the test case that covers most uncovered test goals and that
it is not yet included in the reduced test suite. This test case is then
included in the test suite and all the test goals that are covered by
the test case are now marked as covered. The algorithm ends when
there are no uncovered test goals, returning the reduced test suite.
The time complexity of the greedy algorithm is O(mn · min(m, n)).

1150 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

4.2. GRE algorithm

The GRE algorithm [12,15] involves the concepts of essential test
case and 1-to-1 redundant test case. A test case is essential if a test
goal is only covered by that test case. Essential test cases should be
inserted as soon as possible in the reduced test suite for reducing
redundancy. A test case is 1-to-1 redundant if there exists another
test case that covers all the test goals of the former test case. 1-to-1
redundant test cases should be removed and not considered for the
reduced test suite since there are other test cases that have a better
coverage.

It should be noted that 1-to-1 redundant test cases should be
removed one at a time because if it is done otherwise it is possible
to left test goals uncovered. For this reason, this reduction has to be
applied repeatedly until there are no 1-to-1 redundant test cases.
Also, this reduction can turn a test case in essential since it could be
left as the only test case able to cover a test goal. When an essential
test case is inserted in the reduced test suite, it can turn a test case
in 1-to-1 redundant. In consequence, the identification of essential
and 1-to-1 redundant test cases are applied alternately.

The GRE algorithm is described next. Initially, all tests goals are
marked as not covered and the reduced test suite is empty. Then, all
the essential test cases are identified and included in the reduced
test suite, marking as covered all the test goals that are covered
by such test cases. The algorithm iterates processing the set of
available test cases. In each iteration, first, 1-to-1 redundant test
cases are identified and removed from the set. Then, if there is any
essential test case, it is included in the reduced test suite and its
associated test goals are marked as covered. Otherwise, a greedy
heuristic is used for finding the test case with most uncovered test
goals from the set of available test cases. The test case is included
in the reduced test suite and its associated test goals are marked
as covered. The loop ends when there are no test goals marked as
uncovered. The time complexity of the GRE algorithm is O(min(m,
n) · (m + n2k)), where k is the maximum number of test goals that
are covered by a single test case.

4.3. HGS algorithm

The HGS algorithm [11] is based on a completely different idea.
Let Ri denote the set of all the test cases in the original test suite
that cover the test goal ri. Initially, the algorithm includes in the
reduced test suite all the test case that belong to any Ri of cardinal-
ity one. The test cases included are also used for marking as covered
all the Ri sets of whom they are a part. Then, the unmarked Ri sets
with cardinality two are considered. The test case that belongs to
the maximum number of such sets is chosen to be included in the
reduced test suite, and all the unmarked Ri sets containing this
test case are marked. This process is repeated until there are no
unmarked Ri sets with cardinality two. In the same way, the process
is repeated for the unmarked Ri sets with cardinalities 3, . . ., max-
Card, being maxCard the maximum cardinality of all the Ri sets. The
time complexity of the HGS algorithm is O(m · (m + n) · maxCard).

4.4. Cost-aware heuristics

Recently, Lin et al. [17] studied two different cost-aware test
case metrics for being incorporated to the heuristics for test suite
minimization. These metrics are the Ratio [24] (shown in Eq. (5),
where Coverage(t) is the number of uncovered test goals that are
covered by t and Cost(t) is the execution cost of the test case t), and
the EIrreplaceability (shown in Eq. (6) and Eq. (7), where Covers(rs)
is the number of test cases that cover rs).

Ratio(t) = Coverage(t)
Cost(t)

(5)

EIrreplaceability(t) =

⎧
⎨
⎩

∞, t is essential∑m
s=1Contribution(t, rs)

Cost(t)
, otherwise

(6)

Contribution(t, rs) =

⎧
⎨
⎩

0, if t do not cover rs

1
Covers(rs)

, if t covers rs

(7)

Lin et al. integrated this metrics to the greedy, GRE and HGS
algorithm, obtaining six different algorithms. These algorithms, as
well as the three original heuristics where extensively evaluated on
real world programs. The results show that the four best perform-
ing algorithms, according to the percentage of suite cost reduction,
are the greedy algorithm with the EIrreplaceability metric (from
now on we will refer to it as GREEDYE), the greedy algorithm with
the Ratio metric (from now on we will refer to it as GREEDYR),
the HGS algorithm with the EIrreplaceability metric (from now on
we will refer to it as HGSE) and the GRE algorithm with the EIrre-
placeability metric (from now on we will refer to it as GREE). Since
these four specific heuristics have proved to be highly effective for
reducing the cost and size of the test suite, we include them in our
experimental analysis in order to provide a testbed for our proposal.

5. Experimental analysis

This section reports on the results of the experiments performed
to evaluate the SGS proposed for the TSMP. First, we present the
experimental setup and the research questions addressed in this
work. Then, we detail the experimental results and discussion.
Finally, we evaluate the proposed approach on larger instances as
a case study.

5.1. Experimental setup

This subsection describes the subject programs and the method-
ology used for generating test suites, as well as the algorithms
compared in the empirical studies.

5.1.1. Subject programs
The subject programs used in this work are real world programs

that belong to the Siemens benchmark suite [25]. It is a well-known
benchmark that has been often used to evaluate test suite reduction
algorithms [9,13,16,17]. The Siemens suite is publicly available at
the SIR website [26]. The suite includes an aircraft collision avoid-
ance system (tcas), a statistic computation program (totinfo),
two priority schedulers (schedule and schedule2), two lexical
analyzers (printtokens and printtokens2) and a program that
performs pattern matching and substitution (replace). Table 1
presents the Siemens programs including the number of test cases,
the number of test goals and the number of source lines of code
(LOCs). In this case, the test goals came from structural coverage.
Test goals are already included in the source codes available in the
repository.

For conducting the experiments, we measured the runtime of
each test case of each subject programs. For this reason, the source

Table 1
TSMP subject programs used in the evaluation.

Subject Test pool size Test goals LOCs

tcas 1608 54 162
totinfo 1052 117 346
schedule 2650 126 299
schedule2 2710 119 287
printtokens 4130 195 378
printtokens2 4115 192 366
replace 5542 208 514

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1151

Table 2
Execution cost of all the subject programs.

Subject program Total execution
cost in milliseconds

Minimum test case execution
cost in microseconds

Mean test case execution cost in
microseconds (mean ± std. dev.)

Maximum test case execution
cost in microseconds

tcas 15.991 5.72 9.94 ± 0.58 11.47
totinfo 77.583 7.30 73.75 ± 42.36 359.66
schedule 125.487 5.45 47.35 ± 8.25 74.21
schedule2 145.086 0.06 53.54 ± 12.17 93.89
printtokens 152.267 5.49 36.87 ± 5.35 109.39
printtokens2 166.806 5.49 40.54 ± 6.34 117.42
replace 59.770 5.39 10.78 ± 4.21 98.63

code of the subject programs was modified to record their runtime.
The source codes were compiled using the gcc 4.8.2 compiler with
the -O3 flag. The execution platform was a PC with a Quad Core
Intel i7 4770 processor at 3.40 GHz. with 16 GB RAM using the
CentOS Linux 7.0 operating system. The cost of each test case was
computed as the average runtime of 1000 independent runs of the
test case. Table 2 presents the cost of executing in milliseconds all
the test cases of each subject program, as well as the minimum,
the mean and the maximum cost of executing a test case for each
subject program.

It should be noted that the set of test cases that takes more
time (printtokens2) can be run in less than 200 ms. The reason
is that the subject programs must accomplish simple tasks and the
programs are relatively small. In spite of this, they are real-world
scenarios that reflect actual interactions between test cases and
test requirements from real programs, and they have been widely
used in the literature. Therefore, in our opinion, it is justified to use
these scenarios as a benchmark for evaluating a new proposal for
the TSMP.

It is important to stress that the algorithms studied work
independently of the units of the execution cost. Therefore, the
conclusions drawn in this experimental evaluation can be extrap-
olated to scenarios with similar complexity but with a longer
execution time (e.g., programs that involve tasks computation-
ally more expensive, such as access to databases, interaction with
remote servers or telecommunication networks). For instance,
the execution of each test case takes about 10–100 min in a
real-world test suite for regression testing from Cisco contain-
ing 2320 test cases [3]. The test pool of the Cisco suite is smaller
than the test pool of some subject programs included in this
work, but has a total execution time of the test suite of around
5 weeks.

5.1.2. Methodology for generating the test suites
In order to generate the test suites for each subject program, we

followed the same methodology used by several authors [9,17,27]
for conducting experimental evaluation over the Siemens suite. For
each subject program, 1000 test suites were randomly generated
following the next steps:

1. Randomly select a number c of test cases from the pool
(1 ≤ c ≤ 0.5 × LOCs).

2. If the test suite cannot satisfy all of the test requirements, ran-
domly select a test case that at least satisfies an additional test
requirement.

3. Repeat Step 2 until the test suite satisfies all of the test require-
ments.

Table 3 presents the range of sizes of the test suites generated,
the average number of test cases of the 1000 test suites and the total
execution cost in milliseconds of all the test suites for all subject
programs. From now on, we will use the term instance interchange-
ably with the term test suite.

Table 3
Average size and total execution cost of all the test suites for all the subject programs.

Subject Range of sizes of
the suites

Average suite size Total cost of all
suites

tcas 3–81 41.40 411.609
totinfo 4–173 88.21 6515.621
schedule 3–149 76.85 3559.028
schedule2 3–143 71.98 3803.050
printtokens 8–189 96.54 3638.289
printtokens2 7–183 93.86 3851.476
replace 6–257 132.49 1429.501

5.1.3. Algorithms and test environment
In addition to the SGS algorithm proposed in this work and the

four specific heuristics already proposed for the TSMP (GREE, HGSE,
GREEDYR and GREEDYE), we have also included two evolutionary
algorithms, a simple genetic algorithm with and without elitism
(EGA and SGA, respectively), in order to set an actual compari-
son basis. These evolutionary algorithms have been chosen because
they share the same basic search operators (crossover and muta-
tion) as SGS so we can properly evaluate the underlying search
engine of the techniques. The details of the evolutionary algorithms
used in the experimental evaluation are:

• Simple genetic algorithm (SGA): It is a generational genetic algo-
rithm with binary tournament, two-point crossover and bit-flip
mutation.

• Elitist genetic algorithm (EGA): It is similar to SGA but children
solutions replace parent solutions only if they have a better fitness
value.

The SGA and EGA parameter values used are 0.9 for the crossover
probability and 1/l for the mutation probability, where l is the
length of the tentative solutions (the number of test cases). The
population size and the stopping criterion of both GAs were defined
by considering the parameter settings of SGS. For this reason, the
population size of both GAs is 2 × �

√
l� ×

(
�
√

l� + 1
)

, which is equal
to the number of solutions of the grid of SGS. The stopping crite-
rion used for both SGS and GAs is to reach a maximum number of
generations fixed a priori. The number of generations is ten times
the size of the grid and it was chosen to ensure that each solution
circulates ten times over the grid in SGS.

The specific heuristics for the TSMP were only implemented on
CPU, while the EAs (SGA, EGA and SGS) were implemented both on
CPU and GPU.

The execution platform for the CPU implementations is the same
used in Section 5.1.1. All CPU implementations were executed as
single-threaded applications. The GPU implementations were run
in an Nvidia’s GeForce GTX 780 (2304 CUDA cores at 863 MHz.,
Kepler architecture) connected to the PC used for the CPU execu-
tions. CPU and GPU implementations were compiled using the -O3
flag.

1152 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

5.2. Research questions

This section presents the three research questions (RQs) stud-
ied in this paper. RQ1 concerns the numerical efficiency of the
algorithm proposed in this work, SGS. Then, RQ2 deals with the per-
formance of the GPU-based implementation of SGS. Finally, RQ3 is
concerned with how the size of test suite and the number of test
requirements affect the performance of SGS.

Research Question 1 (RQ1) – numerical efficiency of SGS: Is SGS
able to provide better solutions than the other six algorithms included
in the study?

To answer this question we have to study the quality of the
solutions obtained by the algorithms. The quality of a solution is
measured as the cost of executing the reduced test suite that is
represented by the solution. For this reason, we analyze the exe-
cution cost of the reduced test suites produced for each instance
of each subject program by all the algorithms. Since the scenarios
are randomly generated and some of the algorithms involved in
the evaluation are stochastic algorithms, statistical tests are used
to assess the significance of the experimental results obtained.

The following statistical procedure has been used [28,29]. First,
a single run for GREE, HGSE, GREEDYR and GREEDYE and each
instance of each subject program has been performed since they
are deterministic algorithms. Then, fifty independent runs for each
evolutionary algorithm and each test suite of each subject program
have been performed. For the evolutionary algorithms, the execu-
tion cost of the reduced test suite for every instance is computed
as the average of the execution cost over the fifty runs.

The Friedman’s test has been used to rank the algorithms, for
each subject program independently, attending to the execution
cost of the reduced test suite obtained by the algorithm. This test
is used to check if there are differences that are statistically signif-
icant among the algorithms for each subject program. Since more
than two algorithms are involved in the study, a post-hoc testing
phase which allows for a multiple comparison of samples has also
been performed. The result is a multiple 1 × N comparison with the
control method, SGS in this case, using the Holm’s post-hoc pro-
cedure for each subject program independently. All the statistical
tests are performed with a confidence level of 99%.

Research Question 2 (RQ2) – parallel performance of SGS: Is
the computational performance of SGS on GPU better than the GPU-
based implementations of SGA and EGA?

In order to address this question, we analyze the performance
of the CPU and GPU implementations of the three evolutionary
algorithms using the wall-clock time of execution. We also use the
Friedman’s test for each subject program independently, attending
to the average runtime of the algorithms for each instance. If the test
finds that there are statistically significant differences between the
algorithms, a 1 × N comparison with SGS is performed (with Holm’s
post-hoc procedure) for each subject program independently. All
the statistical tests are performed with a confidence level of 99%.

Additionally, we consider the improvement in performance of
GPU over CPU implementations through the ratio between the
wall-clock time of the CPU and the GPU executions of each algo-
rithm. Even though some authors make reference to this metric
as speedup, we prefer to refer to this ratio as runtime reduction.
The use of the term speedup can give a misleading idea on how
parallelizable is the GPU implementation of an algorithm since the
execution times are measured in two completely different plat-
forms.

Research Question 3 (RQ3) – scalability of the performance
of SGS: How does the size of the test suite and the number of test
requirements impact in the performance of both implementations of
SGS?

To answer this question regarding the scalability of SGS, we ana-
lyze the incidence of both factors in the execution time of SGS.

The number of test requirements it is determined by the subject
program. As a consequence, there are only seven different values,
while the sizes of the test suite have a much wider range of values.
Since the size of the population and the number of iterations of SGS
depends on the instance size, a direct analysis based on the runtime
of the algorithm can be misleading. For this reason, we adopt a dif-
ferent metric for our analysis of the scalability of the performance,
the number of genes processed by SGS per second. Although this
measure does not entirely capture the complexity of the algorithm
because there are some aspects that are not taken into account,
like the generation of random numbers, it gives a general idea of
the actual complexity of the computation performed by SGS.

5.3. Experimental results and analysis

In this subsection we present the numerical and performance
results of our experiments, and, in the light of these results, we
respond to the three research questions stated previously.

5.3.1. RQ1 – numerical efficiency of SGS
It is impossible to include the complete results obtained for

the 7000 different instances (1000 instances for each subject pro-
gram) and for each algorithm because of its huge extension. For
this reason, we summarize the results obtained using two different
metrics: the mean execution cost of the reduced test suites and the
median of the execution cost of the reduced test suites. It should be
noted that the total execution cost of the reduced test suites (i.e.,
the sum of the execution costs obtained by an algorithm for each of
the instances of the subject program) can be easily calculated from
the mean execution cost since the number of instances is 1000.

Table 4 presents the median of the execution cost in microsec-
onds of the reduced test suites obtained by each of the algorithms,
while Table 5 presents the mean execution cost in microseconds
of the reduced test suites obtained by each of the algorithms. The
numerical results of SGA, EGA and SGS included on both tables come
from the GPU implementations. The numerical efficiency of the CPU
implementations of these three algorithms was also studied, allow-
ing us to verify that there are no statistically significant differences
between the results on CPU and GPU of each algorithm.

The results obtained show that SGS is consistently the best per-
forming algorithm for all the subject programs considering both
the mean and the median execution cost. GREEDYE and EGA also
perform well, being in general the second and the third best per-
forming algorithms. Even though GREE, HGSE, GREEDYR and SGA
have a poor numerical performance compared to the other algo-
rithms considered in the study, it should be highlighted that they
are able to obtain reductions from the total execution cost of all the
test suites of more than 93% for all the subject programs.

Table 6 presents the mean Friedman’s ranking for each subject
program independently. SGS is consistently the algorithm with the
best ranking, while GREEDYE and EGA are in general the second
and the third best ranked algorithms (except for tcas where EGA is
the second best and GREEDYE is the third best). The Friedman’s test
shows that there are significant differences between the algorithms
considered with a level of significance of 0.01. The Holm’s post-
hoc procedure for multiple comparison (1 × N) with SGS as control
method has obtained p-values, for each algorithm and each subject
program, that are lower than 0.01, showing that the differences are
statistically significant.

From these results, it is notorious that SGS outperforms the other
two EAs that are based in the same basic search operators, making
clear that the search engine of SGS is advantageous for solving the
TSMP. Moreover, SGS does not uses any problem-specific knowl-
edge and it is able to numerically outperform four different specific
heuristics that were specially designed to tackle the TSMP.

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1153

Table 4
Median of the execution cost in microseconds of the reduced test suites.

Subject GREE HGSE GREEDYR GREEDYE SGA EGA SGS

tcas 25.830 25.865 25.790 25.710 29.800 25.650 20.210
totinfo 132.555 74.025 73.300 73.295 100.73 73.915 72.155
schedule 110.400 107.520 103.735 102.880 117.935 95.940 84.150
schedule2 96.310 88.140 83.270 80.980 101.520 78.315 72.600
printtokens 171.590 175.095 200.755 168.160 198.615 170.360 150.420
printtokens2 159.095 162.460 188.725 154.880 188.725 161.755 150.520
replace 39.230 39.185 36.260 35.245 40.110 34.715 30.365

The best results are in bold.

Table 5
Mean execution cost in microseconds of the reduced test suites.

Subject GREE HGSE GREEDYR GREEDYE SGA EGA SGS

tcas 25.824 26.455 26.666 25.508 28.158 25.635 23.450
totinfo 152.382 112.804 105.433 102.085 122.897 100.197 93.547
schedule 109.301 105.296 102.114 99.367 118.735 97.139 90.059
schedule2 104.081 91.739 90.336 87.792 101.713 85.026 78.676
printtokens 168.971 175.971 196.303 164.628 195.011 170.935 155.902
printtokens2 164.402 170.924 191.625 160.071 189.151 164.047 151.897
replace 41.008 41.841 39.035 36.763 41.941 37.382 33.387

The best results are in bold.

