
ISSN 1688-2806

Universidad de la República
Facultad de Ingenieŕıa

Ciphertext only Attacks against GSM
security

Tesis presentada a la Facultad de Ingenieŕıa de la
Universidad de la República por

Eduardo Cota

en cumplimiento parcial de los requerimientos
para la obtención del t́ıtulo de

Magister en Ingenieŕıa Eléctrica.

Directores de Tesis
Dr. Eduardo Giménez Universidad de la República
Dr. Alfredo Viola . Universidad de la República

Tribunal
Mag. Maŕıa Eugenia Corti Universidad de la República
Dr. Federico Larroca Universidad de la República
Dr. Federico Lecumberry Universidad de la República

Director Académico
Dr. Pablo Belzarena. Universidad de la República

Montevideo
martes 19 junio, 2018

Ciphertext only Attacks against GSM security, Eduardo Cota.

ISSN 1688-2806

Esta tesis fue preparada en LATEX usando la clase iietesis (v1.1).
Contiene un total de 151 páginas.
Compilada el martes 19 junio, 2018.
http://iie.fing.edu.uy/

https://iie.fing.edu.uy/

Acknowledgements

A mi familia, por su amor incondicional y su apoyo en esta y todas las aven-
turas de la vida.

A mis tutores, Alfredo y Eduardo, por su soporte, apoyo, y por toda la pacien-
cia que me tuvieron durante este largo proceso. Sin su conocimiento y experiencia
esta tesis no hubiera sido posible.

A todos los amigos del IIE y la Facultad.

This page intentionally left blank

A Jeanela, Mariana y Virginia.

This page intentionally left blank

Abstract

Mobile communications play a center role in today’s connected society. The
security of the cellular networks that connect billions of people is of the utmost
importance. However, even though modern third generation and fourth generation
cellular networks (3G and 4G) provide an adequate level of security in the radio in-
terface, most networks and mobile handsets can fall back to the old GSM standard
designed almost three decades ago, which has several known security weaknesses.

In this work we study the security provided by the family of ciphering algo-
ritms known as A5 that protects the radio access network of GSM, with emphasis
on A5/1. We review the existing attacks against A5/1 and existing countermeasu-
res, and show that the existing ciphertext only attacks against algorithm A5/1 [9],
adapted to use the most recent Time Memory Data Tradeoffs, are realistic th-
reats to fielded GSM networks when attacked by a resourceful attacker which uses
current state of the art GPUs and CPUs.

We also study the existing Time Memory Data Tradeoff algorithms, exten-
ding the best known results for the Perfect Fuzzy Rainbow Tradeoff attack to the
multi target case. These results allow the practitioner to calculate the parameters
and tradeoff constants that best suit his application. We implemented the algo-
rithms using parallel programming on CUDA GPUs and successfully validated the
theoretical estimations.

The main contributions of this work can be summarized as follows:

Extending the existing best results for the Perfect Fuzzy Rainbow Tradeoff
attack in the single target scenario to the multi target scenario.

Validating the theoretical calculation of the parameters and tradeoff cons-
tants of the Perfect Fuzzy Rainbow tradeoff through implementation for
several scenarios.

Describing one of the possible procedures for the choice of parameters for
the Perfect Fuzzy Rainbow tradeoff.

Presenting a new ciphertext only attack against A5/1 using the voice channel
in GSM communication.

Calculating the details of the ciphertext only attack in [9] and showing that
the attack is a realistic threat today using a perfect fuzzy rainbow tradeoff
attack and modern GPUs.

This page intentionally left blank

Table of contents

Acknowledgements I

Abstract V

1. Introduction and motivation 1

1.1. Privacy in cellular telecommunications 1

1.2. Organization of the rest of this work 4

2. The GSM architecture and its security properties 5

2.1. Brief description of the GSM architecture 5

2.2. Identification of the subscriber . 7

2.3. The radio link in GSM . 8

2.3.1. Physical and logical channels 8

2.3.2. Voice communication in the GSM network 13

2.4. Channel Coding . 14

2.4.1. Coding for SACCH y SDCCH channels 14

2.4.2. Coding for a TCH/FS channel 16

2.5. GSM security . 17

2.6. The A5 family of stream ciphers 20

2.6.1. The A5/1 algorithm . 20

2.6.2. The A5/2 algorithm . 22

2.6.3. The A5/3 algorithm . 22

2.7. Security considerations in GSM . 22

3. Known cryptographic attacks against A5/1 25

3.1. Cryptoanalysis of A5/1 . 25

3.1.1. Determining the key from A5/1 internal state 26

3.1.2. Guess and determine attacks 27

3.1.3. Correlation attacks . 28

3.1.4. Time Memory Data Tradeoff Attacks 29

3.2. Outline for the rest of our work . 32

4. Two ciphertext-only attacks against A5/1 33

4.1. The results of Barkan, Biham and Keller 34

4.1.1. Description of the attack 34

4.1.2. Practical details of the attack 37

Table of contents

4.2. A new ciphertext only attack based on the redundancy in the Voice
channel . 39

4.3. Initial comparison of the attacks 42

5. Time Memory Data Tradeoff Attacks 43

5.1. Hellman’s Time Memory Tradeoff 44

5.2. Distinguished Points . 49

5.3. Rainbow Tables . 53

5.4. Time Memory Data Tradeoffs . 56

5.4.1. Rainbow Time Memory Data tradeoffs 58

5.5. Memory optimizations . 59

5.6. Comparison of the TMTO methods in the literature 60

6. Extending Kim and Hong calculations to the multi target envi-
ronment 63

6.1. Summary of the notation . 63

6.2. Problem statement and assumptions 64

6.3. Detailed description of the algorithm 65

6.4. Preliminaries . 68

6.5. Analysis of the perfect fuzzy rainbow table tradeoff 68

6.5.1. Success probability and precomputation effort 69

6.5.2. Effect of memory optimizations 76

6.5.3. Tradeoff Coefficient Adjustment 78

7. Experimental validation of the results from the previous chapter 79

7.1. Step function . 79

7.2. Validation for D = 1 . 80

7.2.1. Reproducing Kim and Hong’s results 80

7.2.2. Sample application to our reduced h function 81

7.2.3. Comparing the accuracy of the estimations 83

7.2.4. Effect of the ending-point truncation 84

7.2.5. Effect of using the section length instead of total length . . 86

7.2.6. Another practical scenario 86

7.3. Calculations for D > 1 . 88

7.3.1. First validation samples . 89

7.3.2. Finding parameters for different D values 90

7.3.3. Some initial cualitative observations 91

8. Applying the fuzzy rainbow table TMDTO to the ciphertext only
attack against A5/1 93

8.1. Scenario 1 . 94

8.2. Scenario 2. D ≈ 500 . 95

8.3. Scenario 3 . 95

viii

Table of contents

9. Applicability of the attack and countermeasures 99
9.1. Conditions for applying the TMDTO attack against A5/1 99
9.2. Countermeasures . 100

10.Conclusions and future work 101
10.1. Conclusions . 101
10.2. Future work . 102

A. Finding known bits in the SACCH Channel 105
A.1. Layer 1 . 105
A.2. Layer 2 . 106
A.3. Layer 3 . 107
A.4. Summary . 108

B. Difference in the state after feeding the key and COUNT, when
COUNT varies 109

C. Finding key KC from A5/1’s internal state after key setup 113

D. Calculating the parameters of the TMDTO 115
D.1. Calculating the tradeoff parameters 115

E. Table 1 from Kim’s paper 117

F. Description of the test infrastructure 119
F.1. Programming on CUDA cards . 120
F.2. Some comments on the implemented algorithms 121

References 125

Glossary 133

Table Index 134

Figure Index 136

ix

This page intentionally left blank

Chapter 1

Introduction and motivation

Today’s “always online” society depends heavily on all kind of electronic com-
munication, be it data or voice. The slew of applications depending on the tele-
communication networks put an increasing pressure in the security of all telecom-
munication components, from the terminal equipment to the myriad components
of the network. Although all the buzz is about the new forms of interaction ena-
bled by the ubiquitous connectivity to the Internet, we still heavily depend on the
“simple” services provided by telephony networks, both fixed and mobile, namely
voice communication.

One of the remarkable changes in the last decade has been the tremendous
uptake of wireless cellular communications, both for data and voice, in many places
being more prevalent than traditional wireline voice and data services. This implies
that security and privacy in wireless networks should be a concern to both providers
and users of such services, who expect those systems to be as secure as their wired
counterparts.

1.1. Privacy in cellular telecommunications
Even though today’s cellular technology is moving beyond third generation

wireless networks towards much faster fourth generation networks, the most ubi-
quitous cellular network in many parts of the world is still Global System for
Mobile communications (GSM), the most prevalent second generation network.

The first generation of cellular communication networks, of which the Advan-
ced Mobile Phone System (AMPS) was the most deployed standard, were characte-
rized by being analog networks, meaning that voice communication was modulated
onto a carrier and transmitted in analog form in one of several frequency channels
available. Neither signalling nor voice traffic were cryptographically protected, and
this led to a serious problem of cloned services. Analog services were superseded
by digital cellular networks, so called second generation networks, in the 1990’s,
although analog service was still available in the United States and other parts of
the world until well beyond the turn of the century.

Second generation networks are characterized by the digital transmission of sig-

Chapter 1. Introduction and motivation

nalling and voice communication. The most widely used second generation network
is GSM, still accounting for a large part of today’s cellular clients. What started
as a voice-only service in the 1990’s was later improved with short-message ser-
vice, data transmission services (albeit at a very slow speed by today’s standards),
and other secondary services. Second generation networks included cryptographic
protection of voice and signalling.

The third generation cellular networks are also digital, and improve quality,
spectrum utilization, data transfer speed, and security. Third generation stan-
dards are CDMA2000 1xEV-DO, developed by 3rd Generation Partnership Pro-
ject 2 (3GPP2) and used mostly in North America and to some extent in Japan,
China, South Korea and India, and Universal Mobile Telecommunications System
(UMTS), developed by the 3rd Generation Partnership Project (3GPP) and used
in the rest of the world.

The fourth generation networks do away with the idea that voice calls are
the main service offered, and implement an all-IP network, that is, a data only
network. Voice calls are basically a secondary service on top of the data network.
The main fourth generation network standard today is called Long Term Evolution
(LTE). It improves on the security provided by third generation networks, and is
currently the most secure network available providing commercial service.

Despite all the advances since GSM inception, it is still one of the most widely
used networks globally. For instance, 4G Americas [1] estimates 3.2 billion GSM
subscriptions worldwide in Q3 2016, which translates to about 42 percent market
share. Besides, third and fourth generation handsets can fall back to GSM on
underserved areas when there is no other network available. This makes GSM
security a timely topic.

The privacy of GSM voice communications is protected by a family of stream
ciphers known as A5. Each voice frame and each sensitive signalling frame is en-
crypted with a key shared between the network and the mobile phone, using one
of the A5 algorithms. The original algorithms, known as A5/1 and A5/2, were de-
veloped in the late 1980s together with the GSM standard, by the Groupe Spéciale
Mobile, which was originally a group of European post and telecommunications
operators, and later a committee of the European Telecommunications Standards
Institute (ETSI). A5/1 was the original algorithm for use in Europe, and at the
time was believed to provide an adequate protection against eavesdropping. A5/2
was added later as a lower security option to be used when GSM was implemen-
ted outside Europe, due to export restrictions on strong cryptography. A5/1 and
A5/2 were reverse-engineered by Briceno et al in 1999 from real handsets. A5/2
was almost immediately broken and current ETSI/3GPP recommendations forbid
it’s use, but A5/1, despite being shown weak multiple times in the last several
years, is still the most widely used encryption algorithm in GSM.
At the end of the 20th century, a new cipher based on the Kasumi cryptosystem
was designed to be used in UMTS, the third generation cellular network, and its
use in GSM was standarized as A5/3. Kasumi is a block cipher, so for its use
in GSM a cipher chaining mode is used to generate the necessary ciphering bits.

2

1.1. Privacy in cellular telecommunications

This algorithm, despite having some theoretical weaknesses, is much stronger than
A5/1. Nevertheless, wireless carriers and handset manufacturers have been slow
to adopt A5/3.

Beyond several theoretical attacks against A5/1, the most effective attacks to
date relate to the small (for today’s technology) internal state of A5/1, which ena-
bles brute force attacks using time memory tradeoff (TMTO) attacks. While the
long-term solution to the weaknesses found in A5/1 is to abandon A5/1 and move
to using the stronger A5/3, in many cases this requires expensive changes in the
operator’s infrastructure, and may generate incompatibilities with some mobile
phones.

As we will see in chapter 5, TMTOs are family of cryptographic attacks used to
invert a function, based on precomputing huge tables of relations between images
and preimages in such a way that not all values need to be stored. Those tables
are then used in the online or attack phase to carry out the attack. There is a
tradeoff between the memory used to store the tables and the time taken by the
online or attack phase. There are several TMTO variants proposed and studied in
the literature, with the perfect fuzzy rainbow table tradeoff attack being shown as
the best tradeoff in many realistic scenarios for the single target case, that is when
we have a single captured cyphertext to attempt inversion. We extend the study
of the parameters of the fuzzy rainbow table tradeoff to the multi-target case.

The first TMTO attack against A5/1 (at least in the public literature) not
requiring unreasonable amounts of known plaintext was published by Barkan et al
in 2003 [9], who proposed a ciphertext only attack. It is unknown if they calculated
the required tables for their time-memory tradeoff, but no tables were publicly
released. Between 2007 and 2010, three different groups set to calculate the huge
tables needed to mount a Time-Memory tradeoff attack, and one of them, led
by german security researcher Karsten Nohl, croudsourced the huge calculations
needed to build those tables, and published them using the Bittorrent peer to peer
protocol.

Nohl’s attack depends on knowing some captured ciphertext (the encrypted
communication) and the corresponding plaintext (the data before encryption) for
the communication, so this corresponds to a known plaintext attack. In most fiel-
ded systems, there are several signalling messages with known content transmitted
at the beginning of each voice call which can be used as source of known plaintext.
The latest specifications from the 3GPP include countermeasures to avoid easily
guessable messages in the control channels of GSM, which consist in randomizing
certain bytes in the control messages so as to counteract Nohl’s attack.

In this work we demonstrate that based on the ciphertext only attack proposed
by Barkan et al [9], a Time-Memory tradeoff attack can be performed with minimal
or no knowledge of the plaintext of the communication using an attainable amount
of resources. Ciphertext only attacks are considered harder to defend against as
the attacker does not need knowledge of the actual contents of the communication.

3

Chapter 1. Introduction and motivation

We also show a new cyphertext only attack against A5/1 using the voice channel
and compare this new attack with the attack by Barkan et al. We also implement
a reduced demonstration of the method by Barkan et al, extrapolating the calcu-
lation of the required resources for the full attack. Finally we propose a possible
countermeasure to mitigate this threat.

1.2. Organization of the rest of this work
This work is organized as follows:
In chapter 2 we present a summary of the GSM architecture and its security

properties, with the aim of introducing the reader to the topics necessary to un-
derstand the rest of this thesis. This chapter can be skimmed or skipped entirely
if the reader is familiar with the GSM architecture and properties.

We review the attacks against A5/1 in the literature in chapter 3, following in
chapter 4 by expanding the results of Barkan, Biham and Keller who presented
a cyphertext only attack against A5/1 based on the redundancy due to the error
detection and correction codes on the signalling channels. In that same chapter
we present a new cyphertext only attack based on the redundancy in the voice
channel of a call.

Both ciphertext only attacks presented in chapter 4 use a family of brute-force
attacks known as Time Memory Data Tradeoff (TMDTO) attacks, which in turn
are a kind of time memory tradeoff (TMTO) attack, so in chapter 5 we review
the existing TMTO and TMDTO attacks, and in chapter 6 we extend the known
results about the best TMTO attack, the perfect fuzzy rainbow table tradeoff, to
the case when several captured ciphertexts are available to attempt inversion.

In chapter 7 we present an experimental validation of the results of chapter 6
with a synthetic problem, and show how an attacker could calculate the parameters
of the tradeoff according to the available resources.

In chapter 8 we calculate the necessary resources to mount a ciphertext only
attack against A5/1 based on the previous results and show that the attack is
feasible with state of the art CPUs and GPUs even if the attacker wants a high
success rate in the attack having very little captured ciphertext. We end the
chapter describing our demo implementation of the attack, which is successful
attacking A5/1 but due to our limited resources requires an unrealistically large
number of captured ciphertexts.

Chapter 9 briefly discusses the conditions necessary to be able to apply the
attack in a real fielded GSM network, and introduces mechanisms to counteract
the attack.

Finally chapter 10 presents the conclusions of this work and introduces future
research directions to improve the results of this thesis.

4

Chapter 2

The GSM architecture and its security
properties

2.1. Brief description of the GSM architecture
This short description of the GSM network is aimed at introducing the rea-

der not familiar with the public wireless cellular networks (and in particular the
GSM family of networks) to the topics necessary to understand this thesis. For a
complete description, a complete yet accessible book on GSM is [18]. The com-
plete GSM specifications can be downloaded free of charge from the ETSI website
(http://www.etsi.org/) or from the 3GPP website (http://www.3gpp.org).

Nowadays GSM stands for Global System for Mobile communications, however
the original meaning of the GSM acronym was Groupe Spécial Mobile, the name
given to the group formed to design a pan-European digital mobile technology
in the 1980’s. The GSM group was backed by several European countries, and
the first set of specifications was completed in 1988. The first commercial service
started in Finland in 1991, soon followed by many european and non-european
countries. Since then GSM and its successors have been deployed in more than
230 countries, with more than 4800 million subscribers and 7800 million mobile
connections by the end of 2016 according to GSMA Intelligence [44], a research
group run by the GSM Association (GSMA).
A GSM network is a mobile wireless network, using radio frequency (RF) signals
in several frequency bands from around 400 MHz to near 3 GHz depending on lo-
cal regulations. To accommodate scarce RF resources, GSM resorts to frequency
division multiplexing (FDM), time division multiplexing (TDM), and spatial fre-
quency reuse. Frequency division multiplexing means that the available spectrum
is divided in small frequency bands, and each user is assigned one such band for
its transmission. Time division multiplexing means that different users share the
same frequency band transmitting at different time intervals. For spatial frequency
reuse, GSM is built as a cellular network, meaning that the service area is divi-
ded into small sub-areas called cells, each served by a different base station (BTS),

Chapter 2. The GSM architecture and its security properties

Figure 2.1: GSM Architecture

where non-contiguous cells can reuse the same frequency bands. The mobile phone
connects to the closest base station, monitoring nearby cells so it can quickly se-
lect a new cell when RF conditions change as the person moves. This implies a
distributed architecture which includes the means to mantain the user’s session
when the user moves from BTS to BTS.

A high level overview of the GSM architecture is presented in Figure 2.1. The
main elements are:

Mobile Station (MS) , which is the communication device in the GSM net-
work. It consists of the Mobile Equipment (the Cell Phone) and the Subscri-
ber Identity Module (SIM) used for validation and session key generation.
The MS is the device the subscriber uses to interact with the network, and
is responsible for network connectivity, voice digitization, call establishment
and termination.

Base Transceiver Station (BTS), responsible for carrying out radio commu-
nication between the network and all the MSs in the BTS’s service area.
The interface between the BTS and the MS is called Um interface (or air
interface).

Base Station Controller (BSC) which controls several BTSs, handling al-
location of radio channels, power and signal measurements from the MS,
handover between BTSs (if both BTSs are controlled by the same BSC),
and encryption in the air interface. It concentrates traffic from a certain

6

2.2. Identification of the subscriber

area. The interface between the BSC and the BTSs is called Abis.

Mobile Switching Center (MSC). The MSC handles call setup, call and SMS
routing, switching functions, communication with other MSCs, and handoff
between cells in different BSCs or different MSCs.

Gateway Mobile Switching Center (GMSC). An MSC which also connects
to the fixed network.

Home Location Register (HLR). It is a database which stores information
about subscribers, including MSISDN (phone number), IMSI (International
Mobile Subscriber Identity), subscriber supplemental features and restricti-
ons, and current location of the MS.

Authentication Center (AuC). Contains the shared key unique to each subscri-
ber. Handles the authentication and encryption tasks for the network. It is
usually co-located with the HLR.

Visitor Location Register (VLR). It is a subsidiary database designed to
limit the amount of queries to the HLR. It stores information about the
subscribers currently being served by one or a group of MSCs, and is usually
co-located with some or all of the MSCs in the network.

Equipment Identity Register (EIR). Keeps lists of mobile phone identities
(IMEI) to be allowed or barred from the network, usually used to block
stolen phones in the network.

There are several other subsystems, responsible for functions like billing, voi-
cemail, SMS, MMS, data transmission, etc., which are not described here as they
do not concern our work.

2.2. Identification of the subscriber
GSM uses different identifiers for different purposes. The main identifiers are:

The International Mobile Subscriber Identity (IMSI), which uniquely iden-
tifies each mobile service. It is permanently stored on the SIM card.

The Mobile Station Integrated Services Digital Network number (MSISDN),
which simply put is the mobile’s phone number. It is used to route calls to
the client.

The Temporary Mobile Subscriber Identity (TMSI), which is a temporary
identifier assigned by the serving network, to avoid easy identification of the
MS.