Table 6
Mean Friedman’s ranking (̨ = 0.01).

Subject GREE HGSE GREEDYR GREEDYE SGA EGA SGS

tcas 5.2190 � 4.5675 � 4.4380 � 3.9005 � 4.8610 � 3.1765 � 1.8375
totinfo 6.1175 � 4.0685 � 3.6895 � 3.3795 � 5.7245 � 3.4480 � 1.5725
schedule 5.3320 � 4.1375 � 3.7590 � 3.4290 � 6.1470 � 3.5645 � 1.6310
schedule2 5.6485 � 4.0275 � 3.8710 � 3.5425 � 5.6260 � 3.5465 � 1.7380
printtokens 3.9295 � 4.3215 � 5.8750 � 2.6900 � 6.0515 � 3.8220 � 1.3105
printtokens2 4.1190 � 4.2665 � 5.8175 � 2.8125 � 6.0375 � 3.4535 � 1.4935
replace 5.0765 � 5.0755 � 4.2815 � 3.1490 � 5.6055 � 3.5295 � 1.2825

‘�’ states that the ranking of SGS has statistically lower value than the algorithm of the column for the subject program of the corresponding row.

Table 7
Runtime in seconds of the CPU versions.

Subject SGA EGA SGS

min median max min median max min median max

tcas 0.0001 0.0687 0.4960 0.0001 0.0312 0.1478 0.0001 0.0211 0.1010
totinfo 0.0002 1.5663 9.9203 0.0002 0.3075 1.6525 0.0002 0.2586 1.4201
schedule 0.0002 0.7601 5.2867 0.0002 0.1794 1.0544 0.0002 0.1583 0.8525
schedule2 0.0002 0.6121 3.3032 0.0002 0.1615 0.7470 0.0002 0.1287 0.5334
printtokens 0.0021 3.5521 19.6361 0.0022 0.5417 2.6400 0.0020 0.7925 3.7750
printtokens2 0.0019 3.3179 18.3198 0.0020 0.5058 2.4602 0.0018 0.6691 3.3028
replace 0.0018 10.1598 56.0602 0.0021 1.3678 7.0298 0.0020 2.1527 10.1788

The best results are in bold.

5.3.2. RQ2 – parallel performance of SGS
For each instance of each subject program, the average runtime

over fifty independent runs for the CPU and GPU implementations
of the evolutionary algorithm is computed. To summarize the per-
formance results of each evolutionary algorithm over the whole set
of instances of each subject program, we consider the minimum
(i.e., the minimal average runtime of an instance), the median (i.e.,
the average runtime of an instance that is larger than the aver-
age runtime of the 50% of the instances) and the maximum (i.e.,
the maximal average runtime of an instance) runtime. The most
important indicators to analyze are the median and maximum.

Table 7 shows the minimum, the median and the maximum of
the average runtime of the CPU implementations for each subject
program. In the four smallest subjects, according to the number of
test requirements, SGS is the algorithm with the shortest runtime,
while in the three biggest subjects, EGA is the best performing algo-
rithm. SGA is consistently the worst performing algorithm for all
the subject programs. The fundamental reason for such results is

that the fitness function evaluation has a variable runtime. For each
test case included in a solution, it has to be computed which test
requirements are covered. As a consequence, the fitness value com-
putation is strongly dependent on the number of test cases of the
solution, i.e., a higher number of test cases of the solution implies
a longer runtime. Since SGA is the numerically worst performing
algorithm, it constructs and evaluates many solutions with a large
number of test cases, which is penalized in its runtime.

Table 8 shows the minimum, the median and the maximum of
the average runtime of the GPU implementations for each subject
program. While differences in the runtimes are not relatively large,
SGS is the best performing algorithm, while SGA is in general the
second best. In this case, the incidence of the fitness function eval-
uation in the runtime is equivalent for all the algorithms since the
fitness values are computed using the same matrix–matrix mul-
tiplication operation, whose runtime mostly depends on the sizes
of the involved matrices. For this reason, the differences in perfor-
mance are strongly related to the underlying search mechanism of

1154 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

Table 8
Runtime in seconds of the GPU versions.

Subject SGA EGA SGS

min median max min median max min median max

tcas 0.0622 0.0807 0.0997 0.0623 0.0815 0.1017 0.0617 0.0783 0.0954
totinfo 0.0621 0.1065 0.2180 0.0623 0.1082 0.2257 0.0618 0.1025 0.1952
schedule 0.0622 0.0959 0.1646 0.0621 0.0971 0.1685 0.0619 0.0928 0.1502
schedule2 0.0622 0.0958 0.1437 0.0622 0.0970 0.1473 0.0618 0.0926 0.1327
printtokens 0.0638 0.1126 0.2423 0.0640 0.1142 0.2503 0.0637 0.1081 0.2279
printtokens2 0.0638 0.1125 0.2457 0.0639 0.1143 0.2537 0.0634 0.1078 0.2254
replace 0.0639 0.1525 0.4702 0.0642 0.1568 0.4889 0.0636 0.1435 0.4208

The best results are in bold.

Table 9
Mean Friedman’s ranking for CPU and GPU runtimes (̨ = 0.01).

Subject CPU GPU

SGA EGA SGS SGA EGA SGS

tcas 2.9435 � 2.0295 � 1.0270 2.0750 � 2.9250 � 1.0000
totinfo 2.9550 � 2.0255 � 1.0195 2.0165 � 2.9835 � 1.0000
schedule 2.9640 � 2.0175 � 1.0185 2.0110 � 2.9865 � 1.0025
schedule2 2.9560 � 2.0245 � 1.0195 2.0145 � 2.9835 � 1.0020
printtokens 2.9845 � 1.0700 � 1.9455 1.9900 � 2.9980 � 1.0120
printtokens2 2.9775 � 1.0900 � 1.9325 1.9955 � 2.9970 � 1.0080
replace 2.9630 � 1.0615 � 1.9755 1.9955 � 3.0000 � 1.0045

‘�’ states that the ranking of SGS runtime has statistically lower value than the algorithm of the column for the subject program of the corresponding row.
‘�’ states that the ranking of SGS runtime has statistically higher value than the algorithm of the column for the subject program of the corresponding row.

Table 10
Runtime reduction of GPU versions vs. CPU versions.

Subject SGA EGA SGS

min median max min median max min median max

tcas – – 5.06 – – 1.46 – – 1.09
totinfo – 14.66 45.57 – 2.84 7.33 – 2.52 7.33
schedule – 7.93 32.35 – 1.84 6.34 – 1.71 5.71
schedule2 – 6.35 23.04 – 1.66 5.09 – 1.39 4.02
printtokens – 31.93 81.07 – 4.78 10.55 – 7.43 16.93
printtokens2 – 29.93 74.67 – 4.47 9.89 – 6.21 14.94
replace – 66.90 130.00 – 8.77 16.21 – 15.17 27.52

The best results are in bold.
‘–’ states that there is no reduction in the runtime, i.e., CPU-based implementation executes faster than GPU-based implementation.

each algorithm. It should be noted that the differences in the perfor-
mance of the parallel GPU implementations of the algorithms grow
with the size of the instances (the differences are larger for maxi-
mum and the median than for the minimal). This shows that SGS
exhibits a good scalability behavior when solving highly dimen-
sional problem instances.

Table 9 presents the mean Friedman’s ranking for each subject
program independently. The Friedman’s test shows that there are
significant differences between the algorithms considered with a
level of significance of 0.01. The Holm’s post-hoc procedure for mul-
tiple comparison (1 × N) with SGS as control method has obtained
p-values, for each algorithm and each subject program, that are
lower than 0.01, showing that the differences are statistically sig-
nificant.

Table 10 presents the improvement in performance of GPU over
CPU implementations measured as the runtime reduction of GPU
versions vs. CPU versions. It can be noticed that SGA is the algorithm
that presents the best reductions, and is able to obtain improve-
ments of up to 66× for the median and up to 130× for the maximum
in the largest instances (replace is the subject program with more
test requirements and the test sets with more test cases were gen-
erated for replace). SGS has a also a good performance, specially
for larger instances, obtaining reductions of up to 15× and 27× for
the median and the maximum, respectively. Finally, even though
EGA presents acceptable reductions, these improvements are the
smallest for the larger instances.

In our opinion, in this particular case, and because of the impact
of the variable runtime of the fitness evaluation in the total runtime
of the algorithms, the use of the runtime reduction as a metric of
the comparative performance can be misleading. SGA is the algo-
rithm that is able to obtain the best runtime reductions, but as it has
already been shown in Tables 7 and 8, the reduction is not produced
by a particular additional improvement in the GPU implementation
of SGA. It is just because the CPU-based implementation of SGA has
a rather poor performance.

To make this point clear, we graphically analyze the runtime
of the algorithms. Fig. 4 plots the average runtime (in logarith-
mic scale) of each algorithm for all the test suites generated for
replace. The tendency is pretty clear, the difference between the
runtime of SGA implemented on CPU and the other CPU-based
implementation increases with the size of the test suite. It can also
be appreciated that, even though SGS has the shortest execution
time for the GPU implementations, all the GPU-based implemen-
tations of the three algorithms have runtimes of the same order.

A detail that deserves further attention is why the graph of the
runtime has steps, i.e., the runtime is almost constant for some
intervals of the values of the size of the test suite and there are
jumps in the value of the runtime between test suites whose size
belong to two adjacent intervals. The existence of such jumps for
SGS is related with the fact that the size of the population and the
number of iterations of the algorithms depends directly on the size
of the test suite that is being solved. In particular, the size of the

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1155

Fig. 4. Average runtime of the algorithms for all the instances of replace.

grid is �
√

l� ×
(
�
√

l� + 1
)

, where l is the size of the test suite that it
is being solved. As a consequence, the grid size, as well as the size
of the population and the number of iterations, used for several
different test suite sizes is exactly the same (the only difference is
in the size of the tentative solutions). For instance, the grid size is
10 × 11 for instances with size between 82 and 100 and it is 11 × 12
for instances whose size is between 101 and 121. The jump in the
execution time is caused by the change in the size of the grid, e.g.,
there is a jump in runtime between instances with size 100 and
101 (see Fig. 4). Since SGA and EGA are configured with the same
population size and number of iterations than SGS, this effect is also
present in these algorithms.

From the analysis performed, it can be concluded that SGS is the
best performing algorithm for the implementations on GPU and
that the differences in runtime with the other GPU-based imple-
mentations are caused by the underlying search engine of SGS. The
runtime reduction of the GPU-based implementation over the CPU-
based implementation of SGS is up to 27 and the reduction is larger
for the larger instances.

We do not explicitly make a comparison between the runtime of
the evolutionary algorithms and the specific heuristics. Both type of
algorithms have really different natures, what makes a direct com-
parison unfair. However, the runtime of the specific heuristics is one
or two orders of magnitude smaller than the runtime of the evolu-
tionary algorithms, so it can be considered negligible. In order to be
more advantageous to use an evolutionary algorithm (in particular
SGS) that the best performing specific heuristic (GREEDYE), it must
be satisfied that tSGS < ts

H − ts
SGS , where tSGS is the execution time

of the SGS algorithm, ts
SGS is the execution time of the reduced test

suite obtained by SGS, and ts
H is the execution time of the reduced

test suite obtained by the specific heuristic. For instance, for test
suite with similar features than the largest instance from replace,
the difference between the reduced test suite obtained by GREEDYE
and SGS have to be at least 0.4208 s, so that is advantageous to use
SGS instead of the heuristic.

5.3.3. RQ3 – scalability of the performance of SGS
As it was highlighted in Section 5.3.2, the graph of the runtime

of SGS as a function of the number of test cases of the suite has sev-
eral discontinuity jumps. Since we are only interested in analyzing
the general trend of the performance of SGS, we adopt the follow-
ing criterion for dealing with the discontinuity jumps. Our analysis

considers only the instance sizes that are in the middle of a step of
the function.

A direct analysis based on how the runtime of the algorithm
varies with the instance size would not properly reflect the scal-
ability of the performance of SGS because the instance size affects
the size of the population and the number of iterations of SGS.
In consequence, we use the number of genes that the algorithm
can process in 1 s of execution for our analysis. The number of
genes processed by SGS per second for an instance can be cal-
culated as the total number of genes processed by the algorithm
(population × generations × instancesize) divided by the runtime of
SGS.

Table 11 presents the number of genes processed in genes per
second by the CPU-based SGS for each subject program. The subject
programs are ordered in the table by the number of test require-
ments.

We begin our analysis with the incidence of the number of
requirements in the performance of the CPU-based SGS. The ten-
dency is clear, the larger the number of requirements, the lower
the number of genes processed per second by SGS. This is justified
by the fact that when an instance with a larger number of require-
ments is being solved, a greater amount of work has to be done
for each gene that is processed during the fitness evaluation pro-
cess. In fact, the increase in the amount of work is produced by
the number of ones in the solutions and not just by the number of
genes. This explains why there is an exception in the tendency, tot-
info, which has 117 test requirements, shows a worse performance
than schedule2 (119 test requirements) in 10 out of 10 instances
and than schedule (126 test requirements) in 8 out 10 instances.
The highest performance degradation, regarding the number of test
requirements, is produced in instances with size 57, SGS is able to
process 9.06× genes per seconds for tcas than for replace.

Now we analyze the influence of the instance size in the per-
formance of the CPU-based SGS. There is also a clear tendency, the
larger the instance size, the larger the number of genes processed
per second by SGS. The reason is twofold. On the one hand, the inci-
dence of the rest of the algorithm (the fraction of the algorithm that
does not deal with gene processing) in the total runtime of the algo-
rithm is mitigated when considering larger instances. On the other
hand, when SGS is solving larger instances, and therefore using a
larger population, SGS makes a better use of the memory hierarchy
due to data locality. This suggests that the CPU implementation is

1156 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

Table 11
Number of genes processed by SGS on CPU (in genes per second).

Instance Subject program

Size tcas totinfo schedule2 schedule printtokens2 printtokens replace

7 3.352e7 1.745e7 1.784e7 1.693e7 9.692e6 – 9.377e6
13 5.658e7 2.664e7 2.987e7 2.777e7 1.575e7 1.440e7 1.174e7
21 8.131e7 3.860e7 4.288e7 3.786e7 1.654e7 1.370e7 9.856e6
31 9.983e7 4.587e7 5.341e7 4.682e7 1.953e7 1.746e7 1.171e7
43 1.268e8 5.456e7 6.696e7 5.752e7 2.212e7 1.984e7 1.441e7
57 1.481e8 6.439e7 7.996e7 6.819e7 2.562e7 2.271e7 1.635e7
73 1.699e8 7.311e7 9.091e7 7.895e7 2.969e7 2.668e7 1.908e7
91 – 8.004e7 1.034e8 9.020e7 3.471e7 2.937e7 2.280e7

111 – 9.258e7 1.204e8 1.020e8 3.988e7 3.394e7 2.753e7
133 – 1.025e8 1.344e8 1.114e8 4.485e7 4.098e7 3.087e7
157 – 1.097e8 – – 4.918e7 4.254e7 3.378e7
183 – – – – 5.303e7 4.905e7 3.607e7
211 – – – – – – 4.070e7
241 – – – – – – 4.458e7

‘–’ state size for which no instance is available

Table 12
Number of genes processed by SGS on GPU (in genes per second).

Instance Subject program

Size tcas totinfo schedule2 schedule printtokens2 printtokens replace

7 3.167e5 3.165e5 3.164e5 3.162e5 3.155e5 – 3.159e5
13 1.573e6 1.565e6 1.566e6 1.571e6 1.565e6 1.562e6 1.560e6
21 5.408e6 5.411e6 5.402e6 5.374e6 5.371e6 5.367e6 5.390e6
31 1.485e7 1.489e7 1.484e7 1.486e7 1.470e7 1.473e7 1.465e7
43 3.441e7 3.437e7 3.426e7 3.424e7 3.403e7 3.397e7 3.390e7
57 6.984e7 6.965e7 6.969e7 6.957e7 6.885e7 6.867e7 6.843e7
73 1.274e8 1.277e8 1.275e8 1.276e8 1.264e8 1.266e8 1.263e8
91 – 2.141e8 2.147e8 2.143e8 2.058e8 2.068e8 2.063e8

111 – 3.379e8 3.375e8 3.371e8 3.194e8 3.211e8 3.205e8
133 – 4.905e8 4.905e8 4.890e8 4.544e8 4.523e8 4.506e8
157 – 6.959e8 – – 6.456e8 6.428e8 6.407e8
183 – – – – 7.165e8 7.096e8 7.082e8
211 – – – – – – 9.023e8
241 – – – – – – 1.099e9

‘–’ state size for which no instance is available.
bold indicates that the performance of the GPU-based implementation is better than CPU-based implementation.

memory-bounded and it is not compute-bounded, i.e., the limiting
factor of the performance is the memory access speed instead of the
processor utilization. There are also some minor fluctuations in the
tendency for the smaller instances of printtokens2 and replace
that are also caused by a relative greater number of genes with
value one.

Table 12 presents the number of genes processed in genes per
second by the implementation on GPU of SGS for each subject pro-
gram. The subject programs are ordered in the table by the number
of test requirements.

We continue the analysis with the incidence of the number of
requirements in the performance of the GPU-based SGS. In this case,
while there are some small fluctuations, it can also be seen that
there is the same tendency than in the CPU-based implementa-
tions, the larger the number of requirements, the lower the number
of genes processed per second by SGS. This is caused because the
number of requirements is one of the dimensions of one of the
matrices involved in the matrix–matrix multiplication operation.

From these results, it is clear that the impact of this factor in
the degradation of the performance is considerably lower than for
CPU, e.g., there is almost a 90% of performance reduction in the
CPU-based implementation from 54 (tcas) to 208 (replace) test
requirements when the instance size is 73, while in the GPU-based
implementation is merely 1%.

Finally, we analyze the influence of the instance size in the per-
formance of the GPU-based SGS. It can also be appreciated that
there is the same tendency than in the CPU-based implementations,
a larger number of genes processed per second by SGS is obtained

when solving the instances with larger size. The reason is threefold.
On the one hand, larger instances allow SGS to better profit from the
parallelism of the GPUs. In particular, larger instances imply larger
tentative solutions that are able to make the most out of the par-
allel computation of the threads. Larger instances also cause that
SGS uses a larger population, generating a higher number of blocks
and thus taking advantage of the computing capabilities offered by
the GPU architecture. Also, the two reasons, that produce this ten-
dency in the CPU implementation, help to explain this tendency
in the GPU implementation, i.e., the reduction of the impact of the
rest of the algorithm in the runtime of SGS and a better use of data
locality.