The International Mobile Equipment Identity (IMEI), which identifies the
mobile device and should be globally unique. It is assigned by the phone
manufacturer and is not tied to the subscriber identity.

7

Chapter 2. The GSM architecture and its security properties

The IMSI number is a 15 digit number composed of the 3 digit Mobile Country
Code (MCC) which identifies the country, the 2 or 3 digit Mobile Network Code
(MNC), which identifies the operator inside the country, and 9 or 10 digits iden-
tifying the subscriber. It is used to uniquely identify the subscriber, and comes
preloaded in the SIM card.

The MSISDN number is a variable length number which follows the internati-
onal telephone numbering plan. It is composed of the Country Code (CC), a 1-3
digit number which identifies the country, the National Destination Code (NDC),
which identifies one network within the country, and the Subscriber Number (SN).
NDC and SN structure is specified in the national numbering plans by the tele-
communication regulator in each country. The MSISDN is associated to an IMSI
in the HLR.

The IMEI is a 15 or 16 digit decimal number, which identifies the equipment,
model and serial number of the device. Many countries use the IMEI to reduce the
incidence of mobile phone theft, by implementing black lists in the EIR containing
the IMEI numbers of stolen phones, so as to deny service to any device reported
as stolen.

2.3. The radio link in GSM
In this work we are mostly interested in the communication between the BTS

and the mobile station (the Um interface in GSM jargon), where encryption is
used to protect the communication between the mobile station and the network.
The Um interface can be logically divided into three layers, each one with defined
functions:

Layer 1 (Physical layer). Responsible for the actual radio transmission,
multiplexing, timing, and coding.

Layer 2 (Data link layer). Uses a message protocol derived from fixed digital
networks, called LAPDm, for the communication of signalling messages. It
is responsible for framing, multiplexing, error control, etc.

Layer 3 (Network layer). Has three sublayers, responsible for radio resource
management (asignment and release of logical channels), mobility manage-
ment (user authentication and location tracking from cell to cell), and Call
Control (which controls telephone calls, eg. establishment and release of the
call)

2.3.1. Physical and logical channels
Wireless spectrum is a scarce resource, which must be shared among all subscri-

bers in a service area. GSM uses several multiplexing mechanisms to share the
available spectrum in a fair way.

Spectrum is allocated in a paired fashion, meaning that for each downlink
frequency channel there is a corresponding uplink channel. This means that most

8

2.3. The radio link in GSM

of what we say about one direction applies to the other direction using a slightly
different frequency.

At the lowest layer frequency and time multiplexing is used. The available
frequency band is divided in frequency channels spaced 200 kHz, and several fre-
quency channels are assigned to each BTS. Each frequency channel is divided into
eight timeslots (channels) using time division multiplexing. Each of those channels
can be used to send signaling or one voice stream (for full rate configuration) or
two (for half-rate configuration).

At higher layers, statistical multiplexing is used to share the available band-
width, serving most (idle) terminals with shared control channels, and only alloca-
ting dedicated channels when needed (for example to the devices with an ongoing
voice call).

Physical channels
Physical channels are the actual frequencies and timeslots used by the MS

and BSC for a single transmission. The available spectrum is divided into 200
kHz frequency channels, and each cell is allocated some of the available frequency
channels (cell allocation). One of those frequency channels is known as the BCCH
carrier or BCCH physical channel, and carries synchronization information and
the Broadcast Control Channel (BCCH) logical channel (it may optionally also be
used for other logical channels). The rest of the channels are allocated as needed
for voice and signalling.

Time is partitioned in timeslots, TDMA frames, multiframes, superframes and
hyperframes [31]. In GSM, the minimum unit of transmission is called a timeslot
or burst, and has a duration of 3/5200 s (≈ 577µs). Eight timeslots shall form
a TDMA frame (≈ 4, 62ms). The eight timeslots in a frame are numbered 0 − 7
and are referred to by their Timeslot Number (TN), and frames are numbered
from 0 to FNMAX = (26× 51× 2048)− 1 = 2715647 in what is called the TDMA
Frame Number (FN). This FN is used as input to the ciphering algorithm in the
air interface.

Each individual communication (for instance, each voice call) uses only one
timeslot of each frame (half a timeslot in some cases), which means there can be
8 (or 16) simultaneous communications in each frequency channel.

Frames are organized in a hierarchy (see figure 2.2). For traffic and associa-
ted control channels, 26 frames are grouped in a 26-multiframe, while for common
control, broadcast and stand alone dedicated control, a 51-multiframe is used (com-
prised of 51 TDMA frames). 51 traffic multiframes or 26 broadcast multiframes
(that is, 51 × 26 = 1326 frames) comprise a superframe, and 2048 superframes
are grouped into an hyperframe. This means there are 26× 51× 2048 = 2715648
frames in an hyperframe, numbered from 0 through FNMAX . An hyperframe lasts
about 12534 s, or about 3 hours 28 minutes and 54 seconds.

The basic modulation in GSM is GMSK (Gaussian Minimum Shift Keying)
which modulates 1 bit per symbol, and the standard rate is 270.833 K symbols/se-

9

Chapter 2. The GSM architecture and its security properties

cond. This means that the duration of each burst corresponds to 156,25 symbols,
of which 147 are useful symbols and the rest are guard times. There are five types
of bursts defined in [31]. We are interested in Normal bursts, which carry voice and
signalling. The structure of a normal burst is depicted in Figure 2.3. It consists
of:

3 “tail bits” which mark the start of the burst

57 encrypted bits, which carry voice or signalling

stealing flag, one bit indicating if the preceeding 57 bits consist of data or
signalling

26 bits used as a training sequence for the receiver

stealing flag, one bit indicating if the following 57 bits consist of data or
signalling

57 encrypted bits which carry voice or signalling

3 “tail bits” which mark the end of the burst

a guard period equivalent to 8,25 bits between bursts

As we can see, there are 2 × 57 = 114 data bits in each burst, split into two
57-bit blocks.

The stealing flag merits some explanation. When a burst is used for voice
traffic, the stealing flag indicates if the corresponding 57-bit block is used for
signalling, and has thus been “stolen” from the voice traffic. This mechanism,
which lowers voice quality, is only used to send urgent signalling data like handover
information, call control, etc.

Optional frequency hopping
One optional but commonly used functionality in GSM is frequency hopping,

which means that the transmission frequency is changed periodically according to a
predefined algorithm. The algorithm used in GSM selects a new frequency for each
burst. This frequency hopping is designed to improve Signal-to-Noise-Ratio (SNR)
when the signal is affected by frequency-selective interference (that is, interference
that only damages signals in a narrow frequency band) or fading (which is a
physical phenomena where some frequencies are disproportionately attenuated).
The effect of frequency hopping is to average the interference over the frequencies
of one cell. To calculate the frequency to use, the MS is assigned a subset of the
frequencies allocated to a cell, called the Mobile Allocation (MA), an offset, the
Mobile Allocation Index Offset (MAIO), and a Hopping Sequence Number (HSN).
There is a table giving a pseudo-random sorting of the MA frequencies, selected
by the HSN, which is known by the MSs. Usually all MSs in the cell are assigned
the same MA and HSN, and different mobiles select different frequencies for the
same timeslot using the MAIO, which is the offset into the MA table corresponding
to the MS. Then, each MS selects the frequency according to its MAIO and the
current Frame Number [31].

10

2.3. The radio link in GSM

hyperframe

Burst Burst

1 2 3 4 5 6 70 1 2 3 4 5 6 70

Control Traffic

Frame

... 500 ... 250multiframe

 250

......... 50

 0

.........superframe (traffic)

superframe (control)

0 2047

Figure 2.2: GSM frame hierarchy

0
0
0

0
0
1

0
8
6

0
6
1

0
5
9

0
0
3

0
0
2

1
4
5

1
4
4

0
8
8

.........
1
5
6

1
4
8

1
4
7

1
4
6

.........

Tail
bits

Encripted
bits

Guard
period

Encripted
bits

Training
sequence

Tail
bits

0
6
0

0
8
7

S
F

S
F

Figure 2.3: GSM normal burst

Logical channels

Logical Channels carry voice, data, and signalling, and are mapped to physical
channels according to several parameters configured on the network [29].

There are two kind of channels, traffic channels and control channels.

Traffic CHannels (TCHs) carry encoded voice communications (or data). The
original traffic channels for GSM are the Full rate Traffic CHannel (TCH/FS),
with a gross rate of 22.8 kbps, and the Half rate Traffic CHannel (TCH/HS), with
a gross rate of 11.4 kbps. Further encodings were defined in more recent versions
of the standards, but we will stick with TCH/FS which is the most commonly
used in GSM. A TCH/FS channel occupies a single timeslot of each TDMA frame,

11

Chapter 2. The GSM architecture and its security properties

which means that up to eight simultaneous communications can be accomodated
in a 200 khz channel. TCH channels use 26-multiframes, meaning that the traffic
sequence is organized accorging to a pattern that repeats each 26 frames.

Control channels are intended to carry signalling or synchronization data. Dif-
ferent channels have different requirements and occupy different portions of the
available capacity. In the service offered to subscribers, signalling can be con-
sidered an overhead, thus an attempt was made to minimise its impact on the
utilization of the scarce RF resources available.

There are three categories of control channels for GSM in cellular communica-
tions, namely broadcast, common, and dedicated channels.

Broadcast channels are used by the BSS to broadcast the same information to
all MSs in a cell. There are channels for frequency correction (FCCH), synchroni-
zation (SCH) and for broadcast of information common to all UEs being served by
the BTS (BCCH). Common control channels are used for paging the UEs (PCH),
random access in the uplink (RACH) to request assignment of a dedicated chan-
nel, access grant channel (AGCH) to notify channel assignment, and a notification
channel (NCH) used to inform MSs about incoming group and broadcast calls.

Broadcast and common control channels carry important information for the
system, but they will not be described further except when needed, as they are
not encrypted.

The third group of signalling channels, dedicated channels, are bi-directional
point to point channels, used to carry information relevant to a single user. They
comprise the Stand-alone Dedicated Control Channel (SDCCH), used between the
MS and the BSS when there is no active connection, for instance to update location
information, to set-up the necessary channels for a communication, or to send an
SMS, the Slow Associated Control Channel (SACCH), always assigned and used
together with a TCH or SDCCH, carries information for the radio operation like
transmitter power control, synchronization and reports on channel measurements,
and Fast Associated Control Channel (FACCH), which is a logical channel always
associated with a TCH, and is created by “stealing” blocks from the TCH when
urgent information must be sent (like call establishment/release or handovers).

Mapping of dedicated logical channels into physical channels
Each logical channel has a set of rules on how it is mapped into the frame

hierarchy [32]. For this explanation it is useful to define T1 = FN div 1326,
T2 = FN mod 26, T3 = FN mod 51 [31]. Those same quantities are needed later
on to explain encryption in GSM. A 26-multiframe will always start when T2 = 0,
and a 51-multiframe when T3 = 0.

The TCH/FS traffic channel and its associated SACCH channel use a 26-frame
multiframe, represented in Figure 2.4. This figure represents a single timeslot for
each frame. There are 24 traffic timeslots dedicated to the TCH channel, which
carry compressed voice, a timeslot dedicated to the associated SACCH channel
(either in frame 12 or frame 25), and a free timeslot. For even timeslots the
SACCH channel uses frame 12, for odd timeslots it occupies frame 25.

12

2.3. The radio link in GSM

T TTTTT TTTTT TTTT TTTTT TTTTs -
- s

T2= 0 4 8 12 13 17 21 25

T: TDMA frame for TCH S: TDMA frame for SACCH

Figure 2.4: TCH/FS multiframe

A0 A1A1A0A0A0 A2A2A2A1A1 A3A3A3A2 A5A4A4A4A4 A6A5A5A5

T2(mod 2) 0 1 0 1 0 1

T3= 0 4 8 12 16 20 24 28 32 36 40 44 50

Ax: TDMA frame for SDCCH client x Sx: TDMA frame for SACCH client x

A6 A7A7A7A7A6 S1S0S0S0S0 S2S2S1S1 S3S3S3S2S2 ---S3A3 A6 S1

A0 A1A1A0A0A0 A2A2A2A1A1 A3A3A3A2 A5A4A4A4A4 A6A5A5A5 A6 A7A7A7A7A6 S5S4S4S4S4 S6S6S5S5 S7S7S7S6S6 ---S7A3 A6 S5

T2(mod 2) 1 0 1 0 1 0

T3= 0 4 8 12 16 20 24 28 32 36 40 44 50

Figure 2.5: SDCCH multiframe

The FACCH channel is only assigned when needed, by pre-empting half the
information bits of the TCH/FS to which it is associated in eight consecutive bur-
sts [25]. The stealing bit is used to indicate whether the 57 corresponding traffic
bits carry voice traffic or signalling for the FACCH.

The SDCCH channel and its associated SACCH channel, are mapped into 51-
multiframes. In this channel up to eight different mobiles share the same timeslot,
multiplexed in time. The channel sequence repeats every two 51-multiframes. A
diagram of the SDCCH channel in the downlink is shown in Figure 2.5

As we will see later we are specially interested in the SACCH channel associated
with a voice call, that is the SACCH channel associated with a TCH channel.

2.3.2. Voice communication in the GSM network
GSM is a digital network. As such, it cannot directly transmit analog voice

signals, so the analog sound signal is digitized and heavily compressed for trans-
mission.

The analog speech signal at the transmitter is sampled at a rate of 8000 samples
per second and quantized with a resolution of 13 bits per sample, which gives a bit
rate of 104 kbit/s [18]. This raw bit stream is split into 20 ms frames containing
160 samples, and each frame is compressed into a 260 bit coded speech block,
which gives a bit rate of 13 kbit/s, for an 8 : 1 compression ratio. Each 260-bit
block is used as input for the coding stage.

There are other optimizations, like Discontinuous Transmission with comfort
noise generation, which stops transmission during speech pauses, reducing battery
consumption and the level of interference for other users. These silences are filled
by the receiver with what is known as comfort noise generation, a synthetic back-

13

Chapter 2. The GSM architecture and its security properties

ground noise signal designed to avoid the disturbing effect a sudden silence has on
the listener.

2.4. Channel Coding
Both signalling and user data are encoded, reordered and interleaved to im-

prove reliability by building resistance to channel errors. GSM uses a combination
of block coding for error detection and convolutional coding for error correction,
followed by an interleaving scheme to deal with burst errors. This process is car-
ried out before encryption. Each channel has its own coding and interleaving
scheme, using the same basic building blocks to simplify encoder/decoder. Coding
is exhaustively described in [22] for all possible GSM channels, we will only present
as examples the case of the TCH/FS and SACCH channels which will be needed
later on. The source data (either compressed voice or signalling messages) is recei-
ved by the channel coder in data blocks. For instance, the speech coder generates
a 260-bit block every 20 ms. Each data block is individually protected by a block
code which generates parity bits for error detection in the block. Depending on
the channel, either a Cyclic Redundancy Check (CRC) or Fire code is used. Then
some fill bits are added and a convolutional code is used to add redundancy for
error correction. The result of the convolutional coding is a 456 bit block for most
channels. As a final step blocks are interleaved to reduce the effect of burst errors
by spreading them over several blocks. The resulting 456-bit blocks are then split
into 114 bit blocks which are fed into the encryption process and then sent using
114 bit physical channel bursts.

In the receiver, the inverse process is carried out. First deinterleaving, then
convolutional decoding, and finally parity checking. If the block code detects errors
after convolutional decoding the frame is discarded.

2.4.1. Coding for SACCH y SDCCH channels
Each protocol message in signalling channels has a fixed length of 23 bytes (184

bits). This means that the input to the block coding is a 184 bit block d(0)...d(183).

First step: parity

Most signalling channels, including SACCH and SDCCH, use a shortened bi-
nary cyclic code or Fire code using the generator polynomial g(D) = (D23 +
1)(D17 +D3 + 1).

Let p(0), ..., p(39) be the parity bits.

The encoding of the cyclic code is performed in a systematic form, which means
that, in GF(2), the polynomial:

d(0)D223 + d(1)D222 + ...+ d(183)D40 + p(0)D39 + ...+ p(38)D + p(39)

when divided by g(D) yields a remainder equal to 1 +D+D2 ++D39 [22]

14

2.4. Channel Coding

The inversion of the parity bits ensures that the null code word is not valid,
i.e. bursts that contain all zeros cannot occur in the channel.

After adding the parity bits, we have 224 = 184 + 40 bits

u(i) = d(i) for 0 ≤ i ≤ 183

u(i) = p(i− 184) for 184 ≤ i ≤ 223

Second step: tail bits

Four zero bits, called tail bits, are added, reaching 228 bits of input to the
convolutional encoder. These 4 bits allow a defined resetting procedure for the
convolutional encoder (zero termination) and thus a correct decoding decision.

u(i) = 0 for 224 ≤ i ≤ 227

Third step: convolutional coding

A half rate convolutional encoder is used, which means that for each input bit
there are two output bits, defined by the polynomials

G0 = 1 +D3 +D4

G1 = 1 +D +D3 +D4

The result is thus a 456 bit block c(0), c(1), ..., c(455) defined by:

c(2k) = u(k) + u(k − 3) + u(k − 4)

c(2k + 1) = u(k) + u(k − 1) + u(k − 3) + u(k − 4)

where k = 0, 1, ..., 227 and u(k) = 0 for k < 0

Fourth step: interleaving

The idea of interleaving is to spread the effect of burst errors inside the message
or between successive messages. In the case of signalling, the bits of a single 456
bit block are mixed across four 114 bit blocks which are sent in 4 bursts of 114 bit
each.

If we call B0 the number of the first burst carrying bits from the first data
block in the transmission, message n will be sent in the four 114-bit blocks B0 +
4n · · ·B0+4n+3, and if we call i(x, y) the bit y of block x after interleaving, then
the position of each bit in the reordered interleaved blocks are given by:

i(B, j) = c(n, k) for k = 0, 1, ..., 455

n = 0, 1, ..., N,N + 1, ...

B = B0 + 4n+ (k mod 4)

j = 2((49k) mod 57) + ((k mod 8)÷ 4)

15

Chapter 2. The GSM architecture and its security properties

2.4.2. Coding for a TCH/FS channel
Input for a TCH/FS channel is a 260 bit block produced by the voice coding

process. Not all bits are equally important for the reconstruction of the voice
signal, so GSM splits the bits into two classes, 182 class 1 bits, which are error
protected, and 78 class 2 bits, which are not protected [22]. The 182 class 1 bits
are further classified according to their relative importance in reconstructing the
voice signal in 50 bits protected by a cyclic code and a convolutional code, and
132 bits only protected by the convolutional code.

Parity bits

Only the first 50 class 1 bits are protected by a three bit CRC calculated using
the generator polynomial g(D) = D3 + D + 1. Just like in the signaling chan-
nels, parity bits are inverted so that the remainder left by dividing the polinomial
d(0)D52 + d(1)D51 + . . . + d(49)D3 + p(0)D2 + p(1)D + p(2) by the generator
polinomial g(D) is 1 +D +D2.

Reordering and tail bits

Class 1 bits are reordered and 4 tail bits are added, yielding a 189 bit block
for class 1 bits

u(k) = d(2k) and u(184− k) = d(2k + 1) for k = 0, 1, . . . , 90

u(91 + k) = p(k) for k = 0, 1, 2

u(k) = 0 for k = 185, 186, 187, 188(tail bits)

Convolutional Coding

Class 1 bits are protected by a half rate convolutional coder, defined by the
same generator polynomials used in the SACCH and SDCCH channels G0 = 1 +
D3 + D4 and G1 = 1 + D + D3 + D4. This means Class 1 bits are expanded to
378 bits, and adding the 78 Class 2 bits yields a 456 bit block c(0), c(1), ..., c(455):

c(2k) = u(k) + u(k − 3) + u(k − 4) for k = 0, 1, . . . , 188

c(2k + 1) = u(k) + u(k − 1) + u(k − 3) + u(k − 4) for k = 0, 1, . . . , 188

u(k) = 0 for k < 0

c(378 + k) = d(182 + k), k = 0, 1, . . . , 77

16

2.5. GSM security

Interleaving

For the TCH/FS channel blocks are spread in what is known as “diagonal
interleaving”, which means that bits from different blocks are mixed in the same
burst. In this case, the 456 bits of the block are split into eight bursts, and each
burst has bits from two different blocks.

If we call B0 the number of the first burst carrying bits from the first data
block in the transmission, message n will be sent in the eight 114-bit blocks B0 +
4n · · ·B0 + 4n + 7, and if we call i(x, y) the bit y of block x after interleaving,
then the position of each bit in the reordered interleaved blocks are given by the
following formulas:

i(B, j) = c(n, k) for k = 0, 1, ..., 455

n = 0, 1, ..., N,N + 1, ...

B = B0 + 4n+ (k mod 8)

j = 2((49k) mod 57) + ((k mod 8)÷ 4)

Bits from block n will occupy the even bits of the first four interleaving bursts,
and the odd bits of the last four interleaving bursts. The even bits of the last four
interleaving blocks are occupied by bits from block n+1. This diagonal interleaving
has the advantage of distributing bit errors within a block and between blocks, but
has the disadvantage of introducing additional delays in the reception, as all eight
bursts must be received to recover block n.

2.5. GSM security
Being a wireless technology, GSM had to solve some security problems to be

considered a viable product. From the operator’s point of view, GSM must ensure
that service is being provided to a registered customer, that the correct party is
billed for the service, that communication cannot be eavesdropped from the air
interface, and (ideally) that the system is immune to interference. This had to
be solved under the restrictions of a mobile device, constrained both in compu-
ting power and battery capacity by cost and the available technology in the early
1990s. This reduced the choice of algorithms and protocols that could be used.
Also, some important security functions were not included, like network authenti-
cation towards the user (guaranteeing the user that he is not connected to a rogue
network), which can enable a man in the middle attack.

The main security-related functions are described in [23]. Referring to the
interfaces in the reference architecture in Figure 2.1, the security measures stan-
darized in GSM protect the confidentiality in the Um interface (the air interface)
between MS and BTS using (optional) ciphering, allow the network to authenticate
the subscriber, and protect the identity of the subscriber by using a temporary

17

Chapter 2. The GSM architecture and its security properties

identity known as Temporary Mobile Subscriber Identity (TMSI) whenever possi-
ble instead of the International Mobile Subscriber Identity (IMSI). Security in the
rest of the interfaces is left open for the operator to decide.

One of the important decisions made during the design of the GSM standard
was to include a Smart Card in each MS. This smart-card is called SIM, and
includes the cryptographic material and algorithms for user authentication and
session key generation. This greatly simplifies distribution of the master key shared
between the network and the subscriber, which comes preloaded in the SIM, and
makes the phone independent from the operator as it does not need to include
security secrets particular to the network it is connected to. As another side
effect, the security of the cryptographic material does not depend on the security
of the phone, as it never leaves the SIM.

Authentication
Authentication in GSM is based on a shared key, Ki, only known to the SIM

and the AuC. This key is 128 bit long in the reference authentication algorithms,
and even though each carrier can select its own algorithm, it is expected most
carriers are using one of the reference algorithms. The key is effectively tied to the
IMSI of the subscriber, which in turn is tied to the SIM card.

Before granting services to a mobile device, it must perform an authentication
procedure to validate itself in the network. This procedure is based on a challenge-
response protocol, which is carried out by the MS and the MSC, with the help of
the SIM and the AuC. Together with the authentication procedure a temporary
shared key is produced to encrypt the communication. The algorithms used for
authentication and key generation are known as A3/A8 respectively, and can be
chosen by each network operator independently, although many operators use one
of the reference algorithms available.
Authentication is usually carried out whenever the MS requests a service, and can
also be requested by the network whenever it is deemed necessary. The involved
parties and interactions on the authentication signalling are shown on Figure 2.6.

The key never leaves the AuC, so all calculations must be performed there.
However, the AuC does not have a direct interaction with the mobile device.
Instead, whenever authentication is need, the authenticating device (the MSC in
the case of voice communications) obtains the subscriber’s IMSI (International
Mobile Subscriber Identity) and requests the AuC an authentication vector for
that IMSI which is used to authenticate the subscriber. The authentication vector
for the standard SIM is known as a “Triplet”. A Triplet consists of a random 64
bit challenge RAND, the corresponding expected response from the MS, SRES,
calculated as the result of running the A3 algorithm on the key and RAND, and
the corresponding session key KC , the output of the algorithm A8 with imput Ki

and RAND. For the actual authentication, the MSC sends RAND to the mobile
device MS through the BSC, and the mobile device hands it over to the SIM card.
The card calculates the output of the A3 and A8 algorithms using RAND and

18

2.5. GSM security

SIM AuCMSCMS BSC

Figure 2.6: Authentication procedure

the shared key, and returns the calculated RES and corresponding session key KC

to the MS. The mobile returns RES to the BSC/MSC and keeps KC to use it
for encryption. To authenticate the subscriber the network compares the values of
SRES and RES. If they are the same the mobile device is considered authenticated,
and the MSC and mobile share a key KC that can be used for encryption of the
communication. Finally, the MSC instructs the BSC and the MS to start ciphering
the communication (unless ciphering is disabled).

Confidentiality (encryption)

After the authentication process, the MSC and the MS share a session key KC ,
and unless encryption is disabled, the MSC forwards the key KC to the BSC/BTS,
and instructs the mobile (and BSC/BTS) to start encrypting the communication.
From then on, the voice call and important signalling messages are encrypted using
one of the A5 algorithms, chosen based on the capabilities of the mobile device
and the BTS. The A5 algorithms are stream ciphers, that receive as input the
session key KC and a number calculated from the frame number called COUNT
to re-initialize the algorithm at each frame, and generate 228 bits of keystream.
The first 114 bits are used to encrypt a burst in the downlink direction by bitwise
exclusive OR with the 114 payload bits of the corresponding downlink burst, while
the remaining 114 are used in the same way in the uplink direction.

The COUNT value is derived from the frame number FN [23], concatenating
the values of T1, T3 and T2 which are defined in [31] as T1 = FN div (23× 51),
T2 = FN mod 26, T3 = FN mod 51 just as we saw when presenting the physical
channels. T1 is 11 bits long, T2 is 5 bits long, and T3 is 6 bits long. COUNT
is a 22 bit long number, as represented in Figure 2.7, where bit 22 is the most
significant bit.

19

Chapter 2. The GSM architecture and its security properties

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

T1 T3 T2

Figure 2.7: Coding of COUNT

2.6. The A5 family of stream ciphers
For encryption in the air interface GSM designers chose to use stream ciphers

due to them being easy to implement efficiently in hardware both with respect to
performance and complexity. Up to seven algorithms can be defined (withouth
counting A5/0 which means no encryption), and four have been defined to date.

The initial releases of GSM included a single algorithm for encryption, called
A5/1, which at the time was believed to offer adequate security. However, once
GSM started spreading outside Europe, export restrictions forced the development
of a weakened algorithm, A5/2. Both algorithms were kept secret and only revealed
to GSM manufacturers on a need-to-know basis, but in 1999 Briceno, Goldberg
and Wagner reverse-engineered both A5/1 and A5/2 from real handsets [17].

In 2002 an additional algorithm was added, A5/3. This algorithm is based
on the Kasumi block cipher used in third generation networks, which in turn
is a modification of the Misty1 algorithm developed and patented by Mitsubishi
Electric corporation. A5/3 is stronger than A5/1, but its adoption by operators
has been slow. Recently A5/4 has been defined, also based on Kasumi but with a
128 bit shared key.

Besides the aforementioned algorithms, there is a fallback option, called A5/0,
which means no encryption. This can be used, if permitted by the network, when
there is no common algorithm between the network and the MS.

2.6.1. The A5/1 algorithm
The A5/1 stream cipher accepts a 64-bit session key KC and a 22 bit value

COUNT which in GSM is derived from the FN as seen in the previous section.
For GSM 228 bits are produced for each value of count, 114 are used to encrypt a
single burst in the downlink direction, and the remaining 114 are used to encrypt
a burst in the uplink.

A5/1 uses three maximal length Linear Feedback Shift Registers (LFSRs) R1,
R2 and R3, of lengths 19, 22 and 23 bits respectively, thus the internal state or
memory of the algorithm consists of 64 bits. A diagram of A5/1 is represented in
figure 2.8. Each shift register advances when it receives a clock signal from the
clocking unit, where advance means that the leftmost bit becomes the output, all
bits are shifted left one position, and the rightmost bit is filled with the XOR of
the tap bits.

The non-linearity in the system is introduced by the clocking unit, which de-
cides which shift registers should advance at each step. The clocking unit takes as

20

2.6. The A5 family of stream ciphers

input one bit from each shift register, and uses a very simple algorithm to decide
which shift registers should advance: each register is clocked if and only if its tap
bit coincides with the majority of the tap bits:

Calculate the majority M of the tap bits R1[8], R2[10], R3[10] (that is, M =
0 if there are 2 or 3 zeros, and M = 1 if there are 2 or 3 ones in the set
R1[8], R2[10], R3[10])

Clock R1 if R1[8] = M

Clock R2 if R2[10] = M

Clock R3 if R3[10] = M

Notice that either two or three registers advance at each step, since at least
two taps coincide with the majority.

Before generating the stream output, the internal state of A5/1 needs to be
initialized. First the key and counter are fed to the three shift registers, advancing
the three registers after each bit without taking into consideration the clocking
unit. This part of the initialization is linear on the bits of the key and COUNT.
After the linear part, the algorithm is run for 100 cycles with the clocking unit
engaged, discarding its output.

1. Set R1 = R2 = R3 = 0

2. For i = 0 to 63

Clock R1, R2, R3

R1[0] = R1[0]⊕KC [i]

R2[0] = R2[0]⊕KC [i]

R3[0] = R3[0]⊕KC [i]

3. For i = 0 to 21

Clock R1, R2, R3

R1[0] = R1[0]⊕ COUNT [i]

R2[0] = R2[0]⊕ COUNT [i]

R3[0] = R3[0]⊕ COUNT [i]

4. Clock A5/1 100 times using the clocking unit

Only after the preceding initialization stage is complete are the output bits
used for encryption, which means that the ciphering uses bits 101-328. The first
100 output bits are discarded to ensure the initial state is mixed by the irregular
clocking before using the output.

21

Chapter 2. The GSM architecture and its security properties

Output

Clocking
unit

181716 13 8 0

2120 10 0

0710202122

R1

R2

R3

Figure 2.8: A5/1 Cipher

2.6.2. The A5/2 algorithm
The A5/2 stream cipher is a weak algorithm compared to A5/1, and its use

in mobile phones has been forbidden in the current versions of the standards,
so we won’t talk about it. For a description of the algorithm and some of its
vulnerabilities the reader can refer to [7], [9].

2.6.3. The A5/3 algorithm
The A5/3 cipher uses the Kasumi algorithm, which is one of the algorithms

used in the UMTS network. Kasumi is publicly available, and is specified in [24].
Kasumi is a block cipher, which produces a 64 bit ciphertext from a 64 bit plaintext
using a 128 bit key. To generate a 228 bit keystream from this block cipher in GSM,
Kasumi is used in an output-feedback mode as a keystream generator.

2.7. Security considerations in GSM
Several shortcomings have been pointed out in GSM security, and have been

solved in UMTS and LTE. Some of them are:

There is no authentication of the network. The handset will establish com-
munication with any cell that claims to belong to the operator.

22

2.7. Security considerations in GSM

There is no explicit integrity protection for signalling, voice or data.

Encryption is performed after error protection. This means that the plain-
text of both signalling and voice encrypted communications has known re-
dundancies, and as we will show in chapter 4 these redundancies allow to
mount a ciphertext only attack against GSM encryption.

The derivation of the session key is independent of the ciphering algorithm
in use. This means a key obtained by breaking one algorithm can be used
to break into a communication ciphered by a stronger algorithm.

The last item merits some explanation. The fact that the derived key is the
same no matter which ciphering algorithm is in use allows attacks where the attac-
ker forces the subscriber to cipher information with a weak algorithm which he can
break, recovers the key and uses the key to request services from the network or
to decipher the information protected with a stronger algorithm. A possible man
in the middle attack can be carried out, where a rogue cell claims to belong to the
operator, and offers the subscriber a weak ciphering algorithm to be used, while
at the same time establishing a session with the network using a strong algorithm
impersonating the victim. When the network asks for validation, the rogue cell
just forwards RAND and SRES to the MS, and then forwards the response back
to the network. When the victim uses the key derived from RAND and Ki, the
attacker can recover the key by breaking the weak algorithm, and use that same
key to cipher the rogue communication with the network.

23

This page intentionally left blank

Chapter 3

Known cryptographic attacks against
A5/1

In this chapter we will compile and classify the known attacks against the A5/1
stream cipher.

The original GSM privacy algorithms and their design were kept secret by the
GSM Association, but in 1994 the general structure of A5/1 was leaked and do-
cumented by Ross Anderson [2] [3] and others. This initial leak was cryptanalized
by Golic [38] and Wagner.

In 1999 Briceno, Goldberg and Wagner reverse-engineered both A5/1 and A5/2
from real handsets [17], showing that the initial leaked structure was basically
correct.

A5/2 was quickly shown to be weak [36], [9]. Let’s remember A5/2 was desig-
ned that way, to be exported worldwide. There are also several proposed attacks
against A5/1 which we will describe shortly, showing it is also a weak security so-
lution. As for A5/3, the known cryptographic attacks are scant and show that the
underlying Kasumi cipher can be broken in a scenario called “related key attack”,
an attack that is not realistic in the way A5/3 uses Kasumi.

3.1. Cryptoanalysis of A5/1
Attacks against A5/1 can be broadly classified in “guess and determine at-

tacks”, correlation attacks and time-memory tradeoff attacks. We document the
known attacks of each class after this short introduction to each kind of attack,
and explain how some of the attacks work as an aid to understand the different
classes.
All attacks attempt to determine the internal state of A5/1 (the 64 bits of the
3 internal registers) just after the initialization step when key and frame number
have been processed but before the 100 “mixing” steps. Once this state is known,
the key can be efficiently calculated clocking A5/1 backwards or solving a set of
linear equations.

Chapter 3. Known cryptographic attacks against A5/1

In the “guess and determine” attacks, the idea is to guess the contents of some of
the registers, and then calculate the rest of the bits solving a set of equations [38]
or guess for a special condition in the cipherstream and calculate from there [12].
This kind of attack is a cryptographic break whenever the effort to verify if our
guess is correct times the expected number of guesses until a correct answer is
found is less than the expected computational effort of a brute force attack.

In the correlation attacks, the idea is to exploit the fact that the initializa-
tion of the internal state of A5/1 is a linear function of the unknown key and the
known frame number, and observing the probability distribution of the advances
of the three shift registers find correlations between the unknown key bits and the
observed output of the algorithm.

In TMTO attacks, the idea is to exploit the fact that the internal state of
A5/1 is only 64 bits in size, too short to ensure resistance to brute-force attacks.
TMTO attacks split the calculation into an expensive precomputation phase, which
can be reused for multiple attacks, and an online phase, which uses the previous
calculation for an attack attempt faster than a brute-force attack.

3.1.1. Determining the key from A5/1 internal state
Most attacks on A5/1 aim to determine the internal state of A5/1, and then

determine the session key from that internal state.

Let’s call t the number of clock times that the A5/1 algorithm has advanced,
t = 0 the time just after the key KC and COUNT have been fed into the registers,
and S(t) the corresponding internal state after t clockings. The first output bit of
A5/1 is taken for t = 101.

If we can find the internal state of A5/1 just after the value of the key and
COUNT have been fed into the registers and before the 100 mixing steps, that
is, at t = 0, it is trivial to invert the process to recover KC knowing the value of
COUNT, as the initialization is linear. The solution is detailed in appendix C. So
the objective is to find the internal state just after KC and COUNT have been fed
into the LFSRs.

If our attack finds the internal state S(t) of A5/1 for some t > 0 we want to
find the internal state or states at S(0) that lead to S(t) after t clockings. Golic
in [37] proposes a method for computing the initial state by recursive computation
of the reverse state-transition function, which means that if we know S(t), all the
valid states S(t−1) are calculated, and recursively from each state at clocking i the
valid states at clocking i−1 are calculated until all S(0) candidates are computed.
For 0 < t < 101 the output is not available, which means that the only validity
criteria is that the clocking must be valid, while for t >= 101 the availability of
the output depends on the kind of attack, if the output is known the calculated
states must be consistent with the output and the clocking. Golic demonstrates
that the complexity of this process is small in both cases. The worst case is when

26

3.1. Cryptoanalysis of A5/1

the output is not available, and the time complexity is O(n
√
n).

3.1.2. Guess and determine attacks
Guess and determine attacks are known plaintext attacks, where the key is

derived from some known plaintext in less than the average 263 attempts needed
for a brute-force attack.

The first published attack (against a leaked incomplete version of A5/1) was
due to Ross Anderson in a Usenet post [2]. The idea of the attack is to guess
the complete content of registers R1 and R2, and the first half (eleven bits) of
R3; with this information, the clocking is known, and the other half of R3 can be
computed from the output of A5/1 and the known plaintext. After that, the guess
has to be checked with a trial encryption. Most of the time the 52 guessed bits
will not be correct, so we expect to perform an average of 251 or a maximum of
252 attempts and verifications to find the correct internal state. If we assume the
computation of the non-guessed bits of R3 requires a computation effort similar
to an encryption, the expected computation effort is 2× 251 encryptions, or about
a 2000-fold decrease in computation compared with a brute force attack.

A similar attack was described by Golic against a leaked outline of A5/1 [38],
[37], in which the lower ten bits from each register are guessed. These bits de-
termine the clocking until any of the registers’ guessed bits advance beyond the
clocking bit. At each clocking of A5/1 the attacker obtains a linear equation on
some of the unknown bits. On average 14.33 equations are obtained, and ad-
ding the guessed 30 bits yields 44 linear equations [38] [12]. After that, instead
of guessing enough bits to have a determined set of equations, Golic builds the
valid options to the input bits to the clocking function by noticing that several
combinations are not consistent with the A5/1 output. This reduces the number
of trials to an average of 241.16 to find the correct internal state. However, for a
fair comparison to Anderson’s attack we should notice that each step in Golic’s
attack is more complex than in Anderson’s attack, as it involves the solution of a
linear set of equations plus a trial encryption.

Some hardware assisted attacks based on the same ideas (with improvements)
were presented in the work by Keller and Seitz [46], Pornin and Stern, [55], and
Gendrullis, Novotný and Rupp [34]

Another attack due to Biham and Dunkelman [12], consists in assuming that a
certain event happens, namely that for 10 rounds register R3 is not clocked. If this
happens, then R1 and R2 are necessarily clocked, and we get information from the
corresponding clock controlling bits from R1 and R2 (namely that they are the
complement of the corresponding R3 clocking bit). This diminishes the necessary
expected running time of the attack to 227 A5/1 clockings, assuming one knows
where in the cipherstream the event happens. As the position of the event is not
known, one has to try on average 220 starting locations (assuming all clocking
combinations are equally likely), giving a total time of 247 operations. They then
give some optimizations which reduce the complexity to 239,91 operations by using

27

Chapter 3. Known cryptographic attacks against A5/1

a precalculated table which occupies some 64 GB. The main drawback of this
attack is that it requires on the order of 220 known plaintext bits to be effective.

3.1.3. Correlation attacks
Correlation attacks were first applied to A5/1 by Ekdahl and Johansson [19],

[20]. We explain here how the attack by Ekdahl and Johansson works as an
example of the method, and then refer to the respective papers for improved
attacks. All the published correlation attacks are known plaintext attacks.

For this kind of attack, observe that A5/1 initialization is a linear function
of the unknown session key KC = (k1, · · · , k64) and the known frame number
FN = (f1, · · · f22). The contents of each register after t clockings is also a linear
function of KC and FN . Using Ekdahl’s notation, we can write the output bit
from R1 as u1t =

∑64
i=1 c

1
itki +

∑22
i=1 d

1
itfi, where cit and dit are known constants.

We can write a similar equation for R2 and R3. Ekdahl and Johansson noticed
that s1t =

∑64
i=1 c

1
itki is an unknown sequence which is the same for all frames

encrypted with the same key, while f1t =
∑22

i=1 d
1
itfi is a known sequence different

for each frame.
Let z1, · · · , z228 be the observed output of A5/1. As the registers R1, R2 and

R3 are irregularly clocked, we know z1 = u1i ⊕ u2j ⊕ u3k, where i, j and k are the
times each register has been clocked. Then, we can write

s1i ⊕ s2j ⊕ s3k = z1 ⊕ f1i ⊕ f2j ⊕ f3k (3.1)

The probability that a register is clocked at any given step is 3/4, so after the
101 steps from initialization until the first output bit emerges we can expect each
register to be clocked close to 76 times. As a first step assume the three registers
are clocked exactly 76 times. Then the following equation holds:

s176 ⊕ s276 ⊕ s376 = z1 ⊕ f176 ⊕ f276 ⊕ f376 (3.2)

Let’s call the right hand side of this equation O(76,76,76,1) = z1 ⊕ f176 ⊕ f276 ⊕ f376,
which is composed of known quantities. If the registers were indeed clocked 76
times then it holds that s1i ⊕ s2j ⊕ s3k = O(76,76,76,1), and if not we can expect the
previous equation to hold with probability 1/2.

If the probability that the three registers are clocked exactly three times is P ,
this equation holds with probability 1/2+1/2P . This gives us a correlation between
the observed z1 and the sum s176 ⊕ s276 ⊕ s376. Ekdahl and Johansson estimate P
to be about 10−3, so P (s176 ⊕ s276 ⊕ s376 = O(76,76,76,1)) = 1/2 + 1/2 × 10−3. Since
s176⊕ s276⊕ s376 is constant over all frames, by averaging O(76,76,76,1) among enough
frames we expect to detect a deviation large enough to determine the sum with
a high enough confidence (Ekdahl and Johansson only talk about “a few million
frames” in [19]). We thus get a bit of information in the form of a linear equation
on the bits of K. We can consider other assumed triples for the clockings of the
three LFSR and get enough equations to recover the key.

The attack can be refined by noting that a clocking (i, j, k) may end up in other
positions z2 · · · z228 with varying probabilities. We can then use all positions where

28

3.1. Cryptoanalysis of A5/1

there is a non-negligible probability of occurrence of clocking (i, j, k) to calculate
the correlation probability. To check the correctness of the proposed attack Ekdahl
and Johansson provide the result of simulations which show that choosing the right
parameters the attack is successful more than 70% of the attempts if the stream
output of about 216 bits is known, using a few minutes of processing on a standard
(for 2003) personal computer.