It is clear that the impact of the instance size in the improvement
of the performance is significantly higher for the GPU implementa-
tion than for the CPU-based implementation, e.g., the improvement
in performance for replace between instance size 7 and 241 is
almost 5× in the CPU-based implementation, while in the GPU
implementation is more than 3478×. It can also be seen that the
instance size from which the implementation in GPU has better
performance than the CPU implementation (indicated in bold in
Table 12) is smaller when considering a larger number of test
requirements.

From these results, it can be concluded that while both SGS
implementations show a good scalability when considering larger
instances, GPU implementation scalability is far superior than
CPU-based implementation scalability. The results also allow to
conclude that the performance of the CPU implementation of
SGS is highly degraded when considering a larger number of test

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1157

Table 13
Execution cost in microseconds of the reduced test suites.

Instance size GREE HGSE GREEDYR GREEDYE SGA EGA SGS

255 1867.03 1920.45 1887.69 1714.57 1793.47 ± 72.16 1678.65 ± 52.08 1605.59 ± 29.42
501 3714.00 3931.92 3879.62 3671.89 3777.51 ± 59.90 3641.24 ± 51.78 3550.33 ± 36.20

1000 1379.63 1861.29 1811.85 1335.96 1574.41 ± 83.02 1381.47 ± 50.93 1293.67 ± 28.44
1502 1727.16 2074.31 2092.51 1775.42 1917.80 ± 70.81 1739.18 ± 54.40 1694.19 ± 27.35
2000 1487.15 1790.04 1795.33 1416.71 1588.55 ± 70.80 1394.91 ± 44.51 1335.75 ± 30.96
2505 1533.45 1563.24 1578.14 1433.35 1559.05 ± 62.24 1393.74 ± 29.79 1363.25 ± 29.30
3003 1363.69 1647.08 1528.54 1312.06 1541.00 ± 81.09 1314.32 ± 41.39 1247.50 ± 24.01

The best results are in bold.

Table 14
Mean Friedman’s ranking (̨ = 0.01).

Subject GREE HGSE GREEDYR GREEDYE SGA EGA SGS

space 3.7143 � 6.5714 � 6.2857 � 2.8571 – 5.0000 � 2.5714 – 1.0000

‘�’ States that the ranking of SGS has statistically lower value than the algorithm of the column.
‘–’ States that the ranking of SGS has lower value than the algorithm of the column but it is not statistically significant.

requirements. Even though there is a degradation in the perfor-
mance of the GPU implementation of SGS when considering a larger
number of test requirements, this degradation is minimal.

5.4. Case study: space

In this subsection, we extend our experimental evaluation of
SGS including larger scenarios than in the previous subsections.
For this purpose, we use the subject program space that is also
publicly available at SIR website [26]. space [30] is an interpreter
for an Array Definition Language that consist of 6200 LOCs in C
(more than 12× larger than the subject program with more LOCs
from the Siemens benchmark). It has a test pool of 13,585 test cases
(almost 2.5× larger than the subject program with the largest test
pool from the Siemens benchmark) and 2728 test goals (more than
13× larger than the subject program with more test goals from the
Siemens benchmark).

We also measured the runtime of each test case of space fol-
lowing the same procedure described in subsection 5.1.1. The
resulting total cost of executing all the test cases of the test suite is
2403.989 ms, while the the minimum, the mean (± std. dev.) and
the maximum cost of executing a test case for each subject program
is 8.72, 176.96 (± 248.526) and 6256.04 microseconds, respectively.

We also followed the methodology described in Section 5.1.2
for randomly generating 1000 test suites. The size of the randomly
generated test suites ranges from 33 to 3099 test cases, while the
average number of test cases of the 1000 test suites is 1581.72. The
total execution cost of all the test suites is 279916.135 ms.

As a consequence of the resulting instances size, the runtime is
high for the CPU implementations of the evolutionary algorithms.
For this reason, we have selected seven instances from the 1000
available for the experiments. Six instances were chosen consider-
ing sizes evenly distributed within the range of available sizes and
another instance was included because its number of test cases is
the most similar to the largest test suite generated for the Siemens
benchmark. The number of test cases of the instances selected for
the experimental evaluation is 255, 501, 1000, 1502, 2000, 2505,
and 3003. We structure the analysis of the experimental results of
the case study in the same three research questions responded for
the Siemens benchmark. We follow exactly the same methodology,
but for the number of runs of the evolutionary algorithms that is
thirty in this case (instead of fifty).

5.4.1. RQ1 – numerical efficiency of SGS
Table 13 presents the execution cost in microseconds of the

reduced test suites obtained by each of the algorithms for each of

the instances. For the evolutionary algorithms, the execution cost
of the reduced test suite is computed as the average of the execu-
tion cost over the thirty runs of the GPU implementation (mean ±
std. dev.). Table 14 presents the mean Friedman’s ranking for the
seven instances.

The results obtained for the large instances of the case study
are similar to the results obtained for the small instances of the
Siemens benchmark. SGS is consistently the best performing algo-
rithm for all the instances considered, and clearly outperforms the
other two EAs and the four specific heuristics. Although it is not
possible to demonstrate that the differences between the numeri-
cal performance of SGS and GREEDYE (p-value is 0.0539), and SGS
and EGA (p-value is 0.1735) are statistically significant with a con-
fidence level of 99%, this is caused by the small number of instances
considered.

5.4.2. RQ2 – parallel performance of SGS
Table 15 presents the average runtime over the thirty indepen-

dent runs for the CPU and GPU implementations of the evolutionary
algorithms, as well as the improvement in performance of GPU
implementation over CPU implementation measured as the run-
time reduction of GPU versions vs. CPU versions.

The results obtained confirm the tendencies appreciated for the
smaller instances. EGA is the best performing algorithm among the
CPU versions, SGS is the best performing algorithm among the GPU
versions, and SGA is the algorithm with the best runtime reduc-
tions. It it clear from the results that the runtime reduction of SGA
is explained by the rather poor performance of the CPU version of
SGA.

The overall best performing algorithm is the GPU implementa-
tion of SGS. Moreover, in this case, the differences in the runtime
of the GPU implementation between SGS and the other two evo-
lutionary algorithms is more than a 10% for the larger instances.
Although the runtime reduction of SGS decreases as the size of the
instance is larger, SGS is still able to obtain reductions of up to 48×
for instances with 3003 test cases and and 2728 test goals.

5.4.3. RQ3 – scalability of the performance of SGS
Table 16 presents the number of genes processed in genes per

second by the CPU and GPU versions of SGS.
The results corroborate the tendency in the influence of the

instance size in the performance of the CPU-based SGS, the larger
the instance size, the larger the number of genes processed per
second by SGS. On the other hand, while the same tendency is
appreciated for the influence of the instance size in the perfor-
mance of the GPU implementation of SGS in the five smaller

1158 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

Ta
b

le

15
R

u
n

ti
m

e

in

se
co

n
d

s

of

th
e

C
PU

an
d

G
PU

ve
rs

io
n

s

an
d

ru
n

ti
m

e

re
d

u
ct

io
n

of

G
PU

ve
rs

io
n

s

vs
. C

PU

ve
rs

io
n

s.

In
st

an
ce

SG
A

EG
A

SG
S

Si
ze

C
PU

G
PU

R
ed

.

C
PU

G
PU

R
ed

.

C
PU

G
PU

R
ed

.

25
5

74
9.

58

±

5.
84

1.
47

±

0.
01

50
9.

92
21

4.
53

±

4.
93

1.
49

±

0.
01

14
4.

17
25

3.
71

±

6.
81

1.
39

±
0.

01
18

2.
53

50
1

37
31

.1
4

±

18
.4

1
8.

55

±

0.
10

43
6.

39

91
9.

24

±

25
.7

1

8.
62

±

0.
12

10
6.

70

11
05

.2
1

±

24
.1

5

8.
23

±
0.

11

13
4.

31
10

00

15
95

4.
49

±

21
4.

88
54

.1
6

±

0.
02

29
4.

57
36

46
.5

8

±

12
8.

57
54

.8
8

±

0.
02

66
.4

5
48

16
.8

2

±

53
.7

2
52

.6
2

±
0.

02
91

.5
3

15
02

36
07

0.
20

±

15
65

.1
6

17
6.

70

±

0.
07

20
4.

13

84
94

.8
8

±

27
5.

76

17
8.

77

±

0.
04

47
.5

2

11
71

9.
31

±

39
.8

0

16
8.

12

±

0.
03

69
.7

1
20

00

66
43

6.
25

±

21
7.

04
40

4.
53

±

0.
07

16
4.

23
15

95
0.

64

±

42
2.

25
40

9.
41

±

0.
18

38
.9

6
23

39
0.

66

±

20
1.

40
37

5.
19

±

0.
16

62
.3

4
25

05

N
/A

86
5.

41

±

0.
32

>

99
.8

4

27
31

9.
37

±

61
0.

95

87
6.

87

±

0.
09

31
.1

6

41
96

8.
11

±

53
0.

05

78
1.

67

±

0.
24

53
.6

9
30

03

N
/A

13
87

.5
1

±

2.
48

>

62
.2

7

38
40

6.
65

±

57
4.

53

14
05

.6
1

±

2.
49

27
.3

2

60
56

0.
02

±

52
0.

11

12
54

.8
9

±

0.
14

48
.2

6

Th
e

be
st

re
su

lt
s

ar
e

in

bo
ld

.
‘N

/A
’ s

ta
te

s

th
at

th
e

ru
n

s

h
av

e

ti
m

ed

ou
t

(r
u

n
ti

m
e

is

m
or

e

th
an

>8
64

00

s)
.

Table 16
Number of genes processed by SGS (in genes per second).

Instance size CPU version GPU version

255 1.487e6 2.715e8
501 2.762e6 3.710e8

1000 4.630e6 4.238e8
1502 6.238e6 4.348e8
2000 7.328e6 4.568e8
2505 8.396e6 4.508e8
3003 9.408e6 4.540e8

instances studied for the case study, this trend is reversed for the
remaining two instances. This result indicates that the GPU has
already reached the peak of performance of the algorithm for the
computing capacity of the device used in the experiments. But
even so, the GPU implementation is still able to process almost
two orders of magnitude more genes per second than the CPU
implementation, while solving really large scenarios.

The results also corroborate the tendencies in the incidence of
the number of requirements in the performance of the CPU and GPU
implementations of SGS. This can be borne out by comparing the
results for the instance with 255 test cases with the results for the
instance with 241 test cases of the subject program replace from
Tables 11 and 12. Both instances have a similar number of test cases
but the instance from the subject program space has more than
13× more test goals than the instance from the subject program
replace. Comparing the number of genes processed for the two
different instances, it can be appreciated that the performance of
the CPU implementation of SGS is highly degraded (29.98×), while
the degradation of the performance of the GPU implementation of
SGS is merely 4.05×

6. Threats to validity

Threats to validity are concerned with potential risks that could
jeopardize the trustworthiness of the conducted empirical study
[31,32]. The identification and mitigation of such threats prevents
the introduction of a bias in the study by the researcher subjectiv-
ity. Threats to validity can be classified in four categories: internal,
external, conclusion and construct [31,32].

Internal validity is related to other factors that could have
affected the results instead of the factors studied in the experi-
ment. The specific heuristics for the TSMP used in the experiments
where implemented by ourselves since there are no publicly avail-
able implementations. To control this threat, we have carefully
performed code inspection and step-by-step execution for small
cases in order to check that the results obtained are correct. It
should be noted that the results obtained are coherent with the
results presented in [17].

External validity is concerned with factors that could prevent
the generalization of the results of the experiments. In the first
place, the subject programs used in the experimental analysis are
real world programs from the Siemens benchmark suite and the
space program. Even though, they have been widely used in the
literature, they are relatively small programs. For this reason, they
might not be representative of large size programs. We plan to
extend our experiments in a future work, including larger subject
programs in order to minimize this threat. Secondly, parallel perfor-
mance is highly sensitive to the features of the hardware platform
used. However, since the gap in performance between GPUs and
CPUs keeps widening day after day, it is reasonable to infer that
new GPUs will produce even better performance results than the
presented in this work.

Conclusion validity is related to the possibility to draw correct
conclusions from the outcomes of an experiment. Since we are deal-
ing with stochastic algorithms, we executed fifty independent runs

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1159

of each instance and subject program for each of such algorithms.
Then, statistical tests with a high confidence level (99%) have been
used to assess the statistical significance of the experimental results
obtained.

Construct validity is concerned with when measurements used
in the experiments do not adequately capture the concepts they
are supposed to measure. The execution time of the test cases and
of the algorithms was measured as the wall-clock time using the
system clock, which it is clear that captures the speed of execution
as it is perceived by the user.

7. Related work

Related work can be classified into other approaches for the Test
Suite Minimization Problem, similar ideas to the SGS algorithm, and
SBSE and metaheuristics implementations on GPU.

Test Suite Minimization Problem Besides the context of the prob-
lem provided in Section 2.1, and the previous works already
described in Section 4, there are some additional relevant papers
that are commented next.

Arito et al. [13] presented an interesting methodology for
obtaining the exact solution of the TSMP when all cost are equal
to one, i.e., when reducing the number of test cases of the suite.
The methodology consists in automatically transforming a TSMP
instance in a Boolean satisfiability (SAT) problem and then solving
it using a exact SAT solver. Since the runtime of the methodol-
ogy proposed is still very high, the authors reduced the original
instances using a highly aggressive strategy that consist in remov-
ing all test cases whose coverage is contained in another test case.
The authors did not report the runtime of neither the transforma-
tion between TSMP and SAT nor the reduction of the instances.
Although the methodology proposed is interesting, it can not be
applied directly to the cost-aware TSMP.

There are also other approaches for finding the test suite with
minimum cardinality that satisfies a set of goals. A modification
of the HGS heuristic was proposed including additional coverage
information from the test cases with the goal of improving the
fault detection effectiveness of the reduced suites [27]. The per-
formance of several test suite reduction algorithms, including the
GRE and HGS heuristics and a genetic algorithm was experimen-
tally evaluated [33]. The GA [34] uses binary strings, the one-point
crossover, the bit-flip mutation and both a penalty function and a
feasibilization strategy. In the experimental evaluation, the GA was
outperformed by both classical heuristics. Finally, a reduction with
a tie-breaking mechanism was proposed and incorporated in the
GRE and HGS heuristics in order to avoid random selection when
there are ties between test cases [35].

Also, evolutionary algorithms have been used for solving vari-
ants of the TSMP considering a cost associated to the test cases. A
genetic algorithm is used for solving a variant of TSMP that includes
the cost of the test case and a weight for each of the goals that
have to be covered [36]. The GA uses binary strings, the one-point
crossover and the bit-flip mutation. In the experimental evaluation,
the GA outperformed a modified greedy algorithm that takes into
account the cost and the coverage of the test cases.

Systolic Genetic Search Algorithm SGS algorithm is a recent
research line which has been proposed in [8] after some prelim-
inary explorations in [22,23]. Since the seminal works of systolic
computing by [19,20], a few efforts have been devoted to devis-
ing optimization algorithms based on this paradigm. As a matter of
fact, only in [37] and in [38] an implementation of a GA on VLSI and
FPGA architectures in a systolic fashion is proposed. However, this
research lines were early discarded for the reason that it was very
complex to translate the GA operations into the recurrent equations
required for the hardware definition.

A direct antecedent of SGS is Systolic Neighborhood Search (SNS)
[39]. Both algorithms share the arrangement of solutions into a grid,
but moves solutions horizontally and vertically, whereas SNS only
circulates solutions horizontally. As a consequence, SNS manages
a single solution on each cell, using a more simple search strategy
than in SGS. For this reason, SGS can be considered as an advanced
version of SNS.

More recently, in [40,41] a hardware-oriented GA for FPGA
architectures was presented. The proposal, called Pipelined Genetic
Propagation (PGP), is based on propagating and circulating a group
of individuals in a directed graph structure. Data is transported
in a pipelined manner between the nodes of the graph that per-
form genetic operations on the data. Each node performs a specific
operation. There are selection nodes, crossover nodes and mutation
nodes, which distinguishes substantially PGP with respect to SGS.

SBSE and Metaheuristics on GPU Although SBSE is usually a com-
putationally demanding area because most problems has to be
solved within a tight schedule and the instances used have a large
size, the application of parallelism to SBSE has been scarce [7]. There
are just a few related works that use GPUs to solve SBSE problems.

The multi-objective TSMP was addressed using a GPU to speed
up the fitness calculation of a multi-objective EA [7,16]. In the pro-
posed implementation in each generation the entire population is
transferred from the CPU to the GPU, the fitness function is evalu-
ated on the GPU and the results are transferred back to the CPU. It
should be noted that transfers between CPU and GPU in both direc-
tions are one of the most costly operation for an hybrid CPU-GPU
platform. The novelty of this proposal is how the fitness values are
calculated, transforming the fitness evaluation of the population
into a matrix–matrix multiplication operation. This multiplication
was programmed by hand by the authors instead of using a linear
algebra library already available on GPU. Then, this idea is adapted
for an hybrid CPU-GPU implementation of the NSGA-II algorithm
is used for tackling the multi-objective test case prioritization [42].
In this proposal, besides computing the fitness evaluation on the
GPU as a matrix–matrix multiplication operation, the crossover
operation is also computed on the GPU.

It is not possible to make a completely fair comparison between
the performance of the parallel implementation presented by Yoo
et al. [7,16] and this work since there are many differences between
both approaches: they use a multi-objective algorithm, while we
use a single-objective algorithm; in their proposal, the GPU is only
used for computing the fitness function evaluation, while, in our
proposal, the whole algorithm is implemented in the GPU; they
transfer the population from the CPU to the GPU in each iteration,
while we do not do that; the number of fitness evaluations and the
population size of both approaches are different; etc. Additionally,
it is very difficult to evaluate if both CPU-GPU platforms have a sim-
ilar relative performance. Regardless of these caveats, it should be
highlighted that the maximal runtime reduction of the GPU ver-
sion vs. the CPU version of SGS achieved in this work (182.53× for
the instance with 255 test cases for the subject program space) is
far superior than the maximal speedup reported in previous works
(25.09×) for instances with similar features.

In a completely different line of work, a process for automatically
improving existing software systems using genetic programming
was proposed [43]. This methodology, known as Genetic Improv-
ing, has been successfully applied for optimizing a CUDA stereo
image processing system [44] and a CUDA 3D medical image reg-
istration software [45].

On the other hand, the use of GPUs has represented an inspiring
domain for the research in parallel metaheuristics, experiencing
a tremendous growth in the last years. Currently, most of the
standard existing family of algorithms have already been ported
to this new kind of devices [46]. Several authors have tackled
the GPU implementation of genetic algorithms [47,48], Ant Colony

1160 M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161

Optimization [49,50], etc. Also, most popular models of parallel EAs
have already been addressed on GPU, like master–slave [47], dis-
tributed [51], and cellular [52,53] models, showing the time savings
that could be attained using such devices.

8. Concluding remarks and future work

In this work, we have proposed a Systolic Genetic Search Algo-
rithm for solving the cost-aware TSMP. We have performed an
exhaustive experimental evaluation of SGS, as well as two EAs,
a simple genetic algorithm and an elitist genetic algorithm, and
four specific heuristics for the TSMP, namely GREE, HGSE, GREEDYR
and GREEDYE. This evaluation is aimed at understanding if the
algorithm proposed is able to provide better solutions that the
other algorithms. Second, we have evaluated the computational
performance of SGS on GPU in comparison with the GPU-based
implementations of SGA and EGA. Then, we have evaluated how
the size of test suite and the number of test requirements affect
the performance of the CPU and GPU implementation of SGS. The
most important findings of this experimental evaluation can be
summarized as follows:

• SGS is the algorithm with the best numerical performance for all
the subject programs considered in the study. It is clear that the
underlying search engine of SGS is advantageous for solving the
cost-aware TSMP since the basic search operators are common to
the other evolutionary algorithms evaluated. Additionally, SGS
is able to outperform four specific heuristics for this problem,
without using any problem-specific knowledge.

• Even though SGA is the algorithm with the best runtime reduction
between the CPU implementation and the GPU implementation,
this reduction is explained by the poor performance of the CPU-
based implementation rather than by a particular improvement
in the GPU implementation.

• The GPU-based SGS is the algorithm with the best computational
performance. The differences in the runtime of SGS with the other
GPU-based implementations are caused by the underlying search
engine of SGS.

• Although both SGS implementations show a good scalability
behavior when solving larger instances (instances with more test
cases), the scalability of the GPU-based implementation is far
superior than the scalability of the CPU-based implementation.

• The performance of the CPU-based SGS is highly degraded when
considering a larger number of test requirements, while the per-
formance of the GPU-based SGS is just minimally degraded.

In summary, the GPU implementation of SGS is not only able to
reach excellent quality solutions for the cost-aware TSMP, but it is
also able to do it fast. Moreover, GPU-based SGS shows a good scal-
ability behavior when solving high dimension problem instances.
This makes it possible to solve real-world software testing environ-
ments in which decisions have to be taken within a tight schedule.

Four main areas that deserve further study are identified. A first
issue is to extend our experiments with other real-world bench-
marks, specially including test suites that include test cases with
larger execution times than the used in this work. Secondly, since
the cost model of the test case could influence the numerical per-
formance of the proposed algorithm, we aim to conduct a study on
the sensitivity of SGS to different cost models by creating synthetic
instances that include scenarios with similar test costs and with
great variability test cost. Then, given that the numerical results
obtained by GREEDYE are acceptable and that it has a really short
execution time, a third line of interest is to study the effect of ini-
tializing some solutions of the SGS population using this specific
heuristic or even using all the specific heuristics evaluated. This

may help to speed up the search of the SGS and even lead to bet-
ter solutions. Finally, we aim to widen the perspective including
theoretical and empirical studies of the impact of the distribution
of the crossover and mutation points throughout the systolic grid
in the quality of the solutions obtained by SGS and in its speed of
convergence.

Acknowledgements

M. Pedemonte acknowledges partial support from Programa
de Desarrollo de las Ciencias Básicas, Sistema Nacional de Inves-
tigadores and Agencia Nacional de Investigación e Innovación,
Uruguay. E. Alba is partially funded by the Spanish MINECO
and FEDER project TIN2014-57341-R (http://moveon.lcc.uma.es).
F. Luna acknowledges support from Consejería de Ciencia e Inno-
vación, Gobierno de Extremadura, and FEDER under contract
PRI13113.

References

[1] M.J. Harrold, Testing: a roadmap, in: Proceedings of the Conference on the
Future of Software Engineering, ICSE’00, ACM, 2000, pp. 61–72.

[2] G. Tassey, The Economic Impacts of Inadequate Infrastructure for Software
Testing, National Institute of Standards and Technology, RTI Project 7007
(011), 2002.

[3] Y.-D. Lin, C.-H. Chou, Y.-C. Lai, T.-Y. Huang, S. Chung, J.-T. Hung, F.C. Lin, Test
coverage optimization for large code problems, J. Syst. Softw. 85 (1) (2012)
16–27.

[4] S. Yoo, M. Harman, Regression testing minimization, selection and
prioritization: a survey, Softw. Test. Verif. Reliab. 22 (2) (2012) 67–120.

[5] M. Harman, S.A. Mansouri, Y. Zhang, Search-based software engineering:
trends, techniques and applications, ACM Comput. Surv. 45 (1) (2012),
11:1–11:61.

[6] E. Alba (Ed.), Parallel Metaheuristics: A New Class of Algorithms, Wiley, 2005.
[7] S. Yoo, M. Harman, S. Ur, Highly scalable multi objective test suite

minimisation using graphics cards, in: Proceedings of the Third International
Conference on Search Based Software Engineering, 2011, pp. 219–236.

[8] M. Pedemonte, F. Luna, E. Alba, Systolic genetic search, a systolic
computing-based metaheuristic, Soft Comput. 19 (7) (2015) 1779–1801.

[9] G. Rothermel, M.J. Harrold, J. von Ronne, C. Hong, Empirical studies of
test-suite reduction, Softw. Test. Verif. Reliab. 12 (4) (2002) 219–249.

[10] J. Offutt, J. Pan, J. Voas, Procedures for reducing the size of coverage-based test
sets, in: Proc. of the Twelfth Int. Conf. on Testing Computer Software, 1995,
pp. 111–123.

[11] M.J. Harrold, R. Gupta, M.L. Soffa, A methodology for controlling the size of a
test suite, ACM Trans. Softw. Eng. Methodol. 2 (3) (1993) 270–285.

[12] T. Chen, M.F. Lau, Heuristics towards the optimization of the size of a test
suite, in: Proc. of the 3rd Int. Conf. on Software Quality Management, 1995,
pp. 415–424.

[13] F. Arito, J.F. Chicano, E. Alba, On the application of sat solvers to the test suite
minimization problem, in: SSBSE, Vol. 7515 of LNCS, Springer, 2012, pp.
45–59.

[14] M. Pedemonte, F. Luna, E. Alba, Systolic genetic search for software
engineering: the test suite minimization case, in: Applications of Evolutionary
Computation, Vol. 8602 of Lecture Notes in Computer Science, Springer, 2014,
pp. 678–689.

[15] T.Y. Chen, M.F. Lau, A new heuristic for test suite reduction, Inf. Softw.
Technol. 40 (5) (1998) 347–354.

[16] S. Yoo, M. Harman, S. Ur, GPGPU test suite minimisation: search based
software engineering performance improvement using graphics cards, Empir.
Softw. Eng. 18 (3) (2013) 550–593.

[17] C.-T. Lin, K.-W. Tang, G.M. Kapfhammer, Test suite reduction methods that
decrease regression testing costs by identifying irreplaceable tests, Inf. Softw.
Technol. 56 (10) (2014) 1322–1344.

[18] D. Kirk, W. Hwu, Programming Massively Parallel Processors, Second Edition:
A Hands-on Approach, Morgan Kaufmann, 2012.

[19] H.T. Kung, Why systolic architectures? Computer 15 (1) (1982) 37–46.
[20] H.T. Kung, C.E. Leiserson, Systolic arrays (for VLSI), in: Sparse Matrix

Proceedings, 1978, pp. 256–282.
[21] A.C. Guyton, J.E. Hall, Textbook of Medical Physiology, 11th ed., Elsevier

Saunders, 2006.
[22] M. Pedemonte, E. Alba, F. Luna, Towards the design of systolic genetic search,

in: IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, IEEE Computer Society, 2012, pp. 1778–1786.

[23] M. Pedemonte, F. Luna, E. Alba, New ideas in parallel metaheuristics on GPU:
systolic genetic search, in: S. Tsutsui, P. Collet (Eds.), Massively Parallel
Evolutionary Computation on GPGPUs, Natural Computing Series, Springer,
2013, pp. 203–225, Ch. 10.

M. Pedemonte et al. / Applied Soft Computing 49 (2016) 1145–1161 1161

[24] A.M. Smith, G.M. Kapfhammer, An empirical study of incorporating cost into
test suite reduction and prioritization, in: Proceedings of the 2009 ACM
Symposium on Applied Computing, ACM, 2009, pp. 461–467.

[25] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria, in:
Proc. of the 16th Int. Conf. on Software Engineering, 1994, pp. 191–200.

[26] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact, Empir. Softw.
Eng. 10 (4) (2005) 405–435.

[27] D. Jeffrey, N. Gupta, Improving fault detection capability by selectively
retaining test cases during test suite reduction, IEEE Trans. Softw. Eng. 33 (2)
(2007) 108–123.

[28] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18.

[29] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 5th ed., Chapman and Hall/CRC, 2011.

[30] F.I. Vokolos, P.G. Frankl, Empirical evaluation of the textual differencing
regression testing technique, in: International Conference on Software
Maintenance, 1998. Proceedings, 1998, pp. 44–53, http://dx.doi.org/10.1109/
ICSM.1998.738488.

[31] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer Science & Business Media,
2012.

[32] R.K. Yin, Case Study Research: Design and Methods, Sage publications, 2013.
[33] H. Zhong, L. Zhang, H. Mei, An experimental study of four typical test suite

reduction techniques, Inf. Softw. Technol. 50 (6) (2008) 534–546.
[34] N. Mansour, K. El-Fakih, Simulated annealing and genetic algorithms for

optimal regression testing, J. Softw. Maint. Res. Pract. 11 (1) (1999)
19–34.

[35] J.-W. Lin, C.-Y. Huang, Analysis of test suite reduction with enhanced
tie-breaking techniques, Inf. Softw. Technol. 51 (4) (2009) 679–690.

[36] X. Ma, Z. He, B. Sheng, C. Ye, A genetic algorithm for test-suite reduction, in:
2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 1,
IEEE, 2005, pp. 133–139.

[37] H. Chan, P. Mazumder, A systolic architecture for high speed hypergraph
partitioning using a genetic algorithm, in: Progress in Evolutionary
Computation, vol. 956 of Lecture Notes in Computer Science, Springer,
Berlin/Heidelberg, 1995, pp. 109–126.

[38] G. Megson, I. Bland, Synthesis of a systolic array genetic algorithm, in: Parallel
Processing Symposium, 1998. IPPS/SPDP 1998, 1998, pp. 316–320.

[39] P. Vidal, F. Luna, E. Alba, Systolic neighborhood search on graphics processing
units, Soft Comput. (2013) 1–18.

[40] L. Guo, C. Guo, D. Thomas, W. Luk, Pipelined genetic propagation, in: 2015
IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2015, pp. 103–110.

[41] S. Shao, L. Guo, C. Guo, T. Chau, D. Thomas, W. Luk, S. Weston, Recursive
pipelined genetic propagation for bilevel optimisation, in: 2015 25th
International Conference on Field Programmable Logic and Applications (FPL),
2015, pp. 1–6.

[42] Z. Li, Y. Bian, R. Zhao, J. Cheng, A fine-grained parallel multi-objective test case
prioritization on GPU, in: Search Based Software Engineering, Springer, 2013,
pp. 111–125.

[43] W.B. Langdon, M. Harman, Optimising existing software with genetic
programming, IEEE Trans. Evol. Comput. 19 (1) (2015) 118–135.

[44] W.B. Langdon, M. Harman, Genetically improved CUDA c++ software, in:
Genetic Programming, Springer, 2014, pp. 87–99.

[45] W.B. Langdon, M. Modat, J. Petke, M. Harman, Improving 3D medical image
registration CUDA software with genetic programming, in: Proceedings of the
2014 Conference on Genetic and Evolutionary Computation, ACM, 2014, pp.
951–958.

[46] W.B. Langdon, Graphics processing units and genetic programming: an
overview, Soft Comput. 15 (8) (2011) 1657–1669.

[47] O. Maitre, F. Krüger, S. Querry, N. Lachiche, P. Collet, EASEA: specification and
execution of evolutionary algorithms on GPGPU, Soft Comput. 16 (2) (2012)
261–279.

[48] M. Pedemonte, E. Alba, F. Luna, Bitwise operations for GPU implementation of
genetic algorithms, in: Genetic and Evolutionary Computation Conference,
GECCO’11 – Companion Publication, 2011, pp. 439–446, http://dx.doi.org/10.
1145/2001858.2002031.

[49] J.M. Cecilia, J.M. García, M. Ujaldon, A. Nisbet, M. Amos, Parallelization
strategies for ant colony optimisation on GPUs, in: 25th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2011, Workshop
Proceedings, 2011, pp. 339–346.

[50] M. Pedemonte, S. Nesmachnow, H. Cancela, A survey on parallel ant colony
optimization, Appl. Soft Comput. 11 (8) (2011) 5181–5197.

[51] S. Zhang, Z. He, Implementation of parallel genetic algorithm based on CUDA,
in: ISICA 2009, LNCS 5821, 2009, pp. 24–30.

[52] N. Soca, J. Blengio, M. Pedemonte, P. Ezzatti, PUGACE, a cellular evolutionary
algorithm framework on GPUs, in: 2010 IEEE World Congress on
Computational Intelligence, WCCI 2010 – 2010 IEEE Congress on Evolutionary
Computation, CEC 2010, 2010, pp. 1–8, http://dx.doi.org/10.1109/CEC.2010.
5586286.

[53] P. Vidal, E. Alba, Cellular genetic algorithm on graphic processing units, in:
Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 2010,
pp. 223–232.

Appendix C

A Theoretical and Empirical Study of the
Trajectories of Solutions on the Grid of
Systolic Genetic Search

Information Sciences 4 45–4 46 (2018) 97–117

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A theoretical and empirical study of the trajectories of

solutions on the grid of Systolic Genetic Search

Martín Pedemonte

a , ∗, Francisco Luna

b , Enrique Alba

b

a Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay
b Depto. de Lenguajes y Ciencias de la Computación, Univ. de Málaga, E.T.S. Ingeniería Informática, Campus de Teatinos, Málaga 29071,

Spain

a r t i c l e i n f o

Article history:

Received 4 February 2017

Revised 31 August 2017

Accepted 15 February 2018

Available online 15 March 2018

Keywords:

Systolic Genetic Search

Evolutionary algorithms

Parallel Metaheuristics

Systolic Computing

GPU

a b s t r a c t

Systolic Genetic Search (SGS) is a recently proposed optimization algorithm based on the

circulation of solutions through a bidimensional grid of cells and the application of evo-

lutionary operators within the cells to the moving solutions. Until now, the influence of

the solutions flow on the results of SGS has only been empirically studied. In this article,

we theoretically analyze the trajectories of the solutions along the grid of SGS. This anal-

ysis shows that, in the grids used so far, there are cells in which the incoming solutions

are descendants of a pair of solutions that have been previously mated. For this reason,

we propose a new variant of SGS which uses a grid that guarantees that, given a pair

of solutions that coincide in any cell, a pair of ancestors of these two solutions have not

been previously mated. The experimental evaluation conducted on three deceptive prob-

lems shows that SGS has a better numerical efficiency when it uses grids that limit the

mating of descendants of pairs of solutions that have already been mated. It also shows

that this property helps to keep a larger diversity in the pairs of solutions that are mated

in each cell.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Evolutionary Algorithms (EAs) are stochastic search methods inspired by the natural process of evolution of species. EAs

are guided by the survival of the fittest principle applied to candidate solutions through the selection of the best fitted

individuals for reproduction, and it involves the probabilistic application of evolutionary operators to find better solutions.

In the traditional sequential EA, the population is organized into a single group, mating individuals without limitations.

Due to the emergence of Parallel EAs [3,22] , two different population models have gained great popularity: the distributed

or island model and the cellular model. In the island model [1,5] , the population is partitioned into subpopulations that

evolve semi-independently and the selection of parents for reproduction is limited to individuals that belong to the same

subpopulation. In the cellular model [2] , the population is structured in many small overlapping neighborhoods and the

selection of parents for reproduction is local to each neighborhood.

Systolic Genetic Search (SGS) [26,29] is a recently proposed optimization algorithm that merges ideas from Systolic Com-

puting and Genetic Algorithms . The algorithm was explicitly designed to exploit the high degree of parallelism available in

∗ Corresponding author.

E-mail addresses: mpedemon@fing.edu.uy (M. Pedemonte), flv@lcc.uma.es (F. Luna), eat@lcc.uma.es (E. Alba).

https://doi.org/10.1016/j.ins.2018.02.033

0020-0255/© 2018 Elsevier Inc. All rights reserved.

98 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

modern GPU architectures. It has already shown its potential for tackling benchmark and real world problems, finding opti-

mal or near optimal solutions in short execution times. SGS optimizes a set of solutions that flows through a bidimensional

grid of cells following a synchronous and structured plan through a horizontal and a vertical data flow. In each cell, adapted

evolutionary operators are applied to the tentative circulating solutions in order to obtain better solutions that continue

moving across the cells of the grid.

SGS differs from the population models mentioned above because the interactions in SGS are limited by the subpopula-

tions, being only possible interactions between two solutions that belong to the two different data flows. Also, the selection

of parents for reproduction in SGS is implicit (SGS does not have an explicit selection process), and it is determined by the

flow of solutions through the grid. In spite of the success of SGS for solving hard binary optimization problems, little is

known about how the underlying search engine affects the general behavior of the algorithm. This motivates us to conduct

a formal analysis of the trajectories described by the solutions along the grid, in order to gain insight into the operating

mechanism of SGS.

In this article, we investigate the relation between the pairing of solutions of the subpopulations of SGS B (one of the

most effective flows for SGS) and the numerical efficiency of the algorithm. With this in mind, we theoretically analyze

the trajectories described by the solutions for two different grids that have been used experimentally, examining especially

the pairing of solutions of the two subpopulations that are produced along the grid. In this analysis, we found that there

are cells in which both incoming solutions are direct descendants of a pair of solutions that have already been mated in

another cell of the grid. This could prevent that highly fitted genetic material of the best circulating solutions of a data flow

can be shared with a large part of the solutions of the other data flow, potentially compromising the exploitation of good

regions of the search space. Because of this, we design a new variant of SGS that uses an original grid specially conceived to

overcome this limitation. The novel variant of SGS has better theoretical properties than the variants used so far. In addition

to the theoretical analysis, an experimental evaluation is also conducted to examine how the different grids impact on the

effectiveness of SGS for solving three deceptive problems. We can summarize the contributions of this work as follows:

• It presents a theoretical analysis of the trajectories described by the solutions in two different grids that have been

previously used for SGS [28,30] . As a result of this analysis, a new variant of SGS is designed, introducing a new grid

with better theoretical properties that prevents the mating of descendants of pairs of solutions that have already been

mated.