The attack by Ekdahl and Johansson was improved by Maximov, Johansson
and Babbage [51] by statistical analysis of multiple frames and by considering d
consecutive estimators as a d−dimension estimator, and by Barkan and Biham [8]
by using conditional estimators and three weaknesses they observe in the choice
of register R2. The best attack takes a few minutes to find the key with a success
rate above 90% given 2000 known frames.

3.1.4. Time Memory Data Tradeoff Attacks
Introduction to TMTO attacks

This short summary is intended to facilitate the reading of this section, we will
study time memory tradeoff (TMTO) attacks in chapter 5.

TMTO attacks, introduced by Hellman in 1980 [39], are a kind of brute force
attack used to invert a function (that is, given the output of the function, find its
preimage).

TMTO attacks consists of two distinct phases. The bulk of the computation
for the attack is done in a usually costly precomputation phase which calculates
the output of the function for an important fraction of the domain, generating
one or several tables which resume that information. This precomputation may be
costlier than a brute force attack, but will be carried out only once in preparation
for the attack. Each entry in the tables stores the initial and ending point of a
sequence of encryptions. As we will see in chapter 5, the main difference between
TMTO attacks is in the way the sequences are calculated.

In the second phase of an attack using a TMTO the precomputed tables are
used to speed up the attack. Given the captured output of the function to invert,
the attack or on-line phase will consist in one or several searches in the tables, and
the reconstruction of some of the sequences, with the aim of finding an encryption
whose output is the captured text. There is no guarantee that the searched value
is in the table. In this sense TMTO attacks are probabilistic attacks.

This kind of attack is called Time Memory tradeoff because the amount of
memory used to store the precomputation tables and the time (effort) needed in
the on-line phase are inversely related, the attacker can decrease the attack effort
by increasing the memory devoted to store the tables. As a gross approximation,
in many practical algorithms M2 × T ∼ N2, where M is the amount of memory,
T is the on-line time or effort, and N is the co-domain space of the function to
invert. There are other parameters to choose which depend on the TMTO algo-
rithm which we will see in chapter 5, and the choice of these parameters has a

29

Chapter 3. Known cryptographic attacks against A5/1

profound impact on the performance of the attack.

TMTOs are useful when the attacker expects to do several similar attacks,
thus amortizing the precomputation over many attempts, or when he has time to
prepare for an attack that should be carried out faster than a brute force attack.

Time Memory Data Tradeoffs (TMDTOs) are a class of TMTO used when
more than one target is available for inversion, and inverting the function for any
of the available targets is enough to consider the attack successful. For example a
TMDTO may enable an attacker to find the key used to cipher several captured
messages by inverting the encryption of any one of the messages. As we will see
in chapter 5 having several targets available for inversion has the practical effect
of decreasing the needed memory and/or time necessary for the attack.

To apply a TMTO to crack A5/1 the attacker needs to find a function whose
inversion leads to finding the key or the internal state of A5/1 and whose output
can be obtained from the captured output of the function for some conversation.
Besides, the domain of the choice function should be of a tractable size, comparable
to the size of the internal state of A5/1.

Attacks to A5/1 based on TMDTOs
The first TMDTO attack against A5/1 was proposed by Golic in [38] (similar

to a generic attack against stream ciphers described by Babbage [6]) . His attack
is a known plaintext attack, where he assumes the keystream output of A5/1
corresponding to several messages of the same conversation can be captured. The
function he proposes to invert is the one that takes as input the initial state of
A5/1 and whose output is the 64 first bits of the stream cipher output produced by
A5/1. He proposes building a time memory tradeoff by building a table consisting
of M output blocks and the (possibly multiple) 64 bit initial states reachable from
the state at t = 101 that generates M . Then for a conversation where K keystream
sequences are captured, each sequence 228 bits long, there are 102 64-bit blocks
which can be searched in the table to find the corresponding preimages. By the
birthday paradox we expect to find a collision with high probability if 102×K ×
M > 264. However, to be effective this tradeoff needs many captured keystream
sequences from the same conversation, which implies many known plaintext frames,
which are not usually available to the attacker.

In [15] Biryukov, Shamir and Wagner improve on Golic’s results by showing
that it is easy to generate all the states that produce output sequences with a
particular k-bit pattern alpha with k ≤ 16 (they call this property “low sampling
resistance”), without trying and discarding other states, and propose further opti-
mizing storage by storing only pairs (output, initial state) that have a high number
of preimages, and Birshukov and Shamir [14] further study the use of TMDTOs
for ciphers with low sampling resistance. The amount of known plaintext bits
required for those attacks, on the order of 25000, make these attacks impractical
in GSM.

30

3.1. Cryptoanalysis of A5/1

In [35] and [57], Andy Rupp, Tim Güneysu and others report on the imple-
mentation of an hardware assisted A5/1 TMDTO using a custom cluster of Field
Programmable Gate Arrays (FPGAs), for which no tables were publicly released.
Their attack is a known plaintext attack, using a variant of TMDTO known as
thin rainbow tables that will be studied in section 5.4.1. Their main contribution is
implementing the compute intensive parts of the attack in hardware. The function
to invert in the TMDTO is the function that takes as imput the initial state of
the internal registers of A5/1 and has ouput the first 64 bits of the cipherstream
produced by A5/1. Their FPGA implementation calculates 236 A5/1 encryptions
per second, which was a very high speed in 2008. They claim their TMTO can
crack A5/1 from a single 64 bit output in an average of 7 hours.

In [43] another group also claims to having created the required precomputation
tables for a TMTO using FPGAs, but the tables were not publicly released.

A third group, led by german cryptographer Karsten Nohl, set to calculate the
tables for a TMDTO also using thin rainbow tables. This is also a known plaintext
attack. The function to invert takes as input 64 bits of internal state, and outputs
64 bits of cipherstream. The main contributions of Nohl and hist team were to
implement the algorithm to build the TMDTO tables in Graphics Processing Unit
(GPU) cards, initially CUDA cards from Nvidia, and later OpenCL cards from
ATI (now AMD), and finding several optimizations to decrease the search space.
The tables were released in 2010, and occupy nearly 2 TB of hard disk. The as-
sociated cracking code is reported to be able to crack most keys in a few seconds
provided a fast GPU is available and SSD disks are used to hold the tables. Anot-
her contribution was documenting several ciphered signalling messages in GSM
with known content which can be used as source of known plaintext. Nohl et al
found that only 14% of the state space is reachable after 100 A5/1 clockings. This
means only reachable states need to be considered for the tables, decreasing the
search space to approximately 264 × 0.14 ≈ 261.16 states. By using two messages
with known content during call setup, which translates into 8 known plaintext
bursts, they get D = 408 messages to search on the tables, which decreases the
necessary table coverage.

A different TMDTO attack was proposed by Barkan, Biham and Keller in [9]
and [7]. They propose a ciphertext only attack exploiting the fact that the re-
dundancy needed for error detection and correction is added before encryption.
This adds known redundancies to the plaintext which can be exploited to build a
TMDTO. We will study this attack in detail in the following chapter.

Countermeasures against plaintext attacks

The attach against A5/1 which has received the most public attention is the
one by Nohl et all, both because it is effective, only requiring the knowledge of two
messages likely to appear in every conversation, and because of the public nature
of the implementation. However as we saw earlier there were at least two other
similar attacks published, and there are surely other implementations of these or

31

Chapter 3. Known cryptographic attacks against A5/1

other ideas in products designed for the intelligence community 1. All of these
require the knowledge of the plaintext of a frame, and are possible because some
control messages at the beginning of each voice call contain known information
and when the information is not enough to fill a message a fixed known padding
is used.

Recent versions of the standards for GSM from ETSI have added randomiza-
tion of the padding bits used when a message is too small to fill a frame, and also
randomization of the system messages to avoid known information being ciphered
with A5/1. This reduces the attack surface for passive known plaintext attacks,
as less known plaintext messages are available for an attack.

3.2. Outline for the rest of our work
Most of the attacks in the previous section require either large amounts of

known plaintext, which are not available to an attacker when attacking A5/1
as used in GSM, or require huge computational resources. From the published
attacks only the TMDTO known plaintext attacks are practical in the sense of not
requiring unrealistically large resources (known plaintext messages, storage and
computation). As recent versions of the standards for GSM added countermeasures
against known plaintext attacks we decided to delve deeper into the ciphertext
only attack proposed by Barkan, Biham and Keller, with the aim of exploring
the feasibility of this attack when using modern hardware and the best known
TMDTO attacks at the time this work was written.

In the following chapters we will first explain the ciphertext only attack propo-
sed by Barkan et al, detailing how to calculate the function we need to invert for a
successful attack, and making an extension to Barkan et al’s work by finding anot-
her source of redundancy that can be used for the ciphertext only attack. Then
we will study the state of the art on TMDTO attacks, applying the best known
attack to a simplified problem. Finally we will estimate the resources needed to
implement a full ciphertext only attack, and implement a demonstration attack
under the assuption that a huge amount of captured ciphertext is available.

1for examples of products claiming to crack A5/1 see
http://www.cellularintercept.com/ecom-prodshow/gsm_intercept.html,
http://www.pki-electronic.com/products/interception-and-monitoring-systems/

passive-gsm-monitoring-system-for-a5-1-a-5-2-a5-0-encryption/ and
http://www.shoghicom.com/passive-gsm-monitoring.php

32

http://www.cellularintercept.com/ecom-prodshow/gsm_intercept.html
http://www.pki-electronic.com/products/interception-and-monitoring-systems/passive-gsm-monitoring-system-for-a5-1-a-5-2-a5-0-encryption/
http://www.pki-electronic.com/products/interception-and-monitoring-systems/passive-gsm-monitoring-system-for-a5-1-a-5-2-a5-0-encryption/
http://www.shoghicom.com/passive-gsm-monitoring.php

Chapter 4

Two ciphertext-only attacks against
A5/1

In this chapter we study ciphertext only attacks against A5/1 when used in
GSM.

In GSM error detection and correction algorithms are applied to the messages
before ciphering, that is, whenever a new signalling message or voice frame is
ready for transmission, first the coding and interleaving presented in section 2.4
are applied, and then the resulting 114 bit blocks are ciphered. This is not the
recommended order, as the error detection and correction overhead adds a known
redundancy in the plaintext which gives an attacker information that could be
used to mount a ciphertext only attack. In newer protocols like UMTS and LTE,
ciphering is applied before error detection and correction closing this attack vector.
However for GSM we will see this decision creates the scenario for a realistic attack.

In the first section of this chapter we review the results of Barkan, Biham and
Keller in [9] and [7], where they present a ciphertext only attack against A5/1
using the redundancy due to the error detection and correction algorithms. Their
attack uses the redundancy in the SACCH control channel to define a function
that we will call hc that, after being inverted, yields the internal state of A5/1.
They then propose using a TMDTO attack to invert the function. We also show
the details of the calculation of function hc. We explain the attack and document
the construction of all elements necessary for the implementation of the attack.

In the second section we propose a new ciphertext only attack against A5/1
that seems to have never appeared in the literature. The new attack is also a
TMDTO attack, based on the redundancy of the error detection and correction
codes on the TCH/FS voice channel. We will build a function hv that, once
inverted, yields the A5/1 state thus enabling the calculation of key Kc.

In the last section of this chapter we compare both attacks.

As we saw in the previous chapter, to be able to mount a TMDTO attack we
need to find a function h whose output can be calculated from the captured data,
and whose input leads to an attack on the cryptosystem.

Chapter 4. Two ciphertext-only attacks against A5/1

As for the input, we saw in section 3.1.1 that finding the internal state of
A5/1 just after the value of the key and COUNT have been fed into the registers
and before the 100 mixing steps allows the attacker to find the shared key for the
conversation, while finding the internal state S(t) after A5/1 has advanced t steps
enables the attacker to find all initial states at t = 0, which leads to finding all key
candidates that can produce S(t). In the later case the candidate keys must be
checked using another piece of captured data. The aim is thus to find a function of
the internal state of A5/1 whose output value can be calculated from the observed
ciphertext output.

As we will see shortly the output of functions hc and hv will depend on the
captured ciphertext for some bursts. In the case of the SACCH channel we will
need to capture pairs of bursts corresponding to the first and third bursts of a
SACCH message, whose fame numbers are such that the value of COUNT differs
only in the least significant bit of T3. We will see this condition is pretty common,
being met on average once a second. In the case of the TCH/FS channel we will
need to capture six consecutive bursts starting at the third burst of multiframes
that start at certain positions in their corresponding superframe.

In both cases the function will rely on the error detection and correction re-
dundancy in the corresponding channel, which means that to carry out the attacks
the captured frames must have no errors.

We will not concern ourselves with the difficulties associated with capturing the
necessary ciphered traffic, instead assuming the necessary ciphertext is available.
For some previous work on how the traffic could be captured see for example [45].

4.1. The results of Barkan, Biham and Keller
In [7] the authors present their results in the cryptanalysis of A5/2 and A5/1,

and also some active attacks against GSM where they exploit the fact that the same
key is used irrespective of the algorithm in use. We are mostly concerned about
their results attacking A5/1, namely a passive ciphertext-only attack which can
be used with little knowledge of the messages being exchanged. They concentrate
on the error detection and correction codes for the SACCH channel which we saw
in section 2.4 (they also show an attack on the downlink SDCCH/8 channel, but
to be effective this attack requires that the messages are padded with known bits,
which should not be true in recent GSM releases that mandate padding bits to be
randomly chosen). We will only describe their attack on the SACCH channel.

4.1.1. Description of the attack
In the SACCH channel each message has a fixed length of 184 bits. Before being

encrypted and transmitted a cyclic code and a convolutional code are applied,
obtaining a 456 bit block M which is then interleaved and divided into four 114
bit frames, which are independently ciphered and transmitted in four bursts. The
details of the codes used is shown in section 2.4.

34

4.1. The results of Barkan, Biham and Keller

Let’s represent a SACCH message as a 184 bit vector P . Being linear operati-
ons, the coding operation and interleaving of a message can be modelled as the mul-
tiplication over GF (2) by a constant 456×184 matrix G and XOR with a constant
vector g. The result of the coding and interleaving operation is M = (G · P)⊕ g.
A procedure to calculate matrix G and vector g is shown in section 4.1.2. After
this operation M is split into four equally sized data frames, XORed with the key-
stream from A5/1 with the corresponding frame numbers, and transmitted. As
G is a 456 × 184 matrix, there are 456 − 184 = 272 equations which describe the
kernel of the transformation. Being an error detection and correction transforma-
tion, the dimension of the kernel is exactly 272 due to the fact that the codomain
of the function is of size 184 bits. Let H be the matrix which describes those
272 equations, that is, the parity check matrix such that H · (M ⊕ g) = 0. The
key observation in the paper is that given a ciphertext it is possible to find linear
equations on the keystream bits using the parity check matrix.

To calculate the corresponding ciphertext for a message M , four A5/1 keystre-
ams k1, k2, k3, k4 are generated using the same key and the FN corresponding to
the timeslot in which each frame will be transmitted. Let k = k1 ‖ k2 ‖ k3 ‖ k4
(where ‖ denotes concatenation), then C = M ⊕k is the corresponding ciphertext.
We can apply the same H matrix to C ⊕ g, and substitute C:

H · (C ⊕ g) = H · (M ⊕ k ⊕ g) = H · k (4.1)

Having the captured ciphertext C for the four frames corresponding to any
message M means we have a linear equation system over the bits of the correspon-
ding k. Note that the equations are independent of P , they only depend on k, the
known C and the fixed value of g.

We want to build a function that maps the internal state of A5/1 to a value
derived from equation (4.1), however we have four keystreams k1 · · · k4 that de-
pend on different initial states S1 · · ·S4 derived from the same key KC but different
COUNT values derived from the corresponding FN values.

When associated with a TCH/FS channel, that is, when associated with a voice
call, the four frames which comprise a SACCH message are carried in the same
frame offset on four consecutive 26-multiframes as we saw in section 2.3.1. This
means that given the initial value of COUNT, it is easy to calculate the remaining
three values of COUNT. So given the internal state of A5/1 after key setup for the
first frame of the message and the corresponding COUNT values we can calculate
S2 · · ·S4 knowing S1. The calculations are shown in appendix B.

Let h(x) : {0, 1}64 → {0, 1}64 be the function that maps the state of A5/1
after key setup in the first of the four frames, to the first 64 bits of the result of
H · k. To make it clearer, given the internal state of A5/1 after key setup for the
first frame of the message (call it x), calculate the corresponding internal states
after key setup for the other three frames of the message, and then advance A5/1
for each of the calculated internal states obtaining k1 · · · k4. Then concatenate
k = k1 ‖ k2 ‖ k3 ‖ k4 and calculate H · (C ⊕ g), keeping only the first 64 bits

35

Chapter 4. Two ciphertext-only attacks against A5/1

of the result vector as output of function h(x). If we are able to invert function
h(x) then we can find KC knowing FN, however we expect the inversion of h to
be computationally intensive, as it includes the inversion of A5/1. So Barkan et al
propose to treat h(x) as a random function and use a time memory data tradeoff
to invert it. Once the internal state of A5/1 after key setup is known, the key can
be found by inverting the linear initialization as shown in section 3.1.1.

In time memory data tradeoffs, as we saw in section 3.1.4, the attack is divi-
ded in two phases, an off-line phase where the output of the function to invert is
calculated and resumed in tables for a significant portion of the domain, and an
online phase which uses the data calculated in the off-line phase. One technical
issue in this case is that the function h(x) depends on the difference in the value
of COUNT of four frames, and each set of tables can only be calculated for a fixed
set of differences. This means that either several sets of tables for different values
of the differences have to be built, or the attack has to be carried out using only
those messages whose COUNT differences are represented in the tables, which
lowers the attack success probability. To counteract this, Barkan et al. found a
method that uses only two of the four frames, thus loosening the restrictions on
the COUNT differences.

Let’s first observe the difference in the COUNT values on the first and third
frames. Both frames will be sent on the same frame offset on their corresponding
26-multiframe, so T2 = FNmod 26 is the same for both frames. T3 = FNmod 51
is increased by one modulo 51 (from the first to the third frames FN increases
26 · 2 = 52, which is equal to 1mod 51). When the value of T3 for the first frame
is even, which occurs in half the cases, T3 only changes in it’s least significant
bit. If we assume that T1 (the FN divided by 26 · 51 = 1326) does not change,
then only one bit of COUNT changes from the first to the third frame (let’s re-
member that COUNT is the concatenation of T1T3T2). These conditions are met
on average once a second, so if we can find a function that depends only on the
first and third frames we get a new data point to attempt an inversion every second.

We want to use Gaussian elimination in equation (4.1) to find equations that
only depend on the values of k0 and k2. However there are not enough equations
(we need at least 64 independent equations). Barkan et al claim that each SACCH
frame has 20 bits fixed by the protocol, so adding equations that represent these
fixed bits we can augment H to a new 292 × 456 matrix H ′. Then the order of
the bits of k is changed so that k′ = k1 ‖ k3 ‖ k0 ‖ k2 and make the corresponding
changes in H ′’s columns so that the product remains the same, getting H ′′, and
also change the order of the bits in C and g getting C ′ and g′ respectively. Applying
Gaussian elimination to the system H ′′ × k′ = H ′′ · (C ′ ⊕ g′), we can eliminate
the coefficients corresponding to k1 and k3 in all rows except the first 228, so
we have 64 rows (rows 229 - 292) that only have non-zero values in the columns
corresponding to bits of k0 and k2. Let’s define HC as the sub-matrix formed by
rows 229 - 292 and columns 229-456 of H ′′, kC = k0 ‖ k2, CC the cyphertext
corresponding to the first and third burst, and gc the corresponding bits from g′.

36

4.1. The results of Barkan, Biham and Keller

Just as in the previous case kC is a function of the initial state of A5/1 for the
first frame, k0. Using this 64× 228 matrix HC we define hc in a similar way to the
way H defines h, that is, hc is a function hc(x) : {0, 1}64 → {0, 1}64 that maps the
internal state of A5/1 in the first frame to the 64 bits of the product HC · kC(x).

For function hc to be useful to define a TMDTO it must be possible to calcu-
late hc from the ciphertext, which is the case as h(x) can be calculated from the
captured ciphertext as shown in equation (4.2).

h(x) = HC · kC(x) = HC · (CC ⊕ gC) (4.2)

4.1.2. Practical details of the attack
There are some details to be completed before this attack can be implemented.

First we need to find 20 bits with known values in the SACCH channel messa-
ges. Appendix A describes the format of the messages in each layer of the SACCH
channel, and finds several bits with fixed values which can be used, 30 in the do-
wnlink direction and 32 in the uplink. As we have more bits than needed we can
keep the bits which are fixed for more messages and seem less prone to be changed
in future versions of the standards. Even then we have more bits than needed, so
we just drop the extra bits.

Matrix H and vector g have to be built. As we saw in section 2.4, all the operations
in the channel coding are linear, so we can easily build a matrix G representing
the whole coding process as the multiplication of the matrices corresponding to
each operation. We use the notation of section 2.4.