• It shows that the new variant proposed of SGS is the best performing algorithm in the experimental evaluation, being

able to obtain optimal or almost optimal solutions for the three deceptive problems studied in this article. It also shows

that the second best performing algorithm also uses a grid topology in which the mating of descendants of solution pairs

that have already been mated is limited.

• It shows that SGS consistently outperforms two competitive genetic algorithms with the same evolutionary operators

as the SGS algorithms for the three deceptive problems considered. This result corroborates that the success of SGS for

solving these problems is caused by the underlying search engine of SGS.

• It reveals that the diversity in each cell of the grid of SGS (how different are the individuals that are being mated in

each cell) is larger when the mating of descendants of pairs of solutions that have already been mated is prevented or

limited, as in the newly proposed grid.

This article is organized as follows. Section 2 presents the main features of the SGS algorithm used in this work and

it also discusses related papers from the literature. Then, in Section 3 , we provide a theoretical analysis of the trajectories

of the solutions on two different grids already used, as well as, we introduce a new grid that produces different pairing

of solutions for mating in each cell of the grid in each step of the algorithm. The experimental design used for evaluating

the three different grids and the results of the experimental evaluation are presented in Section 4 . Finally, in Section 5 , we

outline the conclusions of this work and suggest future research directions.

2. Systolic genetic search

Systolic Computing is inspired by the physiology of the cardiovascular system [16,21] . In particular, in the systole phase,

the heart contracts, increasing the pressure inside the cavities. As a result, the heart ejects blood into the arterial system

with a regular cadence to meet the metabolic needs of the tissues. Systolic computing architectures are composed of simple

data processing units, which are usually called cells, that are connected through a network. The cells are able to compute

relatively simple operations to data received from neighboring units. The network allows a data flow between neighboring

cells with a regular cadence, as in the systole phase of the cardiac cycle.

SGS [26–30] is a recently proposed optimization algorithm that adapts the operation of genetic algorithms to a systolic

computing architecture. Several aspects of the SGS algorithm have to be defined such as the flow of solutions through the

grid (how is the interconnection topology of the systolic structure and how do the solutions move through this structure),

the dimension of the grid, and the computation of the cells (which operations are applied to the tentative solutions in each

cell). In the rest of this section, we describe those aspects of the SGS used in this work, and we also discuss related papers

from the literature.

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 99

Fig. 1. Flow of solutions in SGS B .

2.1. Flow of solutions

SGS algorithm uses a bidimensional grid of cells in which the solutions circulate synchronously through an horizontal

and a vertical data streams. At each step of SGS, two solutions enter each cell (i, j), s
i,j-1
H

from the horizontal data stream

(cel l (i, j − 1)) and s
i-1,j
V

from the vertical data stream (cel l (i − 1 , j)). Then, the cell computation is performed generating two

(potentially new) solutions that continue moving through the grid, s
i,j+1
H

through the horizontal data stream (cel l (i, j + 1))

and s
i+1,j
V

through the vertical data stream (cel l (i + 1 , j)), as it is shown in Fig. 1 a.

In this work, we adopt the SGS B data flow since it has shown empirically to be highly effective, as well as it has outper-

formed in terms of execution time other three data flows studied [26,27,29] . In SGS B , the solutions flow either horizontally

(moving in the same row), or vertically (moving in the same column), when a solution reaches the last cell of the last

row/column of the grid is passed on to the cell of the first row/column of the next column/row. The interconnection topol-

ogy and the solution flow of SGS B are shown in Fig. 1 b.

2.2. Grid of the SGS

In [26,27,29] a rectangular grid was used, which was designed to allow SGS to achieve an adequate exploration and

to take advantage of the parallel computation capabilities offered by GPUs. In this grid, the width is l (the length of the

tentative solutions) and the height is � lg l� . As a consequence, the number of solutions of the population is 2 × l × � lg l� (2
solutions per cell) for solving problem instances of size l . Although the idea is to have a relatively large number of cells

to take advantage of the parallel computation capabilities offered by GPUs, this large number of cells can compromise the

computational performance.

A proper balance could be obtained using grids with at least l cells [28,30] . In [28] a square � √

l � × � √

l � grid was used.

If � √

l � is an integer, the grid has exactly l cells, otherwise it has some additional cells. As a consequence, the population

size is 2 × � √

l � × � √

l � . Additionally, in [30] a rectangular � √

l � × (� √

l � + 1
)

grid was used instead of the square grid. In

Section 3 , we present a theoretical study on the trajectories of solutions for both aforementioned grids.

2.3. Cell computation

Initially, each cell generates two random solutions, one for each data stream. At each step of SGS, which is known as

systolic step, one solution enters each cell from the horizontal data stream and one solution enters each cell from the

vertical data stream. Adapted genetic operators (crossover and mutation) are applied to the incoming solutions in order

to generate two potentially new solutions. Then, the cell uses elitism to determine the outgoing solutions that continue

moving through the grid, choosing for each data stream between the incoming solution and a newly generated one. The use

of elitism is essential since SGS has no selection process. Finally, each cell sends the outgoing solutions to the next cells of

each of the data streams. Algorithm 1 presents the pseudocode of the algorithm.

SGS can be adapted to any solution representation and any particular operator. Since we are dealing with binary problems

in this work, we encode the solutions as binary strings. The evolutionary search operators are the two-point crossover and

the bit-flip mutation. As the two-point crossover is applied on each cell, two different crossover point values are chosen ran-

domly for each cell. The bit-flip mutation operator flips a single bit in each solution of each cell. In previous works [28,30] ,

with the aim of reducing the generation of random numbers during the execution of SGS, the mutation point was prepro-

grammed at fixed positions of the tentative solutions according to the position of the cell on the grid. In this work, we

analyze a single factor of SGS (the trajectories of the solutions through the grid) in isolation to understand its effect on the

algorithm, so we have preferred to follow a more traditional approach and change a bit chosen randomly for each cell.

100 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

Algorithm 1: Systolic Genetic Search.

1 foreach cell c do

2 s H = generateRandomSolution()

3 s V = generateRandomSolution()

4 sendSolutionThroughHorizontalDataStream(S H , c)

5 sendSolutionThroughVerticalDataStream(S V , c)

6 end

7 for i = 1 to maxGeneration do

8 foreach cell c do

9 s H = receiveSolutionFromHorizontalDataStream(c)

10 s V = receiveSolutionFromVerticalDataStream(c)

11 (new H , new V) = crossover(s H , s V)

12 new H = mutation(new H)

13 new V = mutation(new V)

14 new H = elitism(s H , new H)

15 new V = elitism(s V , new V)

16 sendSolutionThroughHorizontalDataStream(new H , c)

17 sendSolutionThroughVerticalDataStream(new V , c)

18 end

19 end

2.4. Related works

This section analyzes published material which is related to similar ideas to the SGS algorithm. Most of the research

in the use of GPUs for implementing parallel metaheuristics have followed the approach of porting an existing family of

algorithms to these devices [17,20] . As a consequence, several works show the benefits in time savings of implementing

master-slave [23] , island [39] , and cellular [34,35] models of parallel metaheuristics on GPU, including most popular tech-

niques like Genetic Algorithms (GAs) [23,39] , Ant Colony Optimization [6,7] , Particle Swarm Optimization [40] , etc. On the

other hand, SGS is a new research line specially conceived for exploiting the high degree of parallelism available in modern

GPU architectures.

SGS algorithm has been proposed in [29] after some preliminary ideas that have been explored [26,27] . Few effort s

have been devoted to designing optimization algorithms based on systolic computing-like architectures [18,19] . In [8] and

in [24] an implementation of a GA on VLSI and FPGA architectures in a systolic fashion is proposed. However, this research

line was early discarded since it was hard to translate the GA operations into the recurrent equations required for the

hardware configuration.

A direct antecedent of SGS is Systolic Neighborhood Search (SNS) [4,36,37] . As a matter of fact, SGS can be seen as

an advanced version of SNS. Both algorithms share the arrangement of solutions into a grid, although SNS only circulates

solution through a horizontal data stream, while SGS moves solutions not only through a horizontal data stream but also

through a vertical data stream. Indeed, SNS manages a single solution in each cell, while SGS manages pairs of solutions in

each cell, thus allowing to devise more complex search strategies than in SNS. For this reason, SGS can be considered as an

advanced version of SNS.

More recently, in [15,32] a hardware-oriented GA for FPGA architectures was presented. The proposal, called Pipelined

Genetic Propagation (PGP), is based on propagating and circulating a group of individuals in a directed graph structure. Data

is propagated in a pipelined manner between the nodes of the graph, which are able to perform genetic operations on the

circulating data. Each type of node performs a particular operation. There are selection nodes, crossover nodes and mutation

nodes, which distinguishes substantially PGP from SGS.

3. Theoretical analysis of the trajectories of solutions on the grid

In SGS B , the population is divided into two non-overlapping subpopulations, one subpopulation is composed of the solu-

tions that are moving horizontally and the other subpopulation corresponds to the solutions that are moving vertically. At

every step of SGS B , each of the solutions moving horizontally mates with a different solution moving vertically. Therefore,

mating is limited by the subpopulations, being only possible to produce interactions between two solutions that belong

to the two different subpopulations. The pairing of solutions between subpopulations is not static and it changes in every

iteration with the movement of the solutions over the grid, as it is shown in Fig. 2 .

The population model of SGS B is radically different from the other population models used in evolutionary algorithms.

In SGS B , two solutions are mated, one from each subpopulation, while the mating process is local to each subpopulation in

the island model and each neighborhood in the cellular model. Additionally, in SGS B , the pairings for mating are changing

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 101

Fig. 2. Population model of SGS B .

dynamically as the solutions move through the grid, while in the other models the subpopulations considered for mating

are in general static.

The selection pressure of both panmictic (traditional sequential) and cellular model EAs has been studied through the

analysis of the takeover time [12,13,31] . The takeover time is defined as the time that takes for the best individual to take

over the entire population. This metric can be estimated experimentally by measuring the propagation of the best individual

only considering the effect of selection (omitting the effect of the crossover and mutation operators). Since SGS B does not

have an explicit selection process, such study cannot be performed in our case. In SGS B , the selection of parents for mating

is determined by the flow of solutions through the grid. Let S H and S V be the subpopulation of solutions moving horizontally

and vertically, respectively, and s H ∈ S H and s V ∈ S V be two solutions that are located in the same cell at a given time.

We define the meeting time of the cell as the minimum number of steps or movements that take for s H and s V to coincide

again in a cell. Eq. 1 formally defines the meeting time of cell (i, j), where moveStepsHorizontal (x, y, s) and moveStepsVertical (x,

y, s) calculate the final position of a solution that starts at cell (x, y) after s horizontal and vertical steps, respectively. For

this definition, we only consider the effect of movements through the grid, without taking into account the application of

variational operators (as in the takeover time). The meeting time of a cell can take values from one to the total number of

cells of the grid.

meetingT ime (x, y) = s ⇐⇒ s is the minimal value such that:

{

s > 0

(x ′ , y ′) = mov eStepsHorizontal(x, y, s)
(x ′ , y ′) = mov eStepsV ertical(x, y, s)

(1)

The meeting time is a useful metric for analyzing the trajectories described by the solutions through the grid, in order

to gain insight into the interactions that are produced along the grid between both subpopulations in SGS B . It is desirable

that the best individual could interact in reproduction with as many as possible solutions from the other subpopulation

(especially since the cells use elitism), assuring that the highly fitted genetic material is diffused along the grid. The larger

the value of meeting time of the cells, the larger the number of different solutions with which the best individual would

interact.

In the next two sections, we analyze the trajectories described by the solutions in the square and rectangular grids

previously proposed. In this analysis, we divide the cells of the grid into different groups and independently calculate the

meeting time of the cells of these groups. For this purpose, we show for each group that two solutions starting in the same

cell, coincide again in a cell after the same number of horizontal and vertical steps. Then, we present a new grid in which

the meeting time of all the cells of the grid is equal to the number of cells of the grid. After that, we compare the main

theoretical features of the three grids. In Section 4 , we experimentally evaluate the grids to understand how the different

meeting time affects the behavior of SGS especially regarding its numerical and computational efficiency.

102 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

3.1. The square � √

l � × � √

l � grid

Let h be the height of the grid, i.e., the number of cells in a column, and w be the width of the grid, i.e., the number of

cells in a row. In the square grid used in [28] , h = w = � √

l � . For the sake of simplicity we consider a 0-based index grid,

i.e., the index of the cells ranges from 0 to h − 1 : 0 ≤ i ≤ h − 1 and 0 ≤ j ≤ h − 1 . Let us consider three different groups of

cells: the cells that do not belong to the last row or the last column of the grid, the cells from the last row of the grid, and

the cells from the last column of the grid.

Theorem 3.1. The meeting time of the cells that do not belong to the last row or the last column of the grid (i.e., cell (i, j) with

i < h − 1 and j < h − 1) is h + 1 .

Proof. It should be noted that i + 1 < h and j + 1 < h since i < h − 1 and j < h − 1 . After h + 1 steps through the horizontal

flow, s H is located in cel l (i + 1 , j + 1) , i.e., the next cell of the diagonal 1 , since 2 :

(i + ((j + h + 1) div h)) mod h = (i + 1) mod h = i + 1 , and (2)

(j + (h + 1)) mod h = j + 1 . (3)

After h + 1 steps through the vertical flow, s V is also in the cel l (i + 1 , j + 1) , since:

(i + (h + 1)) mod h = i + 1 , and (4)

(j + ((i + h + 1) div h)) mod h = (j + 1) mod h = j + 1 . (5)

�

Theorem 3.2. The meeting time of the cells that belong to the last row of the grid (i.e., cel l (h − 1 , j)) is h 2 − jh − j.

Proof. After h 2 − jh − j steps through the horizontal flow, s H is in the first cell of the diagonal (cel l (h − j − 1 , 0)) since:

(h − 1 + ((h

2 − jh − j) div h)) mod h = (h + (h − j − 1)) mod h = h − j − 1 , and (6)

(j + (h

2 − j h − j)) mod h = (h × (h − j)) mod h = 0 . (7)

After h 2 − jh − j steps through the vertical flow s V is also in the cel l (h − j − 1 , 0) , since:

(h − 1 + (h

2 − jh − j)) mod h = ((h × (h − j)) + (h − j − 1)) mod h = h − j − 1 , and (8)

(j + ((h

2 − j h − j) div h)) mod h = (j + (h − j)) mod h = 0 (9)

�

Equivalently to Theorem 3.2 , it can be proved that after h 2 − ih − i movements from the cells of the grid that belong

to the last column (i.e., cel l (i, h − 1)), both s H and s V return to the first cell of the diagonal (i.e., cel l (0 , h − i − 1)), i.e., the

meeting time of these cells is h 2 − ih − i .

As a consequence of these theorems, two solutions s H and s V , which coincide in a cell, will coincide in all the cells of

the diagonal. Fig. 3 shows with dashed lines the coincidences of solutions moving horizontally and vertically through the

grid. For this reason, each solution moving horizontally/vertically would only interact in reproduction with a fixed number

of solutions moving vertically/horizontally that is equal to the number of diagonals of the grid, i.e., w + h − 1 = 2 h − 1 .

The ratio of solutions from one subpopulation with which any given solution of the other subpopulation is mated can be

computed as the number of diagonals of the grid divided by the total number of solutions of the subpopulation, i.e., 2 h −1
h ×h

.

3.2. A rectangular � √

l � × (� √

l � + 1
)

grid

In the rectangular grid used in [30] , h = � √

l � and w = � √

l � + 1 , i.e., w = h + 1 . We also use a 0-based index grid, i.e.,

the index of the cells ranges from 0 to h horizontally (0 ≤ j ≤ h) and from 0 to h − 1 vertically (0 ≤ i ≤ h − 1). Let us consider

five different groups of cells: the single cell at position (h − 1 , h) , the single cell at position (0, 0), the cells at position (i, h)

with 0 ≤ i ≤ h − 3 , the cells at position (i , 0) with 2 ≤ i ≤ h − 1 , and the rest of the cells of the grid.

It holds trivially that meeting time of cel l (h − 1 , h) is 1 since the next cell through both the horizontal and the vertical

flows is cell (0, 0).

1 The grid can be seen as a matrix. The concept of diagonal is proper of matrices.
2 We note the integer division with the operand div . We note the remainder of the integer division with the operand mod .

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 103

Fig. 3. Coincidences of solutions moving horizontally and vertically on the square grid.

Theorem 3.3. The meeting time of cell (0, 0) is h 2 + h − 1 .

Proof. h 2 + h − 1 is equal to (h − 1) × (h + 1) + h . After h 2 + h − 1 steps through the horizontal flow, s H is in cel l (h − 1 , h)

since:

(0 + (((h − 1) × (h + 1) + h) div (h + 1))) mod h = (h − 1) mod h = h − 1 , and (10)

(0 + ((h − 1) × (h + 1) + h)) mod (h + 1) = h. (11)

After h 2 + h − 1 steps through the vertical flow, s V is also in cel l (h − 1 , h) since:

(0 + (h

2 + h − 1)) mod h = h − 1 , and (12)

(0 + ((h

2 + h − 1) div h)) mod (h + 1) = h mod (h + 1) = h. (13)

�

Theorem 3.4. The meeting time of cell (i, h) with 0 ≤ i ≤ h − 3 is h + 2 .

Proof. After h + 2 movements through the horizontal flow, s H is in cel l (i + 2 , 0) , since:

(i + ((h + h + 2) div (h + 1))) mod h = (i + 2) mod h = i + 2 , and (14)

(h + (h + 2)) mod (h + 1) = 0 . (15)

It should be noted that i + 2 < h since i ≤ h − 3 . After h + 2 moves through the vertical flow, s V is in cel l (i + 2 , 0) , since:

(i + (h + 2)) mod h = i + 2 , and (16)

(h + ((i + h + 2) div h)) mod (h + 1) = (h + 1) mod (h + 1) = 0 . (17)

�

Theorem 3.5. The meeting time of cell (i , 0) with 2 ≤ i ≤ h − 1 is h 2 − 2 .

Proof. h 2 − 2 is equal to (h − 2)(h + 1) + h . After h 2 − 2 steps through the horizontal flow, s H is in cel l (i − 2 , h) , since:

(i + (((h − 2) × (h + 1) + h) div (h + 1))) mod h = (i + (h − 2)) mod h = i − 2 , and (18)

(0 + ((h − 2) × (h + 1) + h)) mod (h + 1) = h. (19)

104 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

Fig. 4. Coincidence of trajectories of solutions moving horizontally and vertically on the rectangular grid.

It should be noted that i − 2 ≥ 0 since 2 ≤ i . After h 2 − 2 steps through the vertical flow, s V is in cel l (i − 2 , h) , since:

(i + (h

2 − 2)) mod h = i − 2 , and (20)

(0 + ((i + (h

2 − 2)) div h)) mod (h + 1) = h mod (h + 1) = h. (21)

�

Theorem 3.6. The meeting time of the rest of the cells is h × (h + 1) .

Proof. The rest of the cells are formed by cell (i, j) with 0 ≤ i ≤ h − 1 and 0 ≤ j ≤ h that do not belong to the other four group

of cells. After h × (h + 1) steps from a cell (i, j) through the horizontal flow, s H is again in cell (i, j), since:

(i + ((h × (h + 1)) div (h + 1))) mod h = (i + h) mod h = i, and (22)

(j + (h × (h + 1))) mod (h + 1) = j. (23)

After h × (h + 1) steps through the vertical flow, s V is also again in cell (i, j), since:

(i + (h × (h + 1))) mod h = i, and (24)

(j + ((h × (h + 1)) div h)) mod (h + 1) = (j + h + 1) mod (h + 1) = j. (25)

�

Fig. 4 represents the cells in which pairs of solutions moving horizontally and vertically coincide using the same sym-

bol. Each solution moving horizontally/vertically would only interact in reproduction with a number of solutions moving

vertically/horizontally that is equal to the number of cells from the fifth group (h × (h − 1) + 2) plus h − 2 (the solutions

from cell (i, h) with 0 ≤ i ≤ h − 3 coincide again in cell (i , 0) with 2 ≤ i ≤ h − 1), and plus one (the solutions from cel l (h − 1 , h)

coincide in cell (0, 0)). As a consequence, the ratio of solutions from one subpopulation with which any given solution of

the other subpopulation is mated is h 2 +1
h 2 + h . Even though this ratio is larger than the one obtained for the square grid, it is

possible to design a new grid in which any solution is paired for mating with a different solution of the other subpopulation

in each cell of the grid, i.e., the meeting time of each cell of the grid is equal to the number of cells of the grid. We present

this new grid in the next subsection.

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 105

Fig. 5. h × (h + 1) grid with maximum meeting time .

3.3. A � √

l � × (� √

l � + 1
)

grid with maximum meeting time

Let us consider a h × (h + 1) grid (i.e., w = h + 1) without the cel l (h, h + 1) (as it is shown in Fig. 5 a). This grid has

exactly (h + 1) h − 1 cells, and both subpopulations are composed of (h + 1) h − 1 solutions. Since we are considering a SGS B
data flow, the vertically outgoing solution from cel l (h − 1 , h + 1) passes to cell (1, 1), while the horizontally outgoing solution

from cell (h, h) passes to cell (1, 1). In order to prove that the meeting time for each cell of this grid is (h + 1) h − 1 , we

demonstrate an auxiliary lemma that will be used as part of the demonstration.

Lemma 3.1. Let h ∈ Z and h ≥ 0, it holds that h − 1 and (h + 1) h − 1 are coprime.

Proof. If h − 1 and (h + 1) h − 1 were not coprime, then h − 1 and (h + 1) h − 1 would have a prime factor in common, i.e.,

∃ a prime such that h − 1 = a × r 1 and (h + 1) h − 1 = a × r 2 .

(h + 1) h − 1 = (a × r 1 + 2) × (a × r 1 + 1) − 1 = a 2 × r 2 1 + 3 a × r 1 + 1 = a (a × r 2 1 + 3 × r 1) + 1 . (26)

In other words, the modulo of (h + 1) h − 1 by a is 1. This is contradictory with the fact that a was a prime factor of

(h + 1) h − 1 . As a consequence h − 1 and (h + 1) h − 1 do not have prime factors in common. �

Theorem 3.7. The meeting time of all the cells of the grid is (h + 1) h − 1 .

Proof. Let us number the cells of the grid between 0 and (h + 1) h − 2 , corresponding 0 to cell (1, 1), 1 to cell (2, 1), and

so on, as it is shown in Fig. 5 a. One step through the vertical data stream of a cell corresponds to adding one in modulo

(h + 1) h − 1 to the number associated with the cell. One step through the horizontal data stream of a cell is equivalent to

adding h in modulo (h + 1) h − 1 to the number associated with the cell. Two solutions located in the same cell, coincide

again in a cell when the same number of additions (i.e., the number of steps) with a 1 and a h step in modulo (h + 1) h − 1

obtain the same result. The idea of the proof is illustrated in Fig. 5 b.

Let x be a cell (0 ≤ x ≤ (h + 1) h − 2) and p be meeting time of x (1 ≤ p ≤ (h + 1) h − 1). Then,

(x + p × h) mod ((h + 1) h − 1) = (x + 1 × p) mod ((h + 1) h − 1) . (27)

Since the remainders of the integer division have to be equal, it holds that

x + p × h = α × ((h + 1) h − 1) + r ⇒ r = x + p × h − α × ((h + 1) h − 1) , (28)

x + 1 × p = β × ((h + 1) h − 1) + r ⇒ r = x + p − β × ((h + 1) h − 1) , (29)

with α ∈ Z , and β ∈ Z . From Eq. 28 and Eq. 29 , it follows that

p × (h − 1) = (α − β) × ((h + 1) h − 1) . (30)

Let k = α − β, k ∈ Z since α ∈ Z and β ∈ Z . Eq. 30 can be rewritten as:

k =

p × (h − 1)

(h + 1) h − 1

. (31)

p has to be divisible by (h + 1) h − 1 since k ∈ Z , and h − 1 and (h + 1) h − 1 do not have any prime factor in common by

Lemma 3.1 . As 1 ≤ p ≤ (h + 1) h − 1 , the only possible value for p is (h + 1) h − 1 . �

As a consequence, all solutions moving through one data flow coincide in a single cell of the grid with each of the

solutions moving through the other data flow. In each systolic step of SGS B , the pairing of solutions between subpopulations

for mating is different. In other words, each of the solutions of a subpopulation is paired with all the solutions of the other

subpopulation, interacting for mating with a different solution in each cell of the grid.

106 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

Table 1

Main features of the grids.

Square Grid Rectangular Grid New Grid

Cells of the grid h 2 h 2 + h h 2 + h − 1

Average meeting time 2 h − 1 h 2 + 1 h 2 + h − 1

Mating Ratio 2 h −1
h 2

h 2 +1
h 2 + h 1

3.4. Comparison of the different grids

Table 1 summarizes the main characteristics of the different grids analyzed. The table presents the number of cells in

the grid, the average meeting time , and the mating ratio. The average meeting time is calculated as the sum of the meeting

time of each cell in the grid divided by the total number of cells in the grid. The mating ratio is calculated as the number of

different solutions from one subpopulation that can be mated with a solution from the other subpopulation (according to

the meeting time) divided by the number of solutions of the subpopulation. Both the average meeting time and the mating

ratio provide insight into the number of repetitions of pairings of solutions for reproduction between subpopulations when

only the effect of the movements through the grid is considered. On the other hand, when the effect of the application of

variational operators is taken into account, these metrics give an idea of the number of solutions paired for mating that

are direct descendants of pairs of solutions that have already been mated. The square grid has the smallest average meeting

time and mating ratio of the grids, while, on the other hand, the newly proposed grid has the largest value of these metrics.

In the next section, we perform an empirical analysis of the three grids on three deceptive problems with the goal of

understanding how the different features of the grids affect the behavior of SGS.

4. Experimental design

This section describes the experimental design used for evaluating the effect of the average meeting time and the mating

ratio of the grid on SGS results including the problems used for the experimental study, the parameters setting, the execu-

tion platforms, and the experimental procedure. Then, the experimental results grouped in research questions are presented

and discussed.

4.1. Test problems

For the experimental evaluation, we use three deceptive problems that are particularly hard for EAs since they converge

to regions of the search space where the optimal solution cannot be found.

4.1.1. Massively multimodal deceptive problem

The Massively Multimodal Deceptive Problem (MMDP) is both deceptive and multimodal [14] . It is composed of subfunc-

tions of six bits each one whose function value only depends on the number of ones of the six bits substring (unitation). The

subfunction has two global optima located at both ends of the range and a local deceptive attractor located at the halfway

point. The subfunction values are f (0) = 1 . 0 0 0 0 0 0 , f (1) = 0 . 0 0 0 0 0 0 , f (2) = 0 . 360384 , f (3) = 0 . 640576 , f (4) = 0 . 360384 ,

f (5) = 0 . 0 0 0 0 0 0 , and f (6) = 1 . 0 0 0 0 0 0 . We use instances with strings of 30 0, 60 0, 90 0, 120 0, 150 0 and 180 0 bits and so

the optimal values are 50, 100, 150, 200, 250, and 300, respectively.

4.1.2. Six-bit fully deceptive subfunction of deb and goldberg

A six-bit fully deceptive subfunction was proposed by Deb and Goldberg [9,10] whose function value is also computed

according to the unitation. It has one global optimum when unitation is six and one local deceptive attractor when unitation

is zero. It was constructed assuring that all schemas containing the local attractor are superior to the ones that contain the

global optimum for schemas of order up to 5. The subfunction values are f (0) = 0 . 90 , f (1) = 0 . 45 , f (2) = 0 . 35 , f (3) = 0 . 30 ,

f (4) = 0 . 30 , f (5) = 0 . 25 , and f (6) = 1 . 00 . We use instances with the same size as in the MMDP, and so the optimal values

are also 50, 100, 150, 200, 250, and 300. We will refer to this problem as D&G.

4.1.3. Four-bit fully deceptive subfunction of whitley

A four-bit fully deceptive subfunction was proposed by Whitley [38] following a different approach. All the four-bit

strings are partitioned into subgroups according to their relative Hamming distance, i.e., each subgroup is composed of

strings with the same number of 0s and 1s. An arbitrary order is chosen for each subgroup, e.g., in ascending order. Then,

all the strings are sorted. The first string is the global optimum and the last string is the local deceptive attractor. Then,

the function and fitness values are assigned in such a way that all order-3 and lower hyperplanes lead the search to the

deceptive optimum. The subfunction values are presented in Fig. 6 . We also use instances with strings of 30 0, 60 0, 90 0,

120 0, 150 0 and 180 0 bits and so the optimal values are 2250, 4500, 6750, 9000, 11250, and 13500 respectively. We will

refer to this problem as Whitley.

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 107

Fig. 6. Whitley’s 4-bit fully deceptive subfunction.

Table 2

Parameters of the SGS algorithms for the instance sizes considered.

300 600 900 1200 1500 1800

Sq Rect RwoC Sq Rect RwoC Sq Rect RwoC Sq Rect RwoC Sq Rect RwoC Sq Rect RwoC

Number of cells 324 342 341 625 650 649 900 930 929 1225 1260 1259 1521 1560 1559 1849 1892 1891

Population size 648 684 682 1250 1300 1298 1800 1860 1858 2450 2520 2518 3042 3120 3118 3698 3784 3782

Generations 1805 1710 1715 3380 3250 3255 4805 4650 4655 6480 6300 6305 80 0 0 7800 7805 9680 9460 9465

4.2. Algorithms, parameters setting, and test environment

In the experimental evaluation, we use three SGS algorithms. We have also included two EAs, a simple genetic algorithm

with and without elitism (EGA and SGA, respectively), in order to set an actual comparison basis. These EAs have been

chosen because they share the same basic search operators (crossover and mutation) as SGS so we can properly evaluate

the underlying search engine of the techniques. The details of the algorithms are:

• Sq: SGS B that uses the square grid presented in Section 3.1 .

• Rect: SGS B that uses the rectangular grid presented in Section 3.2 .

• RwoC: SGS B that uses the newly proposed rectangular grid without the cel l (l , l + 1) presented in Section 3.3 .

• SGA: It is a generational genetic algorithm with binary tournament, two-point crossover and bit-flip mutation.

• EGA: It is similar to SGA but children solutions replace parent solutions only if they have a better fitness value.

The crossover probability used for SGA and EGA is 0.9, the bit-flip mutation flips a single bit chosen randomly. Each of

the SGS algorithms has a different population size that is determined by the size of the grid. The population size of both

GAs was defined of the same size than Rect.

The stopping criterion used for the algorithms is to reach a maximum number of generations fixed a priori. In order to

perform a fair comparison among the algorithms, the number of generations was chosen for the rectangular grid, and then

the number of generations for the other algorithms was calculated guaranteeing that the number of solutions generated by

every algorithm for each instance is exactly the same. The number of generations for the rectangular grid is five times the

size of the grid and it was chosen to ensure that each solution circulates five times over the grid.

Table 2 presents the number of cells in the grid, the size of the population and the number of generations of the SGS

algorithms for the six different instance sizes considered in the experimental study. The number of cells and the size of the

population of SGS is automatically determined from the length of the tentative solutions, as it is explained in Section 2.2 .

Each of the algorithms studied has only been implemented on CPU since the focus of the experimental evaluation is

studying how the different grids affect the behavior of the algorithm. The execution platform for the algorithms evaluated

is a PC with a Quad Core Intel i7 4770 processor at 3.40 GHz. with 16 GB RAM using a GNU/Linux O.S. All implementations

have been compiled using the -O3 flag and are run as single-thread applications.

108 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

Table 3

Percentage of the runs that obtained the optimal solution.

Problem Instance Hit Rate(%)

Size SGA EGA Sq Rect RwoC

MMDP 300 0 0 81 90 89

600 0 0 87 82 94

900 0 0 78 94 96

1200 0 0 85 97 98

1500 0 0 88 93 99

1800 0 0 89 98 100

D&G 300 0 0 0 47 48

600 0 0 1 60 62

900 0 0 1 46 49

1200 0 0 1 49 62

1500 0 0 3 35 58

1800 0 0 3 50 67

Whitley 300 0 0 0 0 1

600 0 0 0 0 1

900 0 0 0 0 0

1200 0 0 0 0 0

1500 0 0 0 0 0

1800 0 0 0 0 0

The best results are in bold.

4.3. Experimental procedure

Since the algorithms used in the evaluation are stochastic, statistical tests are used to assess the significance of the

experimental results obtained. The following statistical procedure has been used [11,33] . First, one hundred independent

runs for each algorithm and each instance have been performed. Then, the different metrics that are studied are computed.

Two different statistical procedures are considered, one involving the statistical differences for the algorithms across the

multiple problems and instances, and one analyzing the statistical difference for each problem and instance independently.

For the former approach, we use the Friedman’s test according to the ranking of the algorithms for some particular

metric. The test is used to check if the differences in a particular metric among the algorithms are statistically significant.

Since more than two algorithms are involved in the study, a multiple N × N comparison using the Holm’s post-hoc procedure

is performed. These statistical tests are performed with a confidence level of 95%.

For the latter approach, the statistical procedure described next is followed [33] to determine if the distribution of a

particular metric for each algorithm and each instance independently is statistically different. First, a Kolmogorov-Smirnov

test and a Levene test are performed in order to check, respectively, whether the samples are distributed according to a

normal distribution and whether the variances are homogeneous (homoscedasticity). If the two conditions hold, an ANOVA I

test is performed; otherwise a Kruskal-Wallis test is performed. A post hoc testing phase consisting in a pairwise comparison

of all the cases compared using the Holm’s correction method on either the Student’s t -test (if the samples follow a normal

distribution and the variances are homogeneous) or the Wilcoxon-Mann-Whitney test (otherwise) is also performed. These

tests are also performed with a confidence level of 95%.

4.4. Experimental results

In this section, we present the experimental results. We group our experiments in three research questions (RQs). RQ1

concerns the numerical efficiency of the algorithms studied in this work, especially the SGS algorithm using different grids.

Then, RQ2 deals with the performance of the algorithms studied. Finally, RQ3 is concerned with understanding how highly

fitted genetic material is diffused through the different grids.

4.4.1. Research question 1 - Numerical efficiency

In this subsection we address the following questions: is SGS able to provide better solutions than the other EAs included in

the study? , and do the grids with large average meeting time and mating ratio make SGS provide better solutions than the other

grids? To answer these questions, we consider two different metrics: the hit rate and the relative error between the best

solution found by the algorithms and the optimal solution.

The hit rate is computed as the percentage of the runs of each algorithm that is able to obtain the optimal solution for

each instance. Table 3 presents the hit rate of each of the algorithms for each of the 18 instances considered, while Table 4

presents the mean Friedman’s ranking according to the hit rate.

The results show that RwoC is the best performing algorithm, being able to obtain more times the optimal solution in 13

out of 18 instances. RwoC is excellent for solving the MMDP and a highly competitive algorithm for solving D&G, obtaining

the optimal solution in more than 50% of the trials. Although Rect is the best performing algorithm in only one instance,

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 109

Table 4

Mean Friedman’s ranking.

Algorithm Ranking

SGA 4.03

EGA 4.03

Sq 3.06

Rect 2.39

RwoC 1.50

Table 5

Statistical assessment of algorithms.

Comparison p value Stat. assesment

SGA vs EGA 1.00e1 -

SGA vs Sq 0.33e1 -

SGA vs Rect 0.15e-1 �

SGA vs RwoC 0.16e-4 �

EGA vs Sq 0.33e1 -

EGA vs Rect 0.15e-1 �

EGA vs RwoC 0.16e-4 �

Sq vs Rect 0.41e1 -

Sq vs RwoC 0.19e-1 �

Rect vs RwoC 0.33e1 -

the hit rates obtained by Rect are similar to the hit rates of RwoC in most of the instances studied. Sq is only a competitive

algorithm for the MMDP. On the other hand, both SGA and EGA are the worst performing algorithms, and they could not

find the optimal solution in any of the trials of the three considered problems. If the results obtained for each problem

are globally analyzed, it can be seen that the different problems pose different challenges for SGS, being MMDP an easy

problem, D&G a medium difficulty problem, and Whitley a hard problem.

Table 5 presents the p -values adjusted with Holm’s procedure. These tests show that RwoC and Rect are significantly

better than both SGA and EGA, and RwoC is also significantly better than Sq.