The first step in the coding for the SACCH 184-bit messages (P = d0 · · · d183)
is to apply a fire code with generator polynomial g(D) = (D23 + 1)(D17 +D3 + 1),
obtaining a 40 bit parity vector Par = p0 · · · p39 which is appended to the message.
Thus Par = Gf · P , where Gf is a 40 × 184 matrix. An easy way to build Gf
is column by column, where column j is the vector corresponding to the result
of applying the fire code to the message Pj which has a binary one in position j
and zero in the rest of its elements. To account for the fact that the fire code is
calculated so that the remainder is a 40 bit vector of all ones, we add a vector
gf = (1, 1, · · · , 1).
As we want the original bits of the message conatenated with the parity bits, we
can just build a 224 × 184 matrix G1, where rows 0 · · · 183 represent the identity
matrix, and rows 184 · · · 223 are rows 0 · · · 39 from Gf . Vector gf is concatenated
to a 184 bit vector of all zeros obtaining g1, so the output of this stage is G1 ·P+g1.
For the second step, adding the tail bits, it is enough to add 4 zero rows to matrix
G1 and four zero elements to vector g1.
To represent the convolutional coding as a matrix Gc, we can use the same method
as that to calculate Gf , that is, build the matrix column by column, where each
column is the vector corresponding to the result of applying the convolutional co-
ding to the vector that has a single one bit in the position corresponding to the

37

Chapter 4. Two ciphertext-only attacks against A5/1

column number.
Interleaving can be represented as the square 456 × 456 permutation matrix Gi
where each column has a single one bit in the position matching the input bit to
the corresponding output bit.
Joining it all together, to go from a 184 bit message P in the SACCH channel to
it’s coding we do M = Gi ·Gc · (G1 · P + g1) = G · P ⊕ g, where G = Gi ·Gc ·G1

and g = Gi ·Gc · g1

Matrix G, vector g, all intermediate matrices, and the kernel of G, H, were
calculated using the NTL C++ library [21] and verified using publicly available
gsm captures.

One possible way to add the information about the bits with known values is
to check if the fixed bits in P translate into fixed bits in M . This is the case,
as there are 33 bits in M that only depend on the value of the fixed bits in P .
So we can add 33 equations Mi ⊕ fi = 0, where fi is the known value of Mi in
position i. We don’t expect all equations to be independent as they come from 30
fixed bits. For each equation we add a row to matrix H ′ which has a single one
value in position i. We also generate a vector f , which has a zero in the first 272
positions, and the value fi in each added row. The new equation system we get is
H ′(M ⊕ g) ⊕ f = 0, so H ′(C ⊕ g) = H ′(M ⊕ k ⊕ g) = f ⊕H ′k, which translates
to H ′k = f ⊕H ′(C ⊕ g).
After this we swap the columns of H ′ as explained in the previous section, and use
Gaussian elimination as proposed by Barkan, Biham and Keller to eliminate the
coefficients corresponding to k1 and k3 from all rows except the first 228. When
calculating this step it was found that the range of H ′ is only 297 even though we
added 33 equations, which means not all equations were independent of the pre-
vious ones. As we only needed to add 20 equations this is not a problem. Finally
we take the sub-matrix consisting of rows 229 - 292 and columns 229-456 of H ′,
taking care to apply the corresponding operations to f .

The last practical detail is to verify when the assumption that T3 is even in
the first frame holds. For this we check in ETSI’s TS 45.002 standard, chapters
6 and 7 [31], how the initial burst for a SACCH message is chosen. According
to TS 45.002 the initial frame number for the SACCH messages associated with
a conversation depends on the timeslot TS of the conversation, to spread the
messages in time and thus lower the peak processing necessary in the BTS. For
example for the SACCH channel in TS = 0, the initial burst of each message
happens when frame%104 = 12 while for TS = 1 the initial burst happens when
frame%104 = 25. The rule is that the initial burst happens when frame%104 =
12 + 13 ∗ TS.

SACCH messages occupy four burst, each in a different 26-multiframe, so each
message starts 104 frames after the previous one. As 104%51 = 2, T3 = FN%51
is even for 26 consecutive messages, and then odd for 25 messages. When T3 = 50
for the first burst, it will be zero for the third, so this message pair does not have

38

4.2. A new ciphertext only attack based on the redundancy in the Voice
channel

the expected difference, so it means we have 25 useful messages out of each 51
consecutive messages. As SACCH messages start each 104 frames, the time bet-
ween SACCH messages is approximately 480 ms, so we have alternating periods of
messages with T3 even and T3 odd every 12 seconds approximately. This means
that in the worst case, a conversation that lasts less than 12 seconds could have
no frames with a COUNT difference adequate for the tables built using function hc.

If the attacker aims for a high success rate for short conversations, a second set of
tables can be built taking a different matrix H”, where instead of eliminating the
rows affecting k1 and k3, we change the order of the bits so that after applying
Gaussian elimination we get a 64 × 228 matrix applied to k1 and k3, eliminating
the rows affecting k0 and k2. In this case, using both sets of tables, the longest
period without a useful SACCH message is 6 seconds.

To implement the calculation we also need the difference in the internal state
of A5/1 after feeding the key and the value of COUNT between the first and the
third frame when only T3 changes in its Least Significant Bit (LSB). The calcu-
lation can be found in Appendix B, in summary the bits that change its value
are:

For R1, bits 2 and 16.

For R2, bit 16.

For R3, bits 0, 8 and 16.

4.2. A new ciphertext only attack based on the redun-
dancy in the Voice channel

In this section we propose a new ciphertext only attack against A5/1 that
seems to have never appeared in the literature. This attack is based on the same
ideas as the attack by Barkan et al, but using the redundancy in the voice channel
instead of the redundancy on the SACCH channel.

As we saw in section 2.4, each voice frame is 260 bits long, but only the first
182 bits (called Class 1 bits) are protected by a cyclic redundancy code followed by
a convolutional coder. We can attempt to mount an attack using this redundancy.
An added difficulty in the case of the voice channel is that diagonal interleaving
is used, which means each 114 bit burst depends on two different voice frames.
We are interested in finding a set of bursts with enough redundancy to have 64
independent equations, whose count differences repeat the most so that we can
reach a matrix H and corresponding function h using the same procedures as in
the SACCH channel.

Each 260 bit voice frame affects eight consecutive 114 bit bursts, the even bits
for the first four bursts and the odd bits for the last 4. Each 4 burst block depends

39

Chapter 4. Two ciphertext-only attacks against A5/1

Voice frame n Voice frame n+1 Voice frame n+2

456-bit block n 456-bit block n + 1 456-bit block n + 2

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

260-bit voice frames

456-bit blocks

114 bit Bursts

coding

interleaving

Figure 4.1: Coding and interleaving in the voice channel

on the bits of two consecutive 260 bit messages. This is schematically represented
in figure 4.1.

Following the ideas in the previous section, we want to build a function of the
internal state of A5/1 at some point in time, which can also be calculated from
the known redundancy in the ciphertext.

Let’s call PL the concatenation of L voice frames. Just as in section 4.1.2 we
can build a matrix GL and vector gL such that ML = GL · PL ⊕ gL is the output
of applying the cyclic redundancy code followed by the convolutional code and the
diagonal interleaving to PL. Observing the diagonal interleaving, we see that L
voice frames generate L − 1 four burst blocks, and half the bits for another two
blocks of four bursts. For example if L = 2 then M2 will be the concatenation
of half the bits from the first four bursts, four complete bursts that only depend
on the two voice frames in P2, and half the bits from the following four bursts
(referring to figure 4.1 as example, ML is the concatenation of the even bits from
b1 · · · b4, all the bits from b5 · · · b8, and the odd bits from b9 · · · b12, while P2 is the
concatenation of voice frames n and n+ 1). To build matrix GL and vector gL we
proceed just like in the previous section.

For L = 1 we have M1 = G1 · P1 ⊕ g1 with G1 a 456× 260 matrix. We expect
the rank of G1 to be 260, so the parity check matrix H1 is a 196×456 matrix such
that H1 · (M1 ⊕ g1) = 0.

There are 8 bursts containing bits from M1, b1 · · · b8. Let’s call C1 the con-
catenation of the even bits from b1 · · · b4 and the odd bits from b5 · · · b8, and K1

the concatenation of the corresponding bits from keystreams k1 · · · k8 (that is, the
concatenation of the even bits of k1 · · · k4 and the odd bits of k5 · · · k8). Then it
follows that C1 = M1 ·K1.

Applying the same reasoning as in section 4.1.1 we get equation (4.3). The
left side of the equation can be easily calculated from the captured ciphertext,
while the right side can be calculated from the initial states of A5/1 for the eight
corresponding bursts.

H1 · (C1 ⊕ g1) = H1 · (M1 ⊕K1 ⊕ g1) = H1 ·K1 (4.3)

We want a step function that has a codomain of the same size as the internal

40

4.2. A new ciphertext only attack based on the redundancy in the Voice
channel

state of A5/1, namely 64 bits. We could just keep any 64 equations from the
194 available, however if we proceed as in section 4.1.1 and perform Gaussian
elimination in equation (4.3), we can find a new set of equations that only depend
on six of the eight keystream bursts (which lowers the necessary computation later
on). Any of the burst could be eliminated, we choose to make 0 the coefficients for
bits of b1 and b2. Let H ′1 be the resulting matrix after Gaussian elimination. Only
the first 114 rows of H ′1 have non-zero coefficients for the columns corresponding
to b1 and b2. Let’s call Hv the sub-matrix consisting of rows 131-194 and columns
115-456 from H ′1, Cv and gv the corresponding vectors consisting of elements 115-
456 from C1 and g1, and Kv the concatenation of the even bits of k3 and k4 with the
odd bits from k5 · · · k8. We only keep rows 131-194 as we only need 64 equations.
Then equation (4.4) holds:

Hv · (Cv ⊕ gv) = Hv ·Kv (4.4)

To calculate Kv we need the value of ki for six different bursts, each one is a
function of the initial state of A5/1 after initialization with the key and the corre-
sponding value of COUNT. As we saw in section 4.1.1 and appendix B, given the
initial A5/1 state for some key and COUNT value it is easy to calculate the initial
state for any other COUNT value and the same key. We define hv(x) = Hv ·Kv(x),
where x is the initial value of the internal state of A5/1 for the first burst. To
be more explicit, given a 64 bit vector x, we take x to be the internal state of
A5/1 for the first burst, and calculate the internal states x3 · · ·x8 corresponding
to bursts b3 · · · b8. Using x3 · · ·x8 we calculate k3(x3) · · · k8(x8), then Kv as the
concatenation of the even bits of k3 and k4 with the odd bits from k5 · · · k8, and
finally calculate hv(x) = Hv · Kv(x). hv(x) is the function we will try to invert
using a TMDTO.

Just as in the case of the SACCH channel, to be able to calculate Hv(x) we
need to know a priori the XOR differences between x3 · · ·x8 and x. We can only
calculate the TMDTO tables for a fixed set of XOR differences in the values of
COUNT for the involved bursts.
Coded voice messages start in positions 0, 4, 8, 13, 17 and 21 of each 26-multiframe
and occupy four consecutive bursts, so each 456 bit block does not span more than
one 26-multiframe, but two such blocks may span two consecutive multiframes if
the first one starts at position 21. We restrict ourselves to the case in which all
bursts are in the same multiframe. The value of T1 is fixed in each 26-multiframe,
and the value of T2 = FN%26 is the same for bursts in the same position on
different multiframes.

If we consider messages in the same multiframe within different superframes,
messages with the same offset inside the multiframe will have the same XOR
differences. For example the first eight bursts from each superframe will have the
same relative differences, so tables built for that set of differences can be used at
least once each superframe.

We exhaustively checked all possible combinations of multiframe offset within

41

Chapter 4. Two ciphertext-only attacks against A5/1

the superframe and initial burst offset within the multiframe, and found that if
we consider the first eight bursts of each multiframe, we find six multiframes in
each superframe where the differences are identical (multiframes 0, 13, 16, 29, 32,
48). The same happens if we take the eight bursts starting on frame 4, 13 or 17
of each multiframe. This means we can build a set of tables for any one of those
differences, or more than one set of tables for different starting burst.

Each superframe lasts 6.126 seconds, so using one set of differences we have on
average almost one useful multiframe each second. The longest distance between
two useful multiframes is 16 multiframes, which translates to around 1.9 seconds.

4.3. Initial comparison of the attacks
Comparing the necessary information to carry out the attack, both attacks

can be carried out without knowing the plaintext messages. In the case of the
attack against the SACCH channel we use the knowledge about the redundancy
introduced by the error detection and correction, and also the fact that several
bits have fixed values for the most common messages in the SACCH channel as
we saw in Appendix A. This means we may see less useful messages than expected
if other messages are sent during the conversation, like SMS. Attacking the voice
channel only uses the knowledge about the error detection and correction for the
voice signal, and can be carried out whenever there is voice transmission, that is,
during the whole call except when silence suppression is in use.
Both methods provide approximately one message to attack per second, which
means that the expected coverage of the TMDTO matrices, and thus their size,
must be similar to have the same success probability.
Both methods are sensitive to errors in reception, as any bit received in error in
the involved bursts makes the sample useless.

The main disadvantage of the attack using the voice channel is that the calcu-
lation of the function h is more expensive than in the case of the SACCH channel,
as it includes the calculation of the output of A5/1 for at least six initial states.
This means each iteration of h takes about three times as much as the correspon-
ding function for the SACCH channel, affecting both the precalculation phase and
the online phase.

As a summary, the best attack is using the SACCH channel, unless a high success
rate is desired for very short calls (less than 6 seconds), in which case using the
voice channel has an edge as attacks using the SACCH channel cannot guarantee
there is a useful sample to search in the tables for such short calls.

42

Chapter 5

Time Memory Data Tradeoff Attacks

Time memory tradeoff (TMTO) attacks, introduced by Hellman in 1980 [39],
are a family of techniques used to invert a cryptographic function, that is, given
the output of a cryptographic function h, find a preimage for that output. Note
that whenever h is not injective there can be several preimages. Depending on
the application it may be enough for the attacker to find any preimage, or he may
need to check for a particular preimage, leading to slightly different problems.

TMTO attacks consists of two distinct phases. The bulk of the computation
for the attack is done in a usually costly precomputation phase which calculates
the output of the function for an important fraction of the domain, generating one
or several tables which resume that information. Then, in each attack attempt
(online phase) those tables are used to speed up the attack. TMTOs are useful
when the attacker expects to do several similar attacks, thus amortizing the pre-
computation over many attempts, or when he has time to prepare for an attack
that should be carried out faster than brute force.
Time Memory Data Tradeoffs (TMDTOs) are a class of TMTO used when more
than one target is available for inversion, and inverting the function for any of
the available targets is enough to consider the attack successful. For example a
TMDTO may enable an attacker to find the key used to cipher several captured
messages by inverting the encryption of any one of the messages.

In this chapter we will briefly describe and characterize the different types of
tradeoff algorithms. We start with a description of the original work by Hellman
in 1980, the classic Hellman TMTO tables [39]. Then we will see the improvement
proposed by Rivest to lower the amount of disk lookups needed, called Distin-
guished Points, and later on a different tradeoff implementation called Rainbow
Tables, proposed by Oechslin in 2003 [54]. We will follow with time memory data
tradeoffs, which are used when we have more than one point to invert, studying
the early proposals which consisted on adapting Hellman and Rainbow tables, and
ending with the thin and fuzzy rainbow tables proposed by Barkan, Biham and
Shamir in 2006 [10] [7]. We will see the historical approximate characterization of
the different algorithms, following with a recent characterization and comparison
by Hong and Kim [48] [47] for the single target case. In the following chapter we

Chapter 5. Time Memory Data Tradeoff Attacks

propose an extension to the multi-target case to the calculations of Kim and Hong
for the perfect fuzzy rainbow tables in the single target scenario.

In the first part of this chapter, we follow the summary introduced in [57]
and [53].

5.1. Hellman’s Time Memory Tradeoff
The first time memory tradeoff attack was described by Hellman [39] in the

context of block ciphers, more precisely as a way to attack DES (Data Encrip-
tion Standard), but his method can be used to invert other discrete finite one-
way functions. Suppose we have an encryption function E : P×K 7→ C, where
P is the set of all possible plaintexts, K is the set of all possible keys, and C
the set of all ciphertexts. Given C ∈ C, P ∈ P, k ∈ K, we adopt the notation
C = E(P, k) = Ek(P). Hellman’s attack is a known plaintext attack, the goal of
the attacker is, given C and P , find k such that C = Ek(P). This k can then be
used to decrypt further messages sent by the user using the same key.
The brute force approach to finding k is to try all possible values of k ∈ K and
keep the values of k such that C = Ek(P). This guarantees finding the k used
to encrypt P (and potentially some other values of k that give the same result),
but has a high computational cost proportional to N =| K |. If we can check the
correctness of the candidate k or otherwise guarantee we are searching for a single
possible value, the expected amount of trials needed to find k is N/2, making the
time to finding the key T = O(N). This makes this approach only applicable to
ciphers with small key spaces, and implies an expensive process each time a new
pair P,C must be attacked.
We may also consider another approach. If we know that the encryption of a cer-
tain plaintext block P0 is likely to appear in the captured data, we can calculate a
huge table with all the possible pairs (ki, Ci), where Ci = Eki(P0). This table can
be built in advance and reused for many attacks, and once built, the time for each
attack is only that of a search in the table. The problem with this approach is
that the required storage space is proportional to N , which is impractical except
for very small key spaces.

Hellman proposed a method that lies between the two previous ones both in
terms of required storage and in the time needed for the actual attack. In Hellman’s
method it is also necessary to know that the encryption of a certain plaintext block
P0 is likely to appear in the captured data. An expensive precomputation step
will be carried out, in which more than N encryptions may need to be calculated,
storing the results condensed in one or several tables which will help the attacker
speed-up the attack later on. Those tables can be used whenever the chosen P0

is likely to appear in a message, so the precomputation can be reused over many
attacks on different users.

In Hellman’s method a reduction function, R : C 7→ K is needed, which must
be simple to calculate in the sense that its computation must be fast (for instance,

44

5.1. Hellman’s Time Memory Tradeoff

in the case of DES, where the key is 56 bits long and the ciphertext is 64 bits
long, it may be as simple as dropping the last 8 bits). Some authors call R a mask
function.

Let’s define f(k) = R(Ek(P0)). The main building block in the precomputation
phase is a chain, where a starting point SP is chosen in the key space K, and the
function f is iterated a fixed number of times t starting from S0 = SP , so that
Si = f(Si−1) = f i(S0) for 1 ≤ i ≤ t. Only the initial point, SP , and the ending
point, EP = St will be kept and stored.

In the precomputation step, m starting points are chosen, SP1, · · · SPm, and
for each SPi one chain is built, storing only the pairs of starting and corresponding
ending points (SPi, EPi) sorted by the ending point (Figure 5.1). This means m
memory positions of adequate size to store the starting and ending points will be
needed. The m chains summarize m × t encryptions with E, so the storage is
reduced by a factor of t/2 compared to a table storing all the calculated pairs.
However there may be repeated values between different chains in the table, which
means the number of unique pairs preimage-image represented by the table is less
than m× t.

SP1 = S10
f−→ S11

f−→ · · · f−→ S1t = EP1

SP2 = S20
f−→ S21

f−→ · · · f−→ S2t = EP2
...

SPm = Sm0
f−→ Sm1

f−→ · · · f−→ Smt = EPm

Figure 5.1: Hellman’s table

Given the reduction function R and function f(k) = R(Ek(P)), we can sum-
marize the calculation of a single table with the following pseudocode:

Listing 5.1: Calculation of a Hellman’s table
typede f blockN {0, 1}N //N−b i t b lock
typede f Ntuple (blockN , blockN) // tup l e o f two N−b i t b locks

Process CreateHellmanTable
inputs:

integer t: chain length
integer m: number of starting points

output: list of Ntuples representing Hellman table (possibly stored on disk)
var r e s u l t as array [1 . .m] o f Ntuple
var Start ingPo int , S as blockN
var i , k as i n t e g e r

f o r (i = 1 to m)
Star t ingPo in t = random ()
S = Star t ingPo in t
f o r (k = 1 to t)

S= f (S)
r e s u l t [i] = (S , S ta r t ingPo in t)

45

Chapter 5. Time Memory Data Tradeoff Attacks

s o r t (r e s u l t)
s t o r e (r e s u l t)
re turn (r e s u l t)

In the online or attack phase, the attacker has a captured ciphertext C which
corresponds to the encription of P0 with an unknown key ke, and wants to use the
tables to find ke. First he calculates Y0 = R(C) = f(ke) and searches endpoint Y0
in the last column of the table. If Y0 is not found, then ke is not in the next to
last column (t − 1). If EPj = Y0 is found there is a candidate for the value of ke
in column t− 1 of row j. To find the candidate the attacker must reconstruct the
chain starting from SPj and iterating f up until St−1.

Unless f is injective, Y0 might have been reached from another key kf which
we will call a false positive or false alarm. To discard false positives we need to
check the candidate key with another plaintext-ciphertext pair.