Now, we analyze the relative error to the optimal solution. For each execution of the algorithms, the relative error is

computed as it is shown in Eq. 32 , where f opt is the optimal solution to the problem, f best is the best found solution by the

execution of the algorithm, and f min is the worse (minimal) function value for the problem. It should be noted that f min is

0 in MMDP and Whitley, but in D&G the f min of each independent subfunction is 0.25.

e r =

| f opt − f best |
| f opt − f min | . (32)

Since the three problems are composed of the concatenation of subfunctions, there are many repeated values in the

relative error obtained by the different algorithms. For this reason, we have chosen to report both median and mean in

order to picture a better description of the distribution of the error. Table 6 presents the experimental results regarding

the relative error to the optimal solution obtained by each algorithm. The table includes the best (minimum) relative error,

the median and the mean of the distribution of the relative error, as well as the interquartile range (IQR) and the standard

deviation (SD).

The results show that RwoC is the algorithm with the best distribution of the relative error in 15 out 18 instances,

while Rect is the best performing algorithm in the rest of the cases (the smallest instance of MMDP and the two smallest

instances of D&G). Both SGA and EGA are the worst performing algorithms, achieving the worse relative error distribution

in all instances considered. The results of the pairwise comparisons using the Holm’s method on Wilcoxon-Mann-Whitney

test are displayed in tabular form in Table 7 . The statistical tests show that all SGS algorithms have a better numerical

performance than SGA and EGA. RwoC and Rect have a better numerical performance than Sq in 16 out of 18 and 15 out of

18 instances, respectively. There is also statistical evidence that RwoC outperforms Rect in 9 out of 18 instances.

Taking into account the hit rates globally for all instances and the relative error for each instance, it can be concluded

that RwoC consistently outperforms Sq, while there is strong statistical evidence that in most cases Rect is superior to Sq

(the Kruskal-Wallis test on 15 out of 18 instances). Although RwoC is in general superior to Rect (i.e., Rect is the second

best performing SGS algorithm), the statistical evidence is less strong (the Kruskal-Wallis test on 9 out of 18 instances). In

summary, the numerical results show that the numerical efficiency of the SGS algorithms that use grids with large average

meeting time and mating ratio is far superior to the square grid (the grid with the smallest values of the two metrics). The

numerical results also show that all SGS algorithms have a better numerical performance than SGA and EGA.

11
0

M
.
 P

ed
em

o
n

te
 et

 a
l.
 /
 In

fo
rm

a
tio

n
 Scien

ces
 4
 4

5
–

4
 4

6
 (2

0
18

)
 9

7
–

117

Table 6

Numerical efficacy in terms of relative error.

Size Alg. MMDP D&G Whitley

Best Median IQR Mean SD Best Median IQR Mean SD Best Median IQR Mean SD

300 SGA 2.41e–1 2.75e–1 1.83e–2 2.73e–1 1.16e–2 2.36e–1 2.89e–1 1.87e–2 2.88e–1 1.48e–2 1.01e–1 1.16e–1 5.33e–3 1.15e–1 4.24e–3

EGA 1.75e–1 2.31e–1 3.03e–3 2.31e–1 2.12e–2 1.17e–1 1.71e–1 4.57e–2 1.73e–1 3.31e–2 5.87e–2 7.91e–2 1.16e–2 7.97e–2 9.11e–3

Sq 0.00e0 0.00e0 0.00e0 1.37e–3 2.83e–3 2.67e–3 1.07e–2 5.33e–3 1.07e–2 3.73e–3 1.78e–3 3.56e–3 8.89e–4 3.97e–3 9.58e–4

Rect 0.00e0 0.00e0 0.00e0 7.19e–4 2.17e–3 0.00e0 2.67e–3 2.67e–3 1.79e–3 2.04e–3 8.89e–4 1.78e–3 8.89e–4 2.12e–3 8.27e–4

RwoC 0.00e0 0.00e0 0.00e0 7.91e–4 2.26e–3 0.00e0 2.67e–3 2.67e–3 1.84e–3 2.10e–3 0.00e0 1.78e–3 8.89e–4 1.77e–3 7.74e–4

600 SGA 1.77e–1 2.04e–1 8.06e–3 2.09e–1 2.22e–1 1.81e–1 2.07e–1 9.50e–3 2.07e–1 8.07e–3 8.62e–2 9.60e–2 3.56e–3 9.55e–2 2.71e–3

EGA 1.86e–1 2.18e–1 1.64e–2 2.19e–1 1.28e–2 1.05e–1 1.56e–1 3.07e–2 1.55e–1 2.27e–2 6.04e–2 7.31e–2 8.00e–3 7.30e–2 5.48e–3

Sq 0.00e0 0.00e0 0.00e0 4.67e–4 1.21e–3 0.00e0 6.67e–3 2.67e–3 6.47e–3 2.26e–3 2.22e–3 3.33e–3 8.89e–4 3.40e–3 6.26e–4

Rect 0.00e0 0.00e0 0.00e0 6.47e–4 1.39e–3 0.00e0 0.00e0 1.33e–3 6.27e–4 8.57e–4 4.44e–4 1.33e–3 8.89e–4 1.45e–3 5.95e–4

RwoC 0.00e0 0.00e0 0.00e0 2.16e–4 8.58e–4 0.00e0 0.00e0 1.33e–3 6.80e–4 1.01e–3 0.00e0 1.33e–3 4.44e–4 1.23e–3 4.93e–4

900 SGA 1.28e–1 1.51e–1 7.53e–3 1.50e–1 6.14e–3 1.40e–1 1.67e–1 8.00e–3 1.66e–1 7.04e–3 7.56e–2 8.39e–2 2.52e–3 8.38e–2 1.99e–3

EGA 1.87e–1 2.16e–1 1.55e–2 2.17e–1 1.24e–2 1.11e–1 1.54e–1 2.59e–2 1.53e–1 1.66e–2 5.96e–2 6.92e–2 4.52e–3 6.99e–2 4.00e–3

Sq 0.00e0 0.00e0 0.00e0 5.27e–4 9.98e–4 0.00e0 4.44e–3 2.67e–3 4.56e–3 1.74e–3 2.37e–3 3.26e–3 5.93e–4 3.32e–3 4.89e–4

Rect 0.00e0 0.00e0 0.00e0 1.44e–4 5.72e–4 0.00e0 8.89e–4 8.89e–4 6.49e–4 7.24e–4 2.96e–4 1.19e–3 5.93e–4 1.14e–3 3.75e–4

RwoC 0.00e0 0.00e0 0.00e0 9.58e–5 4.72e–4 0.00e0 8.89e–4 8.89e–4 6.04e–4 6.67e–4 2.96e–4 8.89e–4 2.96e–4 1.05e–3 3.78e–4

1200 SGA 9.60e–2 1.13e–1 7.39e–3 1.12e–1 5.72e–3 1.31e–1 1.44e–1 8.50e–3 1.44e–1 5.76e–3 7.13e–2 7.56e–2 2.00e–3 7.55e–2 1.47e–3

EGA 1.86e–1 2.16e–1 1.62e–2 2.16e–1 1.08e–2 1.10e–1 1.53e–1 2.45e–2 1.53e–1 1.71e–2 6.02e–2 6.69e–2 4.67e–3 6.74e–2 3.05e–3

Sq 0.00e0 0.00e0 0.00e0 2.70e–4 6.45e–4 0.00e0 2.67e–3 1.33e–3 2.87e–3 1.26e–3 2.00e–3 2.89e–3 4.44e–4 2.85e–3 3.62e–4

Rect 0.00e0 0.00e0 0.00e0 5.39e–5 3.08e–4 0.00e0 6.67e–4 6.67e–4 5.00e–4 5.64e–4 2.22e–4 8.89e–4 4.44e–4 9.24e–4 3.50e–4

RwoC 0.00e0 0.00e0 0.00e0 3.59e–5 2.53e–4 0.00e0 0.00e0 6.67e–4 3.07e–4 4.39e–4 2.22e–4 6.67e–4 2.22e–4 7.62e–4 2.33e–4

1500 SGA 7.57e–2 9.28e–2 6.12e–3 9.20e–2 4.81e–3 1.17e–1 1.30e–1 6.53e–3 1.29e–1 4.40e–3 6.61e–2 6.99e–2 1.78e–3 6.95e–2 1.38e–3

EGA 1.92e–1 2.15e–1 1.53e–2 2.14e–1 9.90e–3 1.21e–1 1.54e–1 2.21e–2 1.53e–1 1.45e–2 5.92e–2 6.59e–2 3.82e–3 6.58e–2 3.02e–3

Sq 0.00e0 0.00e0 0.00e0 1.73e–4 4.70e–4 2.86e–3 2.13e–3 1.60e–3 2.06e–3 1.11e–3 1.78e–3 2.67e–3 3.56e–4 2.63e–3 3.32e–4

Rect 0.00e0 0.00e0 0.00e0 1.01e–4 3.69e–4 0.00e0 5.33e–4 5.33e–4 4.48e–4 3.84e–4 1.78e–4 8.89e–4 3.56e–4 8.50e–4 2.84e–4

RwoC 0.00e0 0.00e0 0.00e0 1.44e–5 1.44e–4 0.00e0 0.00e0 5.33e–4 2.72e–4 3.60e–4 1.78e–4 5.33e–4 5.33e–4 6.54e–4 3.01e–4

1800 SGA 6.00e–2 7.77e–2 5.10e–3 7.72e–2 4.33e–3 1.06e–1 1.18e–1 5.17e–3 1.18e–1 4.21e–3 5.90e–2 6.52e–2 1.63e–3 6.51e–2 1.33e–3

EGA 1.90e–1 2.17e–1 1.09e–2 2.17e–1 8.43e–3 1.10e–1 1.50e–1 2.38e–2 1.51e–1 1.84e–2 5.88e–2 6.47e–2 3.41e–3 6.49e–2 2.58e–3

Sq 0.00e0 0.00e0 0.00e0 1.32e–4 3.77e–4 0.00e0 1.78e–3 1.00e–3 1.63e–3 8.07e–4 1.78e–3 2.52e–3 4.44e–4 2.47e–3 2.96e–4

Rect 0.00e0 0.00e0 0.00e0 2.40e–5 1.69e–4 0.00e0 2.22e–4 8.89e–4 3.69e–4 4.47e–4 2.96e–4 7.41e–4 2.96e–4 7.60e–4 2.71e–4

RwoC 0.00e0 0.00e0 0.00e0 0.00e0 0.00e0 0.00e0 0.00e0 4.44e–4 1.91e–4 3.30e–4 1.48e–4 4.44e–4 1.48e–4 5.29e–4 2.06e–4

The best distribution of relative error is in bold.

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 111

Table 7

Statistical assessment for instances 300, 600, 900, 1200, 1500, 1800.

Comparison MMDP D&G Whitley

SGA vs EGA � � � � � � � � � � � � � � � � � –

SGA vs Sq � � � � � � � � � � � � � � � � � �

SGA vs Rect � � � � � � � � � � � � � � � � � �

SGA vs RwoC � � � � � � � � � � � � � � � � � �

EGA vs Sq � � � � � � � � � � � � � � � � � �

EGA vs Rect � � � � � � � � � � � � � � � � � �

EGA vs RwoC � � � � � � � � � � � � � � � � � �

Sq vs Rect - - � � - � � � � � � � � � � � � �

Sq vs RwoC - - � � � � � � � � � � � � � � � �

Rect vs RwoC - � - - - - - - - � � � � � - � � �

‘ � ’ states that the first algorithm is statistically better than the second one.

‘ � ’ states that the second algorithm is statistically better than the first one.

‘-’ states that no statistically significant differences are found.

Table 8

Median and interquartile range of the runtime of the algorithms in seconds.

Problem Instance SGA EGA Sq Rect RwoC

Median IQR Median IQR Median IQR Median IQR Median IQR

MMDP 300 0 .524 0 .003 0 .547 0 .004 0 .480 0 .003 0 .471 0 .002 0 .474 0 .001

600 3 .307 0 .019 3 .668 0 .017 3 .183 0 .012 3 .112 0 .005 3 .131 0 .007

900 9 .610 0 .053 11 .039 0 .040 9 .374 0 .040 9 .186 0 .028 9 .216 0 .038

1200 22 .376 0 .120 26 .432 0 .109 22 .399 0 .100 21 .954 0 .061 22 .073 0 .052

1500 43 .822 0 .222 51 .897 0 .233 44 .253 0 .254 43 .185 0 .060 43 .388 0 .091

1800 78 .068 0 .496 92 .785 0 .377 78 .472 0 .175 77 .531 0 .073 77 .752 0 .08 9

D&G 300 0 .667 0 .005 0 .672 0 .006 0 .441 0 .007 0 .410 0 .009 0 .420 0 .010

600 4 .009 0 .039 4 .786 0 .024 2 .702 0 .045 2 .469 0 .031 2 .503 0 .032

900 11 .148 0 .132 14 .864 0 .080 7 .664 0 .110 6 .989 0 .086 7 .050 0 .061

1200 25 .235 0 .247 36 .536 0 .165 17 .638 0 .284 16 .081 0 .149 16 .168 0 .139

1500 47 .699 0 .537 72 .069 0 .461 34 .221 0 .392 31 .341 0 .255 31 .547 0 .286

1800 83 .152 0 .742 129 .430 0 .480 59 .451 0 .354 55 .612 0 .285 55 .936 0 .229

Whitley 300 0 .770 0 .025 0 .888 0 .013 0 .398 0 .006 0 .379 0 .007 0 .385 0 .005

600 4 .813 0 .143 6 .581 0 .063 2 .391 0 .036 2 .182 0 .029 2 .214 0 .034

900 13 .706 0 .366 20 .651 0 .116 6 .699 0 .087 5 .984 0 .064 6 .079 0 .056

1200 31 .020 0 .701 51 .362 0 .353 15 .273 0 .147 13 .484 0 .136 13 .619 0 .157

1500 57 .961 1 .237 101 .454 0 .725 29 .970 0 .315 26 .302 0 .298 26 .584 0 .251

1800 99 .398 1 .398 182 .018 0 .805 52 .140 0 .291 46 .509 0 .291 47 .005 0 .228

The best results are in bold.

4.4.2. Research question 2 - Computational efficiency

In this subsection we address the following questions: are SGS algorithms more efficient than the other EAs included in the

study? , and is the execution time of SGS affected by the use of a grid with large average meeting time and mating ratio? . To

address this question, we analyze the performance of the algorithms using the wall-clock time of execution.

Table 8 shows the median and the interquartile range of the runtime of all the algorithms computed for the one hundred

executions for each problem and instance. The Kruskal-Wallis test showed that the results are significant with a confidence

level of 95%. The pairwise comparison of all the combinations of pairs of algorithms for each instance, using the Holm’s

post-hoc method on the Wilcoxon-Mann-Whitney test with the same level of significance, revealed in all the cases that the

differences in the median runtime of the algorithms are statistically significant.

In the 18 instances, Rect is the algorithm with the shortest runtime, while RwoC is consistently the second best perform-

ing algorithm for all the problems and instances considered, i.e., the SGS algorithms with grids with large average meeting

time and mating ratio have the shortest execution time. On the other hand, the other EAs have in general a longer execution

time than the SGS algorithms, especially in the D&G and Whitley problems. The differences in runtime between Rect and

RwoC range between 0.29% and 2.44%, being less than 1% in 10 instances and more than 2% in only one case (D&G with size

300), which means a modest increase in runtime with respect to Rect. The differences in runtime between Rect and Sq are

about 2% for the instance of MMDP, while for the other two problems the differences grow to the range of 5.00%-13.95%.

The differences between SGS algorithms and the other EAs are larger, and they can be up to 140% in D&G and almost 300%

in Whitley.

The main reason for such differences in the runtime of SGS algorithms and the other EAs is the different underlying

search engine in which the algorithms are based. On the other hand, the different SGS algorithms use the same underlying

search engine and have significant differences in the execution time. It should be noted that although the number of so-

lutions built by each SGS algorithm is the same, the number of generations of each algorithm is not the same due to the

112 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

Fig. 7. Evolution of the average Hamming distance.

different number of cells of each different grid. The differences in the runtime of the SGS algorithms are partially produced

by the overhead of handling the population for some additional iterations (e.g., the population is read from a memory space,

while new solutions are stored in a different memory space, allowing concurrent access to the data because of the disjoint

storage, etc.). As a matter of fact, the SGS variants that involved a larger number of generations are the ones that required

a higher execution time.

4.4.3. Research question 3 - Diffusion of highly fitted genetic material in SGS

In this subsection, we address the following question: does the use of a grid with large average meeting time and mating

ratio really helps the SGS algorithm to diffuse highly fitted genetic material along the grid? . Since our goal is to understand how

highly fitted genetic material is spread between the subpopulations, we begin this study by analyzing how the similarity

between the best solution of one subpopulation and the other subpopulation varies during the execution of SGS. For this,

in each iteration of the algorithm, we compute the average Hamming distance between the best solution of each of the

subpopulations and all the individuals of the other subpopulation. The Hamming distance measures the number of bits that

are different in two individuals. Then, the average over the 100 independent executions is calculated for each instance and

each SGS algorithm. Since this metric presents almost identical results for each of the problems and instances considered,

we only include the results for the instance Whitley 1500. Fig. 7 a and Fig. 7 b show the evolution of the average Hamming

distance for this instance.

In Rect and RwoC, grids with large average meeting time and mating ratio, the similarity between the best solution

moving in one direction and the other subpopulation is greater than in Sq. A reasonable hypothesis is that this behavior is

related to the difference in the number of different solutions from a subpopulation that can interact with the best solution

of the other subpopulation in each of the grids. To corroborate this hypothesis, we study how are the differences in the

Hamming distance between the best solution and the other subpopulation distributed along the grid.

Fig. 8 presents heat maps that graphically represent the Hamming distance between the best solution of the horizontal

subpopulation and each of the solution of the vertical subpopulation for a representative run of Sq, Rect and RwoC for

Whitley 1500 at the initial population, and at 25%, 50%, 75% and 100% of the total evaluations of the execution. The darker

colors indicate solutions that are more similar. The X or Xs (in black in the initial population and in white in the rest)

indicate in which cell is located the best solution of the horizontal population. The black cell at the lower right of the RwoC

grid indicates the missing cell.

In Sq, it is clear that the solutions from the vertical subpopulation that are more similar to the best horizontal solution

are located in a diagonal band (and its continuation due to the circularity of the grid). In the other two grids, this pattern

also appears when the number of solutions evaluated is small even though the diagonal band is much wider and it has

lower intensity. This pattern is gradually lost and it has almost disappeared (the differences become more homogeneous

among the entire population) when the number of solution evaluated is 50%. These results suggest that in Sq the genetic

material of the best found solution of one subpopulation is confined in a region of the grid and it does not circulate among

all the solutions of the other subpopulation. This behavior does not occur in the grids that encourage interactions between

solutions and their descendants that have not directly interacted in the grid before.