If the attacker does not find ke in the previous step (either because he did not
find Y0 or he found one which leads to a false alarm), he calculates Y1 = f(Y0)
and checks whether Y1 is in the last column. If Y1 = EPj , then he reconstructs
the chain from SPj up until St−1 (and storing St−2, which is the candidate for ke).
First he checks if St−1 = Y0, if the equality holds St−2 is his new candidate for
ke, and he must check this key with another plaintext-ciphertext pair to discard a
false positive. If St−1 6= Y0 then it is a false positive.

In the same manner the attacker calculates Y2 · · ·Yt−1 and verifies if they are
an end-point. If the value is found in the list of endpoints the candidate in the
corresponding column is checked.

Knowing function R and the step function f the online phase is represented in
the following pseudocode. If we have more than one table, the search is repeated
for each table.

Listing 5.2: Search in Hellman’s table
typede f blockN {0, 1}N //N−b i t b lock
typede f Ntuple (blockN , blockN) // tup l e o f two N−b i t b locks

func t i on HellmanSearch
inputs:

blockN ciphertext: captured ciphertext to invert
integer t: chain length
filename file: reference to file containing Hellman table
function R(), Ek(), f(): reference to functions R, Ek and f

output: list of blockN representing candidate keys or Null
% given a c i p h e r t e x t block , f i n d a l l candidate keys in the t a b l e
% another var i ant could check each key with another c i p h e r t e x t as
% i t i s found an return only the c o r r e c t key

var t a b l e [] as array o f Ntuple
var Y as blockN
var candidate , SP , EP as blockN
var l r e s as l i s t o f blockN
var j , k as i n t e g e r

46

5.1. Hellman’s Time Memory Tradeoff

SPi

SPk

f Si1
f

f Sk1
f

Sir

Skt

f

f
f f

SPh
f Sh1

f

Figure 5.2: Chain Merges

load (tab le , f i l e)
Y = R(c i p h e r t e x t)
f o r (j = 0 to t−1)

Search f o r (EP, SP) in t a b l e such that Y=EP
i f (SP i s not n u l l)

candidate = SP // second element in the tup l e
f o r (k = 0 to t − j − 1)

candidate = f (candidate)
i f (Ek(candidate) = c i p h e r t e x t)

a p p e n d t o l i s t (l r e s , candidate)
Y = f (Y)

return (l r e s)

In the previous description we ignored the case when more than one chain
ends in the same EPx. If this is the case, all chains that end in EPx must be
reconstructed until the correct key is found or no more chains remain.

One problem of Hellman’s TMTO tables is that if two chains share a common
element, then the chains will be identical from that element onwards (see Figure
5.2). This means that the effect of collisions is amplified, as a single colliding
element means the chains merge from that element onwards. The larger the tables,
the higher the probability that a new row added merges with an existing one. As
the table grows larger each new chain will be adding fewer new elements on average
while using the same amount of memory and computation effort. Worse, we don’t
have a simple way to check for mergers short of searching each chain’s endpoint in
the remaining chains, which is usually prohibitively expensive. Another problem
is chains that run on a loop, also decreasing coverage.

Due to the birthday paradox, if we have n existing chains of length t, we expect
that the probability of a new chain to merge with any of the previous ones to be
negligible when nt2 << N and large when nt2 >> N .

Under the assumption that f is a random function Hellman calculated a lower
bound to the success probability of a single table as equation (5.1). Using the
approximation (1−1/b)a ≈ e−a/b, which is appropriate when a = O(b), most terms
in the right side of equation (5.1) can be approximated by (1− it/N)j+1 ≈ eitj/N .
As explained by Hellman, when mt2 << N , each term in equation (5.1) is close
to one, so it reduces to Ptable ≥ mt/N . On the other hand, when mt2 >> N most
terms will be small.

47

Chapter 5. Time Memory Data Tradeoff Attacks

Ptable ≥
1

N

m∑
i=1

t−1∑
j=0

(
N − (i× t)

N

)j+1

(5.1)

Hellman evaluated equation (5.1) numerically when mt2 = N (with both m
and t large) finding that it is equal to 0.8mt/N . Thus using mt2 = N as criteria to
determine the size of the matrix means that the cryptanalytic effort is increased
by 0.25 (that is, 80% of the calculated values will be unique).

He proposes to use this criteria, and calls it the ”matrix stopping rule”, which
can be more generally expressed as mt2 = HstopN , with the recomendation that
Hstop should be a number close to 1. Larger values increment the coverage of a
single table at the expense of proportionally higher memory consumption, while
smaller values make more efficient memory use.

One recommendation given by Hellman is to take m = N1/3, t = N1/3. Using
those values the table has less than m× t = N2/3 unique elements, and this means
the expected probability to find a value in the table is less than N2/3/N = N−1/3

which is pretty limiting. So Hellman proposes to calculate r = O(N1/3) different
tables, each with a different reduction function R. There will be collisions between
some elements in different tables, but those collisions do not represent a merge in
the corresponding chains as a different reduction function will be applied in each
chain.

Hellman gives an approximate value for the success probability of r genera-
ted tables as Ptotal = 1 − Prob(failure in all tables) = 1 − (1 − Ptable)r with the
assumption of independence between tables (this assumption is criticized in [10],
however the same assumption is used by other authors).

The memory necessary for this attack must be enough to store the starting
and ending points of all the chains, which amount to m× r chains. Some optimi-
zations can be applied to decrease total memory use, like taking the initial points
as consecutive integers and only storing enough bits to describe the m starting
points.
The precomputation time is proportional to the total number of applications of
the step function, m × r × t, plus the time necessary to sort the tables which is
usually neglected.
For the online phase, in the worst case (if the solution is not found), the calcu-
lations needed to search a value in each table are t − 1 applications of f and one
application of R, so for r tables Tonline ≤ t × r. We may also have false alarms
which must be ruled out. Hellman claims that false alarms increase the expected
computation by at most 50%, however some of his assumptions are not resasonable
as shown by Avoine et al in [5]. The cost of resolving false alarms is further studied
for example in [40].
After each application of f , the result must be looked up in the table, so the max-
imum number of table lookups is t× r.

Further mathematical analysis of the parameters of this method can be found for
instance in [10] and [50]. However, Hellman’s tables have a serious disadvantage

48

5.2. Distinguished Points

when the tables do not fit in random access memory (that is, for most “interesting”
problems where the state space is big) and are thus stored in persistent media like
hard disks which are much slower to access than RAM, specially for random access.
Even though the number of table lookups is of the same order of the number of
function evaluations, in practice the online attack time is dominated by the time
to search the tables (this may improve in the near future as the price of solid state
drives continues to plunge).

5.2. Distinguished Points
To decrease the time required for disk lookups in Hellman’s attack, in 1982

Ron Rivest proposed the Distinguished Point (DP) method. This method was
initially analyzed in 1998 by Borst et al [16] who proposed a theoretical analysis
of the method, and by Standaert et al in 2002 [58] who improved the previous
analysis.
A distinguished point is a value that satisfies an efficiently verifiable criterion.
Usually simple functions like having the last k bits equal to zero are used.

In [58] a DP-Property is defined considering that if {0, 1}k is the key space
and d ∈ {1, 2, 3, · · · , k−1}, then a DP property of order d is a property that holds
for 2k−d different elements of {0, 1}k. Then a Distinguished point (DP) is a value
that satisfies the DP-Property. One often used DP-property is having d bits with
fixed values, that is, to check if a value is a Distinguished point the property to
be checked is that a given set of bits have a fixed value. The definition of DP-
Property can be extended to non integer values of d, and other simple functions
with greater granularity can be thought of, like checking if the value is below a
certain threshold.
In the Hellman’s method with distinguished points, we choose m starting points
STi like in the original Hellman’s method, and also a DP-Property of order d.
Instead of calculating chains of a fixed length t we stop calculating once a distin-
guished point is reached (or an upper limit tmax is reached, as protection against
loops in the chains). On average, the chains will be of length 2d, but they will be
of variable length.

Knowing function R and f We can represent the calculation of a single table
with the following pseudocode:

Listing 5.3: Creating Hellman’s with DP table
typede f blockN {0, 1}N % N−b i t b lock
typede f Ntuple (blockN , blockN) % tup l e o f two N−b i t b locks

Process CreateDPTable
inputs:

integer m: number of starting points
function DProperty(): distinguished property function (returns true if input is DP)
function R() and f(): reference to functions R and f

output: list of Ntuples representing hellman table with DP (possibly stored on disk)

49

Chapter 5. Time Memory Data Tradeoff Attacks

constant L as i n t e g e r % maximum length f o r loop prevent ion
var r e s u l t [m] as array o f Ntuple
var SP , S as blockN
var count as i n t e g e r

f o r (j = 1 to m)
SP = random ()
S = f (SP)
count=0
whi le (count < L and not DProperty (S))

S = f (s)
count = count + 1

i f (count < L) % found DP
r e s u l t [j] = tup l e (S , SP)

e l s e % DP not found
r e s u l t [j] = NULL

s o r t (r e s u l t)
s t o r e (r e s u l t)
re turn (r e s u l t)

The limit L is imposed so that we break out of a looping chain, and must be
chosen large enough so that there is a low probability that a non-looping chain
exceeds length L.

For the online phase, given the captured ciphertext C, we calculate Y0 = R(C),
and iterate Yi = f(Yi−1) until we reach a distinguished point (or the upper limit
L). If we reached a DP YDP , we search for YDP in the last column of the table. If
YDP is not found, then ke is not in the table and we can continue with the next
table. If we do find EPj = YDP , we reconstruct the chain starting from SPj until
we reach R(C) or a DP. If we reach a DP, it means it was a false alarm and we
should continue with the next table. If Sjk = R(C), then Sjk−1 is the candidate
key we are searching, and must be checked for false alarms just like in the original
Hellman TMTO.
Knowing function R and the step function f the online phase is represented in the
pseudocode in listing 5.4. If we have more than one table, the search is repeated
for each table.

Just as in the previous section, in this description we ignored the case when
more than one chain ends in the same EPx. If this is the case, we must reconstruct
all chains that end in EPx until the correct key is found or no more chains remain.

This method has some advantages compared to the original Hellman’s method:

In the online phase, we only need to do one search in each table (once we
reach a distinguished point), thus decreasing substantially the time due to
disk accesses

We can discard chains that loop. When the length of the chain reaches the
chosen value L we declare a loop and discard the chain

With a wise choice of DP-property, we can avoid storing the information
that makes the value distinguished, thus saving some memory. For instance,

50

5.2. Distinguished Points

Listing 5.4: Search in Hellman’s DP table
typede f blockN {0, 1}N //N−b i t b lock
typede f Ntuple (blockN , blockN) // tup l e o f two N−b i t b locks

func t i on DPSearch
inputs:

blockN ciphertext: captured ciphertext to invert
function DProperty(): distinguished property function (returns true if input is DP)
filename file: reference to file containing Hellman table
function R() and f(): reference to functions R and f

output: list of blockN representing candidate keys or Null

% given a c i p h e r t e x t block , f i n d s a l l candidate keys in the t ab l e
% another var i ant could check each key with another c i p h e r t e x t as
% i t i s found an return only the c o r r e c t key

constant L as i n t e g e r
var t a b l e [] as array o f Ntuple
var Y, SP , EP as blockN
var cand , fcand as blockN
var l r e s as l i s t o f blockN

load (tab le , f i l e)
Y = R(c i p h e r t e x t)
count = 0
whi le (count < L and not DProperty (Y))

count = count + 1
Y = f (Y)

i f (DProperty (Y))
Search f o r (EP, SP) in t a b l e such that Y = EP
i f (SP i s not n u l l)

cand = SP
fcand = f (cand)
whi l e (not DProperty (fcand) and fcand != R(c i p h e r t e x t))

cand = fcand
fcand = f (cand)

i f (fcand == R(c i p h e r t e x t))
a p p e n d t o l i s t (l r e s , cand)

re turn (l r e s)

51

Chapter 5. Time Memory Data Tradeoff Attacks

one common DP-property is to have the d least significant bits a fixed value.
In this case, those bits need not be stored.

We can easily detect chains that merge, as they end in the same distinguished
point, and only keep one of them (it is better to discard the shorter ones,
but this forces us to store the chain length temporarily for all chains in the
table). This means we can easily create tables without repeated elements.

Tables where merging chains are removed are called perfect tables, and were
suggested by Borst, Preneel and Vandewalle in 1998 [16]. This ensures there are no
repeated elements within a single table (of course we can have repeated elements
between different tables). They are important because we can better make use of
the available memory, storing only chains with no repeated elements thus getting
a better coverage for the same memory and online computation. The drawback is
a lengthier precomputation phase to replace the removed chains.

Some parameters for the DP tradeoff are more difficult to calculate than the
corresponding parameter for the original Hellman Tables, like the average chain
length, expected success probability, and online time. Standaert et al [58] calculate
several parameters of the tradeoff, and give important insight into the method. For
the exact parameters of the tradeoff, we refer to the work of Standaert et al [58].
Instead we summarize some interesting points from this paper:

Longer chains have higher collision probability, so discarding colliding chains
shortens the average chain length. Some previous studies ignored this fact.

Discarding chains that are very short (and replacing them) increases table
coverage at the expense of increased precomputation. They thus propose
storing only chains of length between tmin and tmax, and give the parameters
of the tradeoff as a function of tmin and tmax allowing the user an informed
choice of values.

If the aim is to maximize the efficiency in the attack phase, it is more efficient
to continue computation beyond the “matrix stopping rule” as proposed by
Hellman, mt2 = N , at the expense of a more expensive precomputation
phase.

Regarding the last item, Barkan in his PhD Thesis [7] studies what he calls
“stretched matrices”, where more chains than suggested by Hellman’s “matrix
stopping rule” are calculated and only the longer chains are stored, thus trading
online time for a longer preprocessing. He reaches a similar conclusion, namely
that you get a more efficient attack phase at the expense of a more expensive
precomputation phase.

The most used distinguishing property used is having d bits (the most significant
or least significant d bits) with a fixed value, which means the expected length of
each chain is a power of 2. However if we want a wider choice in the expected
length, we can use other distinguishing properties, like asking for the value to be
less than a constant dp with dp < N (the expected length of each chain in this

52

5.3. Rainbow Tables

case is N/dp)

5.3. Rainbow Tables
In 2003, Philippe Oechslin [54] proposed a new method, which he called Rain-

bow Tables. The idea of the method is to calculate tables similar to those of
Hellman’s TMTO, but to change the reduction function R in each step of chain
generation (thus getting a sequence of t reduction functions R1, R2, · · ·Rt and cor-
responding step functions f1, f2, · · · , ft). Each link in the chain uses a different
”color”, that is a different reduction function, hence the name ”rainbow” tables.

SP1 = S10
f1−→ S11

f2−→ · · · ft−→ S1t = EP1

SP2 = S20
f1−→ S21

f2−→ · · · ft−→ S2t = EP2
...

SPm = Sm0
f1−→ Sm1

f2−→ · · · ft−→ Smt = EPm

Figure 5.3: Rainbow table

Some important characteristics of rainbow tables are:

As the fi functions are used only once, there is no possibility to have a loop

A collision between two chains only results in a chain merge if the collision
happens in the same column in both chains. This greatly diminishes the
probability that two chains merge when compared to Hellman Tables

As a result of the previous point, the number m of chains in each table can
be much larger compared to the original Hellman TMTO. Oechslin shows it
can be increased to the value for which m× t ≈ N

Merges of rainbow chains can be easily detected and eliminated, as the
colliding chains will end in the same point. This can be used to generate
merge-free tables (in Rainbow Tables this does not imply that there will be
no repeated elements inside a single table).

Rainbow chains are of a fixed length, which according to [54] helps reducing
the number of false alarms and the extra work due to false alarms.

A rainbow table acts almost as if each column of the table was a separate
classic Hellman table. Collisions within a classic table or a column in a rainbow
table generate a merge, whereas collisions between different Hellman tables, as
well as between elements in different columns of the same rainbow table, do not
generate a merge. This analogy is used to show [54] that a rainbow table of mt
chains of length t has the same success rate as t classic tables of m chains of length
t.

53

Chapter 5. Time Memory Data Tradeoff Attacks

The proposed matrix stopping rule changes to take this into consideration,
becoming mt = HstopN [41].

The off-line phase is similar to Hellman’s TMTO, except that in each step of
the chain generation a different reduction function Ri (and thus step function fi)
is used.

Knowing functions Ri and fi = Ri(Ek(P)), we can represent the calculation
of a single table with the following pseudocode:

Listing 5.5: Rainbow table calculation

typede f blockN {0, 1}N % N−b i t b lock
typede f Ntuple (blockN , blockN) % tup l e o f two N−b i t b locks

Process CreateRainbowTable
inputs:

integer m: number of starting points
integer t: chain length (number of colors)
functions f1() · · · ft(): reference to functions fi

output: list of Ntuples representing Rainbow table (possibly stored on disk)

var r e s u l t [m] as array o f Ntuple
var SP , S as blockN
var count , j , k as i n t e g e r

f o r (j = 1 to m)
SP = random ()
S = SP
f o r (k = 1 to t)

S = fk (S)
r e s u l t [j] = tup l e (S , SP)

s o r t (r e s u l t)
s t o r e (r e s u l t)
re turn (r e s u l t)

For the online phase, for a given ciphertext C the procedure is as follows.
First Rt(C) is calculated and searched in the table. If no match is found, then
calculate and search ft(Rt−1(C)), ft(ft−1(Rt−2(C))) · · · and so on. At each step,
if a matching EPi is found for color r, reconstruct the chain from SPi until color
r, if it coincides with Rt(C) then the value at color r − 1 is our candidate for the
key, if not it was a false alarm.
The online phase is represented in the following pseudocode, where functions Ri
and fi = Ri(Ek(P)) are known. If we have more than one table, the search is
repeated for each table.

Listing 5.6: Search in Rainbow table
typede f blockN {0, 1}N //N−b i t b lock
typede f Ntuple (blockN , blockN) // tup l e o f two N−b i t b locks

func t i on RainbowSearch

54

5.3. Rainbow Tables

inputs:
blockN ciphertext: captured ciphertext to invert
integer t: length of chain (number of colors)
filename file: reference to file containing Rainbow table
functions R1() · · ·Rt() and f1() · · · ft(): reference to functions Ri and fi

output: list of blockN representing candidate keys or Null

% given a c i p h e r t e x t block , f i n d s a l l candidate keys in the ta b l e
% another var i ant could check each key with another c i p h e r t e x t as
% i t i s found an return as soon as the c o r r e c t key i s found

var t a b l e [] as array o f Ntuple
var m, j , k as i n t
var Y0 , Y, SP as blockN
var cand , fcand as blockN
var l r e s as l i s t o f blockN

load (tab le , f i l e)
m = t a b l e s i z e (t a b l e)
f o r (k = t downto 1)

Y0 = Rk (c i p h e r t e x t)
Y = Y0
f o r (j = k+1 to t)

Y=fj (Y)
Search f o r (EP, SP) in t a b l e such that Y = EP
i f (SP)

cand = SP
f o r (j = 1 to k−1)

cand = fj (cand)
i f (fk (cand) == Rk (c i p h e r t e x t))

a p p e n d t o l i s t (l r e s , cand)
re turn (l r e s)

The success probability (coverage) of a single table was calculated by Oechslin
[54] to be

Ptable = 1−
t∏
i=1

(
1− mi

N

)
where m1 = m, mi = N

(
1− e

−
mi−1
N

)
, i > 1 (5.2)

The success probability with r tables is just as in the case of other TMTOs:

Ptotal = 1− (1− Ptable)r (5.3)

The disk consumption of r rainbow tables is M = m× r × btuple, where btuple
is the space required to store a (SP,EP) entry.

In Oechslin’s paper the worst case online effort to search a single table igno-

ring the effort to verify false alarms is calculated to be
t(t− 1)

2
applications of

function f , which is half the effort in Hellman’s TMTO. Also, there are only t
table searches, similar to Hellman’s tables with distinguished points. However,

55

Chapter 5. Time Memory Data Tradeoff Attacks

Parameter Hellman DP Rainbow

Success probability 0.55 0.55
Memory in bytes 112× 1012 112× 1012

Precomputation 264 264

Worst case online complexity (iterations) 6.98× 1012 3.49× 1012

Table 5.1: Initial example of Hellman tables and Rainbow tables

not taking into consideration false alarms seems deceiving, as Oechslin notes in
his paper that in the examples provided the calculations due to false alarms make
about 75% of the cryptanalysis effort. In section 5.6 we resume the papers that
study the different TMTOs, which improve in the initial characterization done by
Oechslin and Hellman respectively.

Sample values
We can calculate some initial values for both Hellman’s and Rainbow tables

using the initial description on each paper. In our case the search space consists
of N = 264 elements.

Using Hellman’s matrix stopping rule, mt2 = N , and Hellman‘s recommenda-
tion, one possible choice of parameters is m = t = r = 221.33 = 2642246 (m chains
of t elements each per table, with r tables). For Rainbow tables we can use a single
table of m = 242.67 = 6, 98 × 1012 chains of length t = 221.33 = 2642246. Using
those values some parameters of the tradeoff are shown in table 5.1. The memory
necessary to store the tables was calculated using a naive implementation, using
16 bytes to store the pair starting point - ending point. We will later see storage
optimizations that improve this figure.

The worst case online complexity is calculated for the case in which the value
to be searched is not found, and ignoring the work due to false alarms, so it should
be taken as a very rough approximation.

5.4. Time Memory Data Tradeoffs
Time memory data tradeoffs (TMDTO) are a variant of TMTO in an scenario

where several data points are known, for example several captured ciphertexts,
and inverting any of them is enough to solve the problem. They appear naturally
in the application of stream ciphers, where the function to invert is the function
mapping the internal state of the cipher to some output bits, and any state found is
enough to decrypt the rest of the ciphertexts (or sometimes to find the key). They
can appear in other scenarios, like having the same text encrypted with different
keys, and only needing the inversion of one of them. The attacks on A5/1 belong
to the former scenario, so we will base our explanation in that application.

56

5.4. Time Memory Data Tradeoffs

Stream ciphers keep an internal state which completely defines the future out-
put of the cipher. The internal state is initialized using the key and initialization
vectors, and then modified at each step using some function, and generating some
output bits that depend on the internal state. For A5/1 the internal state is the
value of the three registers R1, R2 and R3, and at each step one output bit is
generated.

Let’s consider a stream cipher, with an internal state encoded in k = log2(N)
bits. Let’s call g the function that maps the internal state x ∈ X to the output
prefix y ∈ Y, where the output prefix consists of the first log2(N) bits of output
produced by the cipher starting from state x. We can use any of the previous
TMTO algorithms to invert g and find the internal state, and afterwards step the
cipher as many times as needed to reconstruct the cipherstream, or try to recover
the key from the internal state.

We can recover more than one output prefix both from different initializa-
tions of the cipher, and from each keystream whose length is w > log2(N).
In this later case, let’s call x1, x2, · · · , xw the bits of the keystream, and take
yi = (xixi+1 · · ·xk+i−1). In this way we can find w−k+1 different output prefixes
from each keystream which we can try to attack individually.
Having several data points to search in the tables means that given the same table
size, there is a higher success probability compared to an scenario in which a single
block is available, or conversely, that we can build smaller tables and still have a
high success probability.
The first tradeoff attacks for stream ciphers were proposed by Babbage [6] and Go-
lic [38], and consist basically in a table lookup. In 2000, Biryukov and Shamir [14]
combined this approach with Hellman’s method. The key idea is to use the birt-
hday paradox: if you have two independently chosen subsets of a key space of N
points, they are likely to intersect if the product of their sizes exceeds N . So if
we have D points to search in the tables, the size of the tables can be a factor of
D smaller than the tables needed to obtain the same success probability with a
single captured ciphertext.

In order to reduce the number of states covered by the matrices Biryukov
and Shamir propose to reduce the number of matrices from r to rD = r/D in
Hellman’s method, thus reducing the memory used by a factor of D. The attack
effort remains approximately the same, as each point requires less effort, but we
must search D points. It is more convenient to reduce the number of matrices than
to reduce the number of initial points m, as the on-line effort is independent of m
(if we ignore the search cost) but increases linearly with the number of matrices.

The parameters for Biryukov and Shamir’s tradeoff as reported by [14], ignoring
constant and logaritmic factors, are (for D2 ≤ T ≤ N):

precomputation P = N/D

TM2D2 = N2 (where T is the attack effort and M the memory required)

Of course we can apply the distinguished point idea to this tradeoff, thus dras-
tically reducing the number of disk accesses.
Biryukov et al [13] studied more possibilities for the tradeoff, and in particular

57

Chapter 5. Time Memory Data Tradeoff Attacks

showed that the tradeoff curve for the rainbow attack is TM2D = N2, which is
worse than the curve for Hellman’s attack which is TM2D2 = N2 if D > 1.

In [10] and [7], Barkan, Biham and Shamir formalize a general model of cryp-
tanalytic time/memory tradeoffs, which contains the previous TMTOs as special
cases. They provide some general bounds on the coverage and online time of
TMTO and TMDTO schemes, and in their own words they ”formally show that
no cryptanalytical time-memory tradeoffs which are asymptotically better than
existing ones can exist, up to a logarithmic factor” [10]. This is an important
theoretical result that imposes limits on the improvements that may be attained
searching for new methods. However this result does not help the practitioner
choose a tradeoff to mount an attack in a specific situation, as the constant and
logaritmic factors can make a huge difference in practical situations.

In the same paper [10], Barkan et al also show two new rainbow time memory
data tradeoffs, which they call “thin rainbow tables” and “fuzzy rainbow tables”.
The key idea is to reduce the number of colors in the standard rainbow tables, by
repeating colors. Those two methods are further presented in Elad Barkan’s PhD
thesis, [7], and will be presented in the following section.

5.4.1. Rainbow Time Memory Data tradeoffs
The basic rainbow table method can be used for multiple data attacks, but

its tradeoff curve TM2D = N2 is worse than the curve for Hellman’s attack
TM2D2 = N2, which means that as D grows Hellman’s method compares favora-
bly to Rainbow tables.

To mount an attack using Rainbow tables keeping the same probability as
an attack with a single data point we can use the same amount of memory M
but shorten each row to t/D elements. The new rainbow matrix covers Mt/D
points, which represent the same fraction N/D of the space as the TMDTO using
Hellman’s method. Following [7], the tradeoff curve is TM2D = N2, which is
worse than the curve for classical Hellman and DP tables. Thus Barkan proposes
two new methods, “thin rainbow tables” and “fuzzy rainbow tables”, which aim
to reduce the number of colors and thus the effort in the online phase, without
greatly incrementing the collision probability within a table.

Thin rainbow Time Memory Data tradeoff

In thin rainbow tables, to reduce the number of colors keeping the table size
constant, Barkan proposes to choose S colors, and repeat them t times:

f0f1f2 · · · fS−1f0f1f2 · · · fS−1 · · · f0f1f2 · · · fS−1 (5.4)

For this case the recommended matrix stopping rule is Mt2S = N , and to cover

58

5.5. Memory optimizations

N/D elements, they recommend t = D.

The resulting tradeoff is shown to be [7] TM2D2 = N2, and the number
of disk accesses is D

√
T . To reduce this last number, Barkan proposes to use

distinguished points to mark the points that can end a chain (that is, instead
of repeating the sequence exactly t times, you stop once fS−1 is a distinguished
point). However, this brings about the same problems as in the classic Hellman
tables with distinguished points, namely that once you eliminate colliding chains
the remaining chains are on average shorter than t, unless you drop the shorter
ones and replace them (which increases preprocessing time).

Fuzzy rainbow Time Memory Data tradeoff

Another method proposed by Barkan, which he refers to as “fuzzy rainbow
matrix”, also reduces the number of colors to s, but lumps all instances of the
same color together. To introduce fuzzy matrices, Barkan first defines a thick
rainbow matrix as an scheme in which colors are repeated t times:

f0f0f0 · · · f0︸ ︷︷ ︸
t times

f1f1f1 · · · f1︸ ︷︷ ︸
t times

· · · fS−1fS−1fS−1 · · · fS−1︸ ︷︷ ︸
t times

(5.5)

This scheme reduces the number of colors, but in the online phase we must not
only try all colors, but also all “phases” (that is, all t possible lengths of the current
segment). To avoid this, Barkan proposes instead to stop iterating each color when
arriving at a distinguished point. Each chain consists of s segments, each one
iterating with a different step function (color) and ending in a distinguished point.
In this way, when searching a value in the table only one search is needed for each
color, as all segments end in a DP. This scheme is called fuzzy rainbow tables.

f0f0f0 · · · f0︸ ︷︷ ︸
stop at DP

f1f1f1 · · · f1︸ ︷︷ ︸
stop at DP

· · · fS−1fS−1fS−1 · · · fS−1︸ ︷︷ ︸
stop at DP

(5.6)

The resulting tradeoff is shown to be [7] 2TM2D2 = N2 if T >> D2, which is
a factor of two better than thin rainbow tables. Disk accesses are proportional to√

2T (which is better than thin rainbow tables for D > 1)
A fuzzy rainbow matrix can be seen as the concatenation of s sub-matrices DMi,
where the starting points of DMi+1 are the ending points of DMi.
The fuzzy rainbow TMDTO was proposed as an improvement for the multi target
case, but can also be used in the single target environment, and as will be seen
later in many cases it is the best currently known tradeoff.

5.5. Memory optimizations
There are some proposed optimizations that can be applied to all the tradeoffs,

that try to use the available storage space in the most optimal way. The tradeoffs
we have shown up to now consider memory M as the storage necessary to store M

59

Chapter 5. Time Memory Data Tradeoff Attacks

chains, each one represented by one start point and its corresponding end point,
which in the most naive implementation take 2 × log2(N) bits to store. If we
store each entry using less bits we can have the same success probability using less
memory, or alternatively improve the success probability using the same memory.

The starting points need not be chosen at random [10], [5], so we can represent
them in dlog2(m)e bits where m is the number of starting points in the table.

For tables using distinguished points, the ending points can be stored without
the information that makes them distinguished. All tables are stored sorted on
the ending points, and optimizations are possible where only the least significant
bits are stored and a separate index table contains the most significant bits and
points to the beginning of the corresponding LSBs (see e.g. [5] and [47]).

A final optimization proposed is to truncate the ending points. As we expect
to store on the order of m end points, they can be truncated to slightly more than
log2(m) bits as proposed in [10]. [41] shows that the increase in on-line time is
negligible if log2(m) + ε bits are used, and give some criteria to choose ε, showing
through examples that ε between three and eight is adequate (in their examples).
Hong and Kim [48] [47] include endpoint truncation in their calculations, and we
will do the same in the following chapter.

Another optimization in the use of storage is called checkpoints, a technique
proposed by Avoine et al [4]. The objective of checkpoints is not to decrease
memory usage, but to diminish the effect of false alarms, storing one or a few bits
of information about the chains besides the starting and ending point. It consists
on defining a set of positions αi and a function G, and for each chain storing
the values of all G(Sαi). To be efficient, G should be easily computable and the
storage of its output should require few bits. In their examples G’s output is a
single bit. When searching for a value Y in the tables, we start by reconstructing
the chain from Y and searching for a coincidence in the ending point. If we find
such a coincidence, we compare the values of the checkpoing for all the values αi
the chain has gone through. If any of them differ this signals a false alarm, thus
avoiding the costly chain regeneration.

5.6. Comparison of the TMTO methods in the literature
Several metrics can be compared between different algorithms when varying

the tradeoff parameters, possibly leading to different conclusions.

The paper in which Oechslin [54] introduced Rainbow Tables included a rough
comparison with Hellman’s tables with distinguished points, showing that for simi-
lar storage usage and precomputation effort, there is a factor of two improvement
offered by Rainbow Tables without taking into consideration false alarms, and hin-
ting that there should be a greater improvement when considering false alarms.
He also shows experimental results that corroborate the improvement, obtaining
a 7x improvement on the calculations needed on the attack phase for high success
rates. However he only does a worst case analysis, and for Hellman’s matrices
the calculations are only bounds on the quantities studied. The fact that false

60

5.6. Comparison of the TMTO methods in the literature

alarms are ignored introduces a large error. He also ignores the possible storage
optimizations, which improve both methods in different proportions.

In [10] and [7], Barkan, Biham and Shamir formalize a general model of cryp-
tanalytic time/memory tradeoffs, which contains the previous TMTOs as special
cases. They provide some general bounds on the coverage and online time of
TMTO and TMDTO schemes, and they formally show that no cryptanalytical
time-memory tradeoffs which are asymptotically better than existing ones can
exist, up to a logarithmic factor. However, their analysis ignores the effect of
false alarms, and consider only the worst case analysis. They also claim that
the Rainbow tradeoff is worse than the original Hellman tradeoff with or without
distinguished points, a claim that is later shown to be false in most cases in [5]
and [42] once false alarms and all possible optimizations are taken into account.

In [40] Hong studies the relative cost of dealing with false alarms, and improves
the calculation of the parameters of the non-perfect Hellman tradeoff and perfect
and non-perfect Rainbow tradeoffs, and in [42] Hong and Moon compare the non-
perfect Hellman, Hellman with DP and Rainbow tradeoff using expected values
instead of worst case analysis, concluding that for most practical cases the Rainbow
tables present a better tradeoff.

Avoine el al [5] study the perfect variants of the tradeoffs, and conclude that
Rainbow tables are better in most cases compared to Hellman tables.

The most recent characterization of the different algorithms was carried out
by Kim and Hong [47] [48], where they analyse the expected performance of non-
perfect and perfect fuzzy rainbow tables, and compare them with each other and
with the perfect and non-perfect rainbow tradeoff, in the single data case (D = 1).
They take into account the effect of false alarms and storage optimization, and
perform an analysis based on the expectation of the involved quantities instead
of analysing the worst case bounds as several previous works had done. Their
conclusion is that among all the studied algorithms, for the single inversion target
case the perfect fuzzy rainbow table tradeoff is preferable under most conditions,
using the criteria laid out in [42]. We will use their results concentrating our efforts
on the perfect fuzzy rainbow table tradeoff, and extend their results to the multi
target case, later showing how to use their results in a realistic scenario to choose
the parameters of the tradeoff.

Another important result from the paper is showing how to calculate the pa-
rameters of the tradeoff and finding approximate formulas for the expected values
of several characteristics of the tradeoff which can be expressed using a few para-
meter combinations, thus decreasing the amount of variables and simplifying the
choice of parameters.

61

This page intentionally left blank

Chapter 6

Extending Kim and Hong calculations
to the multi target environment

The best known TMTO in many realistic scenarios for the single target case
was shown by Kim and Hong to be the perfect fuzzy rainbow tradeoff [48]. In
this chapter we want to study the perfect fuzzy rainbow tradeoff parameters for
the multi-target environment. In this case, we have the output of the function to
invert for D different inversion targets, and the attack is considered a success if
the correct preimage is found for any of them.

In this chapter we will addapt the calculations by Kim and Hong in the paper
“Analysis of the Perfect Table Fuzzy Rainbow Tradeoff” [48] to the multi-target
case. Most of the results in the paper translate unchanged or with minor modi-
fications to the multi-target case. We will not reproduce all demonstrations that
carry unchanged from the paper, instead showing the main points and referring to
the original paper for the details.

We will mostly follow Kim and Hong’s notation and use the same techniques
and assumptions. In their work Kim and Hong use an “overline” notation for the
parameters of the perfect tables, and no overline for the non-perfect tables (eg. F
for the perfect tables and F for the non-perfect tables). Even though we will not
deal with the non-perfect tables, we will keep their notation to avoid confusions
when referencing their work.

We will also abuse the notation by expressing the approximate formulas as
equalities just as in the referenced paper.

6.1. Summary of the notation
N: number of elements in the domain of the function to invert

m: number of chains in each table

m0: number of initial points chosen to calculate each table. Number of
chains before removing chains that merge.

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

s: number of colors (chain segments)

t: expected length of each segment on a chain

l: number of tables

D: number of images available to attempt inversion

rij : reduction function corresponding to color i in table j. When no confu-
sion might occur we will just denote ri the reduction function corresponding
to color i of the current table

fij : step function. Composition of functions rij and f , that is, fij(x) =
rij(f(x))

A non-perfect fuzzy rainbow matrix can be seen as the concatenation of s
sub-matrices DMi, where the starting points of DMi+1 are the ending points of
DMi.

We will denote |DMi| the number of distinct points contained in DMi.

6.2. Problem statement and assumptions
There is more than one possible problem to solve using a TMDTO. The pro-

blem we are trying to solve is, given a one-way function f and the images of D
inputs to the one-way function that are chosen uniformly at random from the in-
put space, find the original input for at least one of them using a perfect fuzzy
rainbow tradeoff.

The authors of the paper make a few important assumptions:

During the precomputation phase of each matrix, each submatrix DMi is
built, sorted and duplicates discarded before building DMi+1. In case of
duplicates the chain whose DMi segment is longer is retained.

The effort of sorting the ending points of the intermediate submatrices DMi,
which is of order m log(m), can be ignored.

For the on-line phase, when there are several tables, it is assumed that the
tables are processed in parallel, starting with color s for all chains and not
changing to the following color until the current color has been processed
for all tables.

The last assumption must be modified to account for the D inversion targets
we have to search in the matrices:

For the on-line phase, when there are several tables it is assumed that the
tables are processed in parallel, starting with color s for all chains and all D
targets and not changing to the following color until the current color has
been processed for all tables and all targets.

64

6.3. Detailed description of the algorithm

Just as any other algorithm that relies on DPs to mark the end of an iteration
we need a mechanism to terminate the iteration if the chain gets into a loop. We
will use a constant bound on chain segment length, and we will assume that the
constant is large enough that its effect on the algorithm performance is negligible,
that is, the probability that a chain that does not loop is discarded because it
reached the bound is negligible.

6.3. Detailed description of the algorithm
Table precomputation

In the off-line phase l tables must be calculated. We need a distinguished
property with probability 1/t, and s reduction functions for each table. For each
table m0 initial values are chosen. Using the m0 initial values and the r1 reduction
function a DP matrix DP1 is created, storing the starting point, ending point and
length. Once the m0 chains are calculated, they are sorted according to the ending
points and for those with duplicate endpoints only the largest is retained, obtai-
ning m1 chains. The procedure is the same for the remaining s − 1 colors taking
as initial points for table DMi the ending points from table DMi−1, that is, to
calculate table DMi take the ending points from DMi−1 and reduction function
ri and calculate the mi−1 chains using step function fi, storing the starting and
ending points and the segment length. After all chains are calculated sort DMi

on the ending points, discarding chains with duplicate endpoints by keeping the
chains with the longest i segment.

Knowing functions ri and fi = ri(Ek(P)), we can represent the calculation of
a single table with the following pseudocode:

Listing 6.1: perfect fuzzy rainbow table calculation

typede f blockN {0, 1}N % N−b i t b lock
typede f Ntuple (blockN , blockN)
typede f entry (blockN , blockN , i n t e g e r)

% two N−b i t b locks p lus an i n t e g e r f o r l ength

Process CreateFuzzyTable
inputs:

integer m0: number of starting points
function dp(): distinguishing property
functions f1() · · · fs(): reference to functions fi
integer s: number of colors

output: list of Ntuples representing perfect fuzzy rainbow table (possibly stored on disk)

constant L as i n t e g e r % l i m i t to avoid cha ins that loop
var j , k ,m as i n t e g e r
var r e s u l t [] as array o f entry
var in t e rmed ia t e [] as array o f entry

65

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

var SP , SP0 as array o f blockN
var S as blockN
var count as i n t e g e r

f o r (j = 1 to m0)
SP [j] = random ()
SP0 [j]=SP [j]

m=m0
f o r (k = 1 to s)

f o r (j = 1 to m)
S = SP [m]
S = fk (S)
count = 0
whi le (not dp(S) and count < L)

S = fk (S)
count = count + 1

i f (dp (S))
in t e rmed ia t e [j] = concatenate (S , SP0 [j] , count)

e l s e % found a loop
‘ ‘ d i s ca rd chain number j ’ ’

s o r t un ique (in t e rmed ia t e) % s o r t e n t r i e s d i s c a r d i n g c o l l i s i o n s
m = s i z e (in t e rmed ia t e)
f o r (j = 1 to m)

SP [j] = ex t ra c t endpo in t (in t e rmed ia t e [j])
SP0 [j] = e x t r a c t s t a r t p o i n t (in t e rmed ia t e [j])

r e s u l t = inte rmed ia te
s t o r e (r e s u l t)
re turn (r e s u l t)

Online computation

For the online phase, for a given set of d ciphertexts C1 · · ·Cd the procedure is
as follows. For each color starting with the last (color s) and for all tables, search
for candidates in the corresponding sub-matrix on all tables by constructing the
sub-chain that starts at Ci using the current color, and ends at a DP in color s.
Search the corresponding ending points on the corresponding table, and for each
ending point found reconstruct the chain starting from the corresponding starting
point and stopping at the current color, either because we found a candidate or
a distinguished point is reached. Finally test the candidates with another sample
and return if any one of them is the correct preimage, otherwise continue with the
following color.
The online phase is represented in the following pseudocode, where functions rij
and fij = rij(Ek(P)) are known.