In order to analyze that this is indeed the reason that causes the previous pattern, we study in which cells are located

the vertical solutions that are descendants of the interaction of a vertical solution with an ancestor of the best horizontal so-

lution. That is, in which cell is located the descendant of the vertical solution with which an ancestor of the best horizontal

solution interacted one step before, two steps before, and so on.

Fig. 9 presents heat maps that graphically represent where are located vertical solution with an ancestor in common

with the best horizontal solution for a representative run of Sq, Rect and RwoC for Whitley 1500 at 25% and 50% of the

total number of function evaluations (one of the best horizontal solutions is presented when there are more than one). The

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 113

Fig. 8. Hamming distance between best horizontal solution and vertical subpopulation (darker means that solutions are more similar).

114 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

Fig. 9. Number of steps back of the interaction between ancestor of the best horizontal solution and the vertical solution.

cell color indicates the number of steps back that the interaction between the ancestor of the best horizontal solution and

the ancestor of the vertical solution has occurred, darker colors indicate that the interaction is more recent. The white cells

indicate that the vertical solution in that cell does not have an ancestor in common with the best horizontal solution. The

zeros in white indicate that the cell has more than one ancestor in common.

It is clear that in Sq the solutions from the vertical subpopulation that are similar to the best horizontal solution (Fig. 8)

are strongly correlated with the solution from the vertical subpopulation with an ancestor in common with the best hori-

zontal solution (Fig. 9). It should be noted that the best horizontal solution only has ancestors in common with a minimal

percentage of the vertical subpopulation, which corroborates the theoretical analysis presented in Section 3.1 . As a conse-

quence, the genetic material of highly fitted solutions from one subpopulation is barely shared with the solutions of the

other subpopulation.

On the other hand, in the other two grids the best horizontal solution has common ancestors with most (or all depending

on the grid) of the solutions of the vertical subpopulation, which corroborates that highly fitted genetic material of the best

solutions of one of the subpopulations can be shared with a large part of the solutions of the other subpopulation (as it was

proven in Section 3.2 and in Section 3.3). This produces that all solutions of the vertical subpopulation are more similar to

the best horizontal solution than in Sq.

To complete this study, we analyze how similar are the solutions of both subpopulations. For this purpose, we use two

different metrics the population-diversity and the cell-diversity. The population-diversity is computed as the average Ham-

ming distance between solution pairs of the whole population and it allows to understand how the overall diversity of the

population is evolving. This metric can be computed efficiently using the approach proposed in [25] . On the other hand, the

cell-diversity is computed as the average Hamming distance between all the pair of solutions that are coinciding in a cell in

the iteration step, and it provides insight in the diversity of the solutions that are actually being mated by the algorithms.

Fig. 10 presents the average population-diversity and cell-diversity over the 100 independent runs during the execution

of Sq, Rect and RwoC for Whitley 1500. The population-diversity decreases during the execution of the SGS algorithms since

SGS does not include any explicit mechanism for preserving the diversity. The decrease rate is faster for Rect and RwoC

than for Sq, which is consistent with the fact that genetic material is confined in regions of the grid and it does not cir-

culate among the entire subpopulation. The opposite happens with the cell-diversity, the loss on the cell-diversity of Sq is

more pronounced than for the grids with large average meeting time and mating ratio. Eventually, the curves of population-

diversity and cell-diversity of Rect and RwoC converge to similar values after 60% of the total number of solutions are eval-

uated. This effect can be expected since the solutions interact with all (or most of the) solutions of the other subpopulation

in both grids. As a consequence, and due to the effect of the mating of solutions of the two different subpopulations over

the iterations of the algorithm, the degree of difference between individuals of each cell tends to be similar to the degree

of difference between any pair of individuals of the whole population. On the other hand, the curves of population-diversity

and cell-diversity of Sq do not converge to similar values. This result can be explained because solutions in Sq interact with

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 115

Fig. 10. Evolution of the diversity during the execution of SGS algorithms on Whitley 1500.

few solutions of the other subpopulation. For this reason, and induced by the flows on the grid, clusters of solutions emerge,

with solutions that are relatively similar and that are interacting through mating (as it was shown in Fig. 9). In contrast,

solutions from different clusters are more diverse but solutions from different clusters have almost no interactions.

These results suggest that SGS with grids with large average meeting time and mating ratio, like Rect and RwoC, due

to the relatively high diversity in each cell, makes a better use of the genetic material of the highly fitted solutions in the

first iterations. This allows the algorithm to identify good regions of the search space that are close to the optimal solution.

Instead, Sq presents a much lower cell-diversity in the first iterations and thus makes a poorer use of genetic material

of the solutions that limit the algorithm to move in worst regions of the search space. These findings on how the highly

fitted genetic material is diffused through the grid are completely consistent with the numerical efficiency of Sq (the worst

performing SGS algorithm), Rect (the second best performing SGS algorithm) and RwoC (the best performing SGS algorithm)

reported in Section 4.4.1 .

5. Conclusions and future work

In this article, we have characterized the population model of SGS B data flow of the recently proposed optimization

algorithm Systolic Genetic Search. This population model is based in the interactions of two individuals that belong to two

different subpopulations, the solutions that are moving horizontally and the solutions that are moving vertically. Then, we

have theoretically analyzed the trajectories described by the solutions in two different grids that have already been used

experimentally. We formalized our analysis through the study of the meeting time of the cells. The study measures the

minimum number of steps that it takes two solutions to coincide again in a cell (under the assumption of only considering

the effect of the movements through the grid). The main conclusions of the analysis are that the number of different pairing

of solutions for mating between the subpopulations is quite small in Sq, while, Rect produces a large number of different

pairing of solutions between the subpopulations even though several pairs are repeated along the grid. In view of this fact,

we have engineered and proposed a new variant of SGS named RwoC with a grid that guarantees that each of the solutions

of a subpopulation is paired for mating with all the solutions of the other subpopulation.

An experimental evaluation was conducted using the three different grids of SGS and two EAs for solving three deceptive

problems on six instances of increasing size. The most important findings of this experimental evaluation can be summa-

rized as follows. First, the numerical results show that all SGS algorithms systematically outperform SGA and EGA in all the

instances considered, which confirms the efficacy of the underlying search engine of SGS. Secondly, the use of grids with

large average meeting time and mating ratio (i.e., grids that limit the mating of descendants of pairs of solutions that have

already been mated), like in Rect and in the newly proposed RwoC, has proven to benefit the search engine of SGS. In par-

ticular, the novel variant of SGS is the best performing algorithm, having the best Friedman’s ranking according to the hit

rate and outperforming Sq in 16 out of 18 instances considered and Rect in 9 out of 18 instances, while Rect has the second

best Friedman’s ranking and outperforms Sq on 15 out of 18 instances. In the third place, the analysis of the computational

performance of the algorithms reveals that the use of grids with large average meeting time and mating ratio in SGS does

not involve any overhead in the execution time of the algorithm. Finally, we investigated the causes of the best numerical

performance of the grids with large average meeting time and mating ratio. Their success is explained by a better diffusion

of highly fitted genetic material through the subpopulations, which makes SGS achieve higher diversity on the cells of the

grid (i.e., the degree of difference of the individuals that are actually being mated in each cell). As a consequence, SGS makes

a more suitable use of the information of the search space gathered in the solutions, leading to identify better regions of

the search space.

116 M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117

In conclusion, the newly proposed RwoC is not only able to outperform the rest of the algorithms studied, but it also

has better theoretical properties that explain the success of this variant of SGS. Moreover, the grid used by RwoC does not

increase notably the execution time of SGS. These aspects show the great potential of the proposed variant and contribute

to the consolidation of the SGS algorithm.

The main areas that deserve further study are identified next. The first issue is to address the study of other aspects of

the SGS algorithms design from theoretical and empirical perspectives. One of such aspects is the use of elitism in the cell

of the grid. It is interesting to understand how often elitism is used in each cell. If there is an overuse of elitism, i.e., many

new solutions are discarded, a memory mechanism could be incorporated into each cell so the best solutions generated

by the cell are still available and the elitism could be reduced or eliminated. This could lead to the incorporation of an

explicit selection process in SGS. Another aspect that can also be studied is the use of preprogrammed fixed points (as it

was originally conceived SGS) versus random points for the crossover and mutation operators. The second line of interest is

to study how to incorporate to the SGS algorithm mechanism to detect the loss of cell-diversity and exploit this information

in benefit of the algorithm, e.g., generating completely new solutions for increasing the diversity. The use of this type of

mechanism could potentially help to speed up the search of the SGS and even lead to better solutions. The third issue is to

extend properties of the grid proposed in this work to the cellular model EAs since in both models the solutions are placed

on a structured grid. For instance, a new neighborhood overlapping mechanism could be designed in which neighborhood

solutions are shared less frequently, e.g., updating solutions from a neighborhood depending on whether the number of

generation is even or odd. Another line of interest is to perform a wider impact analysis by solving problems with different

levels of ruggedness in the landscape, like in NK-landscapes. This could help to understand to what extent the proposed

grid allows to improve SGS with respect to the existing grids. Finally, since Whitley has represented a hard problem for SGS,

it is also interesting to make a deeper analysis on SGS algorithm using this problem for benchmarking.

Acknowledgements

M. Pedemonte acknowledges support from PEDECIBA, SNI and ANII , Uruguay. M. Pedemonte and F. Luna are partially by

the Spanish MINECO and FEDER project TIN2016-75097-P . E. Alba is partially funded also by the Spanish MINECO and FEDER

project TIN2014-57341-R (http://moveon.lcc.uma.es). F. Luna also acknowledges support from Plan Propio de Investigación of

Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech, under grant PPIT.UMA.B1.2017/15.

The authors would like to thank Prof. Eduardo Fernández for his valuable comments and suggestions in the design of the

new grid.

References

[1] E. Alba (Ed.), Parallel Metaheuristics: A New Class of Algorithms, Wiley, 2005 .
[2] E. Alba, B. Dorronsorso (Eds.), Cellular Genetic Algorithms, Springer, 2008 .

[3] E. Alba , M. Tomassini , Parallelism and evolutionary algorithms, IEEE Trans. Evol. Comput. 6 (5) (2002) 443–462 .

[4] E. Alba , P. Vidal , Systolic optimization on GPU platforms, in: 13th International Conference on Computer Aided Systems Theory (EUROCAST 2011),
2011 .

[5] E. Cantu-Paz , Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic Publishers, 20 0 0 .
[6] J.M. Cecilia, J.M. García, A. Nisbet, M. Amos, M. Ujaldón, Enhancing data parallelism for ant colony optimization on GPUs, J. Parallel Distrib. Comput.

73 (1) (2013) 42–51. https://doi.org/10.1016/j.jpdc.2012.01.002 .
[7] J.M. Cecilia , J.M. García , M. Ujaldón , A. Nisbet , M. Amos , Parallelization strategies for ant colony optimisation on GPUs, in: 25th IEEE International

Symposium on Parallel and Distributed Processing, IPDPS 2011, Workshop Proceedings, 2011, pp. 339–346 .

[8] H. Chan , P. Mazumder , A systolic architecture for high speed hypergraph partitioning using a genetic algorithm, in: Progress in Evolutionary Compu-
tation, in: Lecture Notes in Computer Science, 956, Springer Berlin / Heidelberg, 1995, pp. 109–126 .

[9] K. Deb , D.E. Goldberg , Analyzing Deception in Trap Functions, in: Foundations of Genetic Algorithms, 1992, pp. 93–108 .
[10] K. Deb, D.E. Goldberg, Sufficient conditions for deceptive and easy binary functions, Ann. Math. Artif. Intell. 10 (4) (1994) 385–408, doi: 10.1007/

BF01531277 .
[11] J. Derrac , S. García , D. Molina , F. Herrera , A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary

and swarm intelligence algorithms, Swarm. Evol. Comput. 1 (1) (2011) 3–18 .

[12] M. Giacobini , M. Tomassini , A.G.B. Tettamanzi , E. Alba , Selection intensity in cellular evolutionary algorithms for regular lattices, IEEE Trans. Evol.
Comput. 9 (5) (2005) 489–505 .

[13] D.E. Goldberg , K. Deb , A comparative analysis of selection schemes used in genetic algorithms, in: Foundations of Genetic Algorithms, Morgan Kauf-
mann, 1991, pp. 69–93 .

[14] D. Goldberg , K. Deb , J. Horn , Massively multimodality, deception and genetic algorithms, in: Proceedings of the International Conference on Parallel
Problem Solving from Nature II (PPSNII), 1992, pp. 37–46 .

[15] L. Guo , C. Guo , D. Thomas , W. Luk , Pipelined genetic propagation, in: Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual

International Symposium on, 2015, pp. 103–110 .
[16] A.C. Guyton , J.E. Hall , Textbook of Medical Physiology, 11, Elsevier Saunders, 2006 .

[17] P. Krömer , J. Platoš, V. Snášel , Nature-inspired meta-heuristics on modern GPUs: state of the art and brief survey of selected algorithms, Int. J. Parallel
Program. 42 (5) (2014) 681–709 .

[18] H.T. Kung , Why systolic architectures? Computer (Long Beach Calif) 15 (1) (1982) 37–46 .
[19] H.T. Kung , C.E. Leiserson , Systolic arrays (for VLSI), in: Sparse Matrix Proceedings, 1978, pp. 256–282 .

[20] W.B. Langdon , Graphics processing units and genetic programming: an overview, Soft Comput. 15 (8) (2011) 1657–1669 .

[21] P. Libby , R. Bonow , D. Mann , D. Zipes , Braunwald’S heart disease: A Textbook of cardiovascular medicine, Elsevier Health Sciences, 2007 .
[22] G. Luque , E. Alba , Parallel genetic algorithms: Theory and real world applications, Studies in Computational Intelligence, 367, Springer, 2011 .

[23] O. Maitre , F. Krüger , S. Querry , N. Lachiche , P. Collet , EASEA: Specification and execution of evolutionary algorithms on GPGPU, Soft Comput. 16 (2)
(2012) 261–279 .

[24] G. Megson , I. Bland , Synthesis of a systolic array genetic algorithm, in: Parallel Processing Symposium, 1998. IPPS/SPDP 1998, 1998, pp. 316–320 .
[25] R.W. Morrison, K.A. De Jong, Measurement of Population Diversity, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 31–41.

M. Pedemonte et al. / Information Sciences 4 45–4 46 (2018) 97–117 117

[26] M. Pedemonte , F. Luna , E. Alba , New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search, in: S. Tsutsui, P. Collet (Eds.), Massively Parallel
Evolutionary Computation on GPGPUs, Springer, 2013, pp. 203–225 .

[27] M. Pedemonte , E. Alba , F. Luna , Towards the design of systolic genetic search, in: IEEE 26th International Parallel and Distributed Processing Symposium

Workshops & PhD Forum, IEEE Computer Society, 2012, pp. 1778–1786 .

[28] M. Pedemonte , F. Luna , E. Alba , Systolic genetic search for software engineering: The test suite minimization case, in: A .I. Esparcia-Alcázar, A .M. Mora
(Eds.), Applications of Evolutionary Computation - 17th European Conference, EvoApplications 2014, Granada, Spain, April 23–25, 2014, Revised Se-

lected Papers, Lecture Notes in Computer Science, 8602, Springer, 2014, pp. 678–689 .

[29] M. Pedemonte , F. Luna , E. Alba , Systolic genetic search, a systolic computing-based metaheuristic, Soft Comput. 19 (7) (2015) 1779–1801 .
[30] M. Pedemonte, F. Luna, E. Alba, A systolic genetic search for reducing the execution cost of regression testing, Appl. Soft. Comput. 49 (2016) 1145–1161.

https://doi.org/10.1016/j.asoc.2016.07.018 .
[31] J. Sarma, K. De Jong, An analysis of the effects of neighborhood size and shape on local selection algorithms, Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 236–244.
[32] S. Shao , L. Guo , C. Guo , T. Chau , D. Thomas , W. Luk , S. Weston , Recursive pipelined genetic propagation for bilevel optimisation, in: Field Programmable

Logic and Applications (FPL), 2015 25th International Conference on, 2015, pp. 1–6 .
[33] D.J. Sheskin , Handbook of Parametric and Nonparametric Statistical Procedures, fifth edition, Chapman and Hall/CRC, 2011 .

[34] N. Soca, J.L. Blengio, M. Pedemonte, P. Ezzatti, PUGACE, a cellular evolutionary algorithm framework on GPUs, in: IEEE Congress on Evolutionary

Computation, 2010, pp. 1–8, doi: 10.1109/CEC.2010.5586286 .
[35] P. Vidal , E. Alba , Cellular genetic algorithm on graphic processing units, in: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 2010,

pp. 223–232 .
[36] P. Vidal , E. Alba , F. Luna , Solving optimization problems using a hybrid systolic search on GPU plus CPU, Soft Comput. (2016) 1–19 .

[37] P. Vidal , F. Luna , E. Alba , Systolic neighborhood search on graphics processing units, Soft. Comput. (2013) 1–18 .
[38] L.D. Whitley , Fundamental Principles of Deception in Genetic Search, in: Foundations of Genetic Algorithms, 1990, pp. 221–241 .

[39] L. Zheng , Y. Lu , M. Guo , S. Guo , C. Xu , Architecture-based design and optimization of genetic algorithms on multi- and many-core systems, Future

Generation Comp. Syst. 38 (2014) 75–91 .
[40] Y. Zhou , Y. Tan , GPU-based parallel particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2009, 2009,

pp. 1493–1500 .

	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Structure of the Document

	2 Systolic Computing and Graphics Processing Units
	2.1 Architecture of Parallel Computers
	2.2 Systolic Computing
	2.3 Graphics Processing Units
	2.3.1 CUDA (Compute Unified Device Architecture)
	2.3.2 GPUs Used in this PhD Thesis

	3 Evolutionary Algorithms and Their Parallelization
	3.1 Metaheuristics
	3.2 Evolutionary Algorithms
	3.2.1 Genetic Algorithms

	3.3 Parallel Evolutionary Algorithms

	4 Systolic Genetic Search
	4.1 Systolic Genetic Search Algorithm
	4.2 GPU Implementation of SGS
	4.3 Related Work
	4.4 Methodology for the Evaluation of the Numerical and Computational Performance

	5 Articles Supporting this PhD Thesis
	5.1 Articles Compiled in this PhD Thesis
	5.2 Other Peer-reviewed Publications
	5.2.1 Proceedings of International Conferences
	5.2.2 Book Chapters

	6 Conclusions
	6.1 Concluding Remarks
	6.2 Open Research Lines and Future Work

	References
	Appendix A Systolic Genetic Search, a Systolic Computing-Based Metaheuristic
	Appendix B A Systolic Genetic Search for Reducing the Execution Cost of Regression Testing
	Appendix C A Theoretical and Empirical Study of the Trajectories of Solutions on the Grid of Systolic Genetic Search