Listing 6.2: Search in Rainbow table
typede f blockN {0, 1}N //N−b i t b lock
typede f Ntuple (blockN , blockN) // tup l e o f two N−b i t b locks

func t i on FuzzyRainbowSearch

66

6.3. Detailed description of the algorithm

inputs:
blockN ciphertext 1 ... ciphertext d: captured ciphertexts to invert
function dp(): distinguishing property
integer s: number of colors in each table
integer l: number of tables
filename file1 · · · filel : files containing Fuzzy Rainbow tables
functions f11() · · · fls(): reference to functions fij
functions r11() · · · rls(): reference to functions rij
blockN PT, CT: plaintext and corresponding ciphertext to verify key candidates

output: blockN representing found key or Null

% given d c i p h e r t e x t blocks , f i n d s f i r s t candidate in the t a b l e s

constant L as i n t e g e r
var table1[] · · · tablel[] as array o f Ntuple

var Y0 [d] , Y[d] , SP [d] as array o f blockN
var cand , fcand as blockN
var l r e s as l i s t o f blockN
var i , j , k , f , t , count as i n t e g e r

f o r (t= 1 to l)
load (tablet , f i l e t)

f o r (k = s downto 1) % c o l o r
f o r (t=1 to l) % ta b l e

f o r (j=1 to d)
Y0 = rtk (c i p h e r t e x t j)
Y = Y0
f o r (i= k to s)

count=0
Y = fti (Y)
whi l e (not dp(Y) and count < L)

Y = fti (Y)
i f (count = L)

‘ ‘ f i n i s h f o r loop on i and change to next j ’ ’
Search f o r (EP, SP) in tablet such that Y = EP
i f (SP)

cand = SP
f o r (i = 1 to k−1)

cand = fti (cand)
whi l e (not dp(cand))

cand = fti (cand)
cand = ftk (cand)
whi l e (not dp(cand) and Ek (cand) != c i p h e r t e x t j)

cand = ftk (cand)
i f (Ek (cand) == c i p h e r t e x t j)

” Ver i fy candidate us ing f o r example PT and CT”
i f (” v e r i f i c a t i o n succeeds ”)

re turn (cand)
re turn (” not found ”)

67

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

6.4. Preliminaries
As stated in section 6.2, after each sub-matrix DMi is created it is sorted and

duplicates are removed, keeping only the chain with the longest i segment from
the ones that collide. We will call the reduced intermediate matrices D̃Mi, and we
will denote DMi the collection of chains from DMi that participate in the final
table after eliminating duplicates. The expected number of distinct ending points
for sub matrix DMi will be noted mi. m0 is the number of starting points used to
calculate the tables, and m = ms is the expected number of distinct ending points
of the fuzzy matrix.

The choice of method for handling merges in the DMi matrix by choosing the
chain that has the shortest segment for color i is based on the desire to use existing
results on perfect DP Hellman TMTOs. Kim and Hong argue that the choice of
rule is not very important except for small values of s as the concatenation of
multiple DP chains creates an averaging effect on the length value and the length
distribution quickly approaches a normal distribution. They do not quantify the
effect of this choice on the average chain length nor on other parameters. We
will not discuss the effect of this choice in this chapter, but we will present some
experimental results in chapter 7 that hint to a very low incidence of the choice of
rule in the performance of the algorithm.

Kim and Hong frequently use two approximation techniques. The first is the
approximation (1 − (1/b))a ≈ e−a/b, which as explained in [41] is adequate when
a = O(b). The second technique is the approximation of a sum over a large index
set into a definite integral.

6.5. Analysis of the perfect fuzzy rainbow table tradeoff
In this section we will calculate the main parameters for the tradeoff. We will

find approximate expressions for the expected value of the precomputation effort,
the success probability and the on-line effort.

Some values like the precomputation effort do not depend on the number of
samples to invert D, so the results from [48] apply unchanged. In those cases
we just replicate the result with more terse explanations. The rest of the values
depend on the value of D, and the results from [48] are modified accordingly.

In [48] for the matrix stopping rule it is assumed that the parameters m, t
and s are chosen such that mt2s = FmscN , with a matrix stopping constant Fmsc.
Later on we will give explicit dependencies with this constant, enabling the calcula-
tion of the value of Fmsc optimal for each situation. It is also shown that Fmsc < 2.

In chapter 7 we will show the result of some experiments to gain insight into
the use of the equations in the following sections, and the errors introduced by
some of the approximations.

68

6.5. Analysis of the perfect fuzzy rainbow table tradeoff

6.5.1. Success probability and precomputation effort
The precomputation effort for a table does not depend on the number of in-

version targets D, so the calculation in [48] applies without changes to the D > 1
case. For the calculation of the precomputation effort first the number of chains
that remain after each submatrix is built and duplicates removed is calculated.
Then the expected precomputation effort to build each submatrix is calculated as
the product of the expected number of initial points mi−1 (which is the number of
chains resulting in the previous submatrix) times the expected chain length.

For the success probability we use the calculation of the coverage rate of each
submatrix, and calculate the success probability of finding any solution under the
assumption that all submatrices are independent of each other.

Number of Color Boundary Points
First we want to calculate how many chains are left after each sub-matrix is

calculated. This is equivalent to the number of distinct points mi. Knowing the
number of boundary points will later help us calculate other magnitudes like the
success probability and the precomputation effort.

In [47], Kim and Hong calculate the number of unique boundary points at
each sub-matrix for the non-perfect fuzzy rainbow tradeoff, reaching the iterative
formula in equation (6.1), which can be approximated be equation (6.2) when
s is large. Here Fmsc = m0t

2s/N is the matrix stopping constant for the non-
perfect fuzzy rainbow tradeoff. The approximation is tested experimentally in the
appendix of [48] where the worst error among their experiments was 5% between
the approximate formula and their experimental results.

mi

m0
=
mi−1
m0

2

1 +
√

1 + 2(Fmsc/s)(mi−1/m0)
where Fmsc = (m0t

2s)/N (6.1)

mi =
2m0

2 + Fmsc(i/s))
(6.2)

We can rewrite equation (6.2) using the parameters for the perfect fuzzy rain-
bow tradeoff, arriving at the following lemma

Lemma 6.1. To create a perfect fuzzy rainbow matrix containing m nonmerging
chains, the expected number of chains one has to generate is approximately

m0 = (2/(2− Fmsc))m (6.3)

The number of boundary points after calculating sub-matrix i is expected to be

mi =
2m

(2− Fmsc) + Fmsc(i/s)
(6.4)

for i = 0, 1, · · · s

69

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

Proof. From equation (6.2) for i = s we find that ms = (2/(2 + Fmsc))m0. We
also know that Fmsc = mst

2s/N , which means ms = FmscN/(t
2s). Substituting

ms in the first equation we get FmscN/(t
2s) = (2/(2 +Fmsc))m0, which translates

to Fmsc = (2/(2 + Fmsc))m0t
2s/N = 2Fmsc/(2 + Fmsc).

Solving the equation for Fmsc we get Fmsc = 2Fmsc/(2− Fmsc) which is equi-
valent to the first statement.

Substituting into equation (6.2) we obtain

mi =
2(2/(2− Fmsc))m

2 + ((2Fmsc/(2− Fmsc))(i/s))
=

2(2)m

2 ∗ (2− Fmsc) + 2Fmsc(i/s)
(6.5)

which is the second claim.

The lemma uses the approximate equation (6.2) to derive the closed formulas
(6.3) and (6.4). A better approximation for the number of boundary points is given
in [47] as equation (6.6). However it is more difficult to work with this iterative
formula.

mi+1 = mi
2

1 +
√

1 + 2mit2

N

(6.6)

Looking at equation (6.3) it seems clear Fmsc cannot be too close to two. We
will later see that Fmsc < 2 is always satisfied and that if Fmsc approaches 2 the
precomputation effort grows unrealistically. In Kim and Hong’s experiments for a
wide variety of success probabilities and parameters the maximum value of Fmsc
was approximately 1.8.

Because it frequently appears in the remainder of their paper, Kim and Hong
define the following notation:

f i =
mit

2

N
=

2Fmsc

(2− Fmsc) + Fmsc(i/s)

1

s
(6.7)

The second equality is in reality an approximation, but we will keep Kim and
Hong’s notation and treat it as an equality assuming that s is sufficiently large.
As we will see in chapter 7 the results obtained using this approximation are close
to the experimental values for s as small as 4 or 5. The f i notation will be used
also for i = s+ 1 and i = s+ 2, in this case considering only the right hand term
as definition of f i.

Since Fmsc is bounded away from 2, f i is O(1/s).

Precomputation effort

We will ignore the effort to sort the intermediate precomputation matrices
as it is of order m logm, smaller than the effort of generating the submatrix.
To calculate the precomputation effort it is enough to observe that each sub-
matrix DMi is a classic Hellman DP matrix, with mi−1 expected initial points and

70

6.5. Analysis of the perfect fuzzy rainbow table tradeoff

expected chain length t before merge removal. Adding the expected effort to build
the st matrices we get the precomputation effort. We will define a precomputation
coefficient F pc that resumes the dependency of the precomputation effort on the
tradeoff input parameters. The following proposition carries unchanged from Kim
and Hong’s paper.

Proposition 6.2. The precomputation phase of the perfect table fuzzy rainbow
tradeoff is expected to require F pcN iterations of the one-way function where the
precomputation coefficient F pc is given by equation (6.8)

F pc =
l

t

s−1∑
i=0

2Fmsc

(2− Fmsc) + Fmsc(i/s)

1

s
(6.8)

Proof. The computation of each sub-matrix D̃M i from mi−1 starting points is
expected to requiremi−1t operations. Taking into account the l tables the expected
cost of precomputation is:

lt(m0 +m1 + · · ·ms−1) (6.9)

Applying equation (6.4) we get

tl
s−1∑
i=0

2m

(2− Fmsc) + Fmsc(i/s)
(6.10)

Using that mt2s = FmscN we get the stated equation.

Success probability
We will calculate the success probability given a set of perfect fuzzy rainbow

tradeoff tables and the image of D values to invert. The proof will be similar to
that in [48] but taking into consideration the D values to invert.

As we defined before, we call DMi the collection of chains from DMi that
participate in the final table after eliminating colliding chains at colors i+ 1 · · · s.
This set of chains is also a subset of D̃Mi.

We will calculate the success probability as the fraction of the search space
covered by the tables. As a first step we are interested in calculating the number
of distinct points in each submatrix DMi.

First Kim and Hong define

F cr,i =
|DM i|
mt

(6.11)

Then the coverage rate of a perfect fuzzy rainbow matrix is defined as

F cr =
1

mts

s∑
i=1

|DM i| =
1

s

s∑
i=1

F cr,i (6.12)

71

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

Observe that F cr,i is the (expected) number of distinct points in DM i divided
by the number of points in a square matrix of size m× t. F cr,i · t gives the average
length of the chains in color i after merge removal. We expect F cr,i and F cr to be
of O(1) order.

Lemma 6.3. The coverage rate of the DP submatrix DM i is given by

F cr,i =
2N

mit2
ln

(
1 +

mit
2

2N

)
=

2

f i
ln

(
1 +

f i
2

)
(6.13)

Proof. We refer the reader to [48] for the demonstration of this lemma, which relies
heavily in observing that DMi is a normal perfect DP Hellman matrix.

The coverage rate F cr,i is always less than one, and examining the analysis of
the perfect DP Hellman table in [49] it seems clear that the cause is the fact that
in a DP matrix longer chains have higher collision probability, so in average the
remaining chains are shorter.

Proposition 6.4. Consider D different inputs to the one-way function chosen
uniformly at random. Given the D images of these values under the one-way
function as the inversion targets, the expected success probability of the on-line
phase is given by

F
D
ps = 1−

s∏
i=1

(
1− FmscF cr,i

ts

)lD
(6.14)

F
D
ps ≈ 1− exp

(
−FmscF cr

l

t
D

)
(6.15)

Proof. The success probability one can expect when searching a single target on
a submatrix DM i is |DM i|/N . As the submatrices were generated using different
step functions we can consider them independent. The probability of not finding
any of the D targets in the l sub-matrices of color i is(

1− |DM i|
N

)lD
(6.16)

Multiplying for all colors
s∏
i=1

(
1− |DM i|

N

)lD
(6.17)

As DM i = mtF cr,i and N = mt2s/Fmsc, we can write

|DM i|
N

=
FmscF cr,i

ts
(6.18)

Substituting (6.18) into (6.17) we get the probability that no sample is found
in any submatrix. Substracting from 1 we get the result in equation (6.14).

72

6.5. Analysis of the perfect fuzzy rainbow table tradeoff

For the approximation we use that (1− 1/b)a ≈ e−a/b when a = O(b) to get

F
D
ps ≈ 1− exp

(
lD
Fmsc
ts

s∑
i=1

F cr,i

)
= 1− exp

(
− lD
t
FmscF cr

)
(6.19)

which is equation (6.15)

Given any set of parameters, the success probability can be computed either
from equation (6.14) or equation (6.15). (6.14) is a better approximation, however
(6.15) may be easier to use as it does not depend on s, and the right side quantities

can be expresed as a function of F
D
ps.

We observe that the only difference with the D = 1 case is the D term in the
exponent.

Online complexity
The calculation of the average online execution complexity consists in identi-

fying the different steps in the online calculation, determining how likely each step
of the computation is to be reached, and the cost of each step. It is important to
notice the order in which the operations are carried out, in particular the fact that
we process a certain color for all tables and all inversion targets before changing
to the next color.

Observing the description of the procedure in section 6.3, starting from the
last color the main steps for each color, each sample and each table are:

starting from the image to invert, construct a partial chain starting from
the current color until the ending point

search the ending point in the table

if the ending point is found, take the corresponding starting point and re-
construct the chain until the current color

In the last step we will either find the image we were looking for, or a distinguished
point which means this was a false alarm.

To calculate the online complexity, we first determine how likely it is to reach
color i, which is equivalent to saying that no solution was found in colors i+1, · · · , s
for any table. Then the expected cost of generating a chain from color i to the
end must be calculated, and then added for all D inversion targets and all tables.

Next the probability that a subchain that starts at color i merges with the ma-
trix is found. Merging with the matrix means that the endpoint of the subchain
is found in the corresponding table and thus the complete chain must be recon-
structed. Most times the found endpoint is a false alarm, so the cost of resolving
false alarms must be calculated.

73

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

Lemma 6.5. The probability that the online chain that starts from color i must
be searched, that is the probability that the submatrix DM i is searched is

s∏
k=i+1

(
1− |DMk|

N

)lD
≈ exp

(
−Fmsc

lD

t

1

s

s∑
k=i+1

F cr,k

)
≈ (1−FDps)(

∑s
k=i+1 F cr,k)/(sF cr)

(6.20)

Proof. The proof is similar to the corresponding demonstration for the D = 1
case in [48], but taking into consideration the D inversion targets. The ith DP
submatrix DM i will be searched for the correct answer only if no target can be
found in DM i+1 · · ·DM s of any matrix. The probability that a target is found
in submatrix k of any matrix is |DMk|/N , hence the probability that no target is
found before searching submatrix i is

s∏
k=i+1

(
1− |DMk|

N

)lD
(6.21)

Substituting (6.18) into (6.21) we get:

s∏
k=i+1

(
1−

FmscF cr,k
ts

)lD
≈

s∏
k=i+1

e
−lD

FmscF cr,k
ts = e−lD

Fmsc
ts

∑s
k=i+1 F cr,k (6.22)

The second approximation is a direct application of equation (6.15), see equa-
tion (6.23)

1− FDps ≈ exp
(
−FmscF cr

l

t
D

)
→

(1− FDps)(
∑s

k=i+1 F cr,k)/(sF cr) ≈ exp

(
−FmscF cr

l

t
D(

s∑
k=i+1

F cr,k)/(sF cr)

)
(6.23)

Proposition 6.6. The cost of generating the online chains during the on-line
phase of the perfect fuzzy rainbow tradeoff attack is expected to be

TDgen = tlD

s∑
i=1

(s− i+ 1)(1− FDps)(
∑s

k=i+1 F cr,k/sF cr) (6.24)

Proof. The cost of generating each online chain that starts from the ith color is
expected to be t(s-i+1), and there are l tables and D targets to consider. Thus the
expected iterations of the one-way function for the generation of the online chains
starting from color i is t(s−i+1)lD. If we multiply this value by the probability of
not finding the solution before color i as given by lemma 6.5 we obtain the stated
result.

74

6.5. Analysis of the perfect fuzzy rainbow table tradeoff

The last cost to be considered is the cost of resolving false alarms. A false
alarm happens when the subchain that starts from the inversion target at color i
merges with an existing chain in the table, which means that after reconstructing
the chain the corresponding ending point is found on the table. We need the
expected cost of solving an alarm originated when evaluating color i, which we
can then multiply by the probability of reaching color i, the number of tables
and the number of inversion targets to find the expected cost of solving the false
alarms.

The cost of solving a possible false alarm at color i was calculated by Kim and
Hong [48], their results are summarized in the following lemma.

Lemma 6.7. The average cost of dealing with the possible false alarm in color i
for a single inversion target is

1

s

f i+2

f i
fs +

(∑i
k=1 F cr,k
s

)(
1−

fs+1

f i

fs+2

f i+1

)
(6.25)

Proof. We refer the interested reader to lemmas 7, 8 and 9 in [48]

Lemma 6.8. The cost of sorting out false alarms during the on-line phase of the
perfect fuzzy rainbow tradeoff attack is expected to be

TDfp = tlDs
s∑
i=1

(1− FDps)(
∑s

k=i+1 F cr,k)/sF cr

×

{
1

s

f i+2

f i
f s +

(∑i
k=1 F cr,k
s

)(
1−

fs+1

f i

fs+2

f i+1

)}
(6.26)

Proof. The stated result follows directly from equation (6.25) an Lemma 6.5

Proposition 6.9. The online cost of the perfect fuzzy rainbow tradeoff can be
approximated by the following equation

T = tlDs
s∑
i=1

(1− FDps)(
∑s

k=i+1 F cr,k)/sF cr

×

{
(s− i+ 1)

s
+

1

s

f i+2

f i
f s +

(∑i
k=1 F cr,k
s

)(
1−

fs+1

f i

fs+2

f i+1

)}
(6.27)

Proof. The online cost is the sum of the cost of generating the on-line chains
(proposition 6.6) and the cost of sorting out the false alarms (lemma 6.8). The
stated result in (6.27) is just the addition of both results.

75

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

We can now proceed to show the tradeoff curve for the perfect table fuzzy
rainbow tradeoff.

Theorem 6.10. The time memory tradeoff curve for the perfect table fuzzy rain-

bow tradeoff with D inversion targets is TM2D2 = F
D
tcN

2 where the tradeoff coef-

ficient F
D
tc is

F
D
tc = F

2
msc

(
lD

t

)3 1

s

s∑
i=1

(1− FDps)(
∑s

k=i+1 F cr,k)/sF cr

×

{
(s− i+ 1)

s
+

1

s

f i+2

f i
fs +

(∑i
k=1 F cr,k
s

)(
1−

fs+1

f i

fs+2

f i+1

)}
(6.28)

Proof. Remembering that M = ml and mt2s = FmscN , the stated equality can
be easily verified substituting into equation (6.27)

One interesting observation is that the value of F
D
tc does not depend on the

individual values of l, D and 1/t, only on the value of lD/t. If we keep this value
constant we can vary the parameters getting the same tradeoff.

As a corollary to lemma 6.5, the number of table lookups is calculated as

lD
s∑
i=1

(1− FDps)(
∑s

k=i+1 F cr,k/sF cr) (6.29)

6.5.2. Effect of memory optimizations
The value M appearing on the tradeoff refers to the number of entries necessary

on the table, and not the amount of memory necessary to store the M values, which
may vary depending on the memory optimizations in use.

Ending point truncation

The only memory optimization that modifies the online cost is the ending-
point truncation, as it increases the false alarm rate. Kim and Hong provide an
approximate relation between the degree of truncation and the increase in online
computation due to the increased false alarms, accurate enough to determine the
number of truncated bits which cause a negligible increase in online computation.
However their work ignores a term that introduces a significant error in the calcu-
lation. The following proposition improves Kim and Hong’s result and extends it
to the D > 1 case.

Proposition 6.11. If the probability of two truncated randomly chosen DPs to be
identical is 1/r, then the expected extra invocations of the one-way function when
employing ending-point truncation is

76

6.5. Analysis of the perfect fuzzy rainbow table tradeoff

tlD
m

r

s∑
i=1

(
1− FDps

)(∑s
k=i+1 F cr,k)/(sF cr)

i∑
k=1

F cr,k (6.30)

Proof. Lemma 6.5 gives us the probability for the online chains that start from
color i to be generated as equation (6.20). The probability of each generated chain
to cause a truncation-related alarm with any one of the truncated ending points
is 1/r, and there are m ending points, each of which could cause a collision.

To resolve a false alarm, we must reconstruct the chain starting from the
corresponding starting point in color 1 and ending in a distinguished point in color
i, and for each color the expected effort is F cr,xt. Each alarm will thus require
t(F cr,1 · · ·F cr,i) iterations of the one-way function to resolve. Equation (6.30) is a
simple combination of the previous facts taking into account the l precomputation
matrices and D inversion targets.

Kim and Hong make the argument that the additional cost of resolving alarms
induced by the ending point truncation can be suppressed to a negligible level by
having the truncation retain “slightly more” than logm bits of information for
each ending point. They do not give more detail, as they group all optimizations
on a single equation, as we will do shortly.

Other memory optimizations

Kim and Hong assume that the memory optimizations described in section
5.5 are used, except for checkpoints. The starting points can be represented with
dlog2(m0)e bits using consecutive starting points.

In the ending points, the bits that make them distinguished can be suppressed.
Adding end-point truncation each ending point can be represented using logm+ δ
bits. Finally, using the fact that tables are sorted on the end points we can use
an index table that contains the most significant bits of each ending-point and a
pointer to the corresponding entry that only holds the least significant bits of the
ending points and the dlog2(m0)e bits of the starting point. The size of the index
table depends on the implementation of the table and on how many bits are left
to represent the ending point, but it will be usually much smaller than the fuzzy
rainbow table, so we can just assume its effect is included in the value of ε in the
following.

Taking into account all previous optimizations, and using the arguments ap-
pearing in [41] and [49], Kim and Hong conclude that each entry of each table
can be recorded in logm0 + ε bits, where ε is an “small integer”. They propose
using ε between 5 and 8 as a reasonable choice. In section 7.2.4 we present some
experimental results on the effect of ending point truncation which help make an
informed decision on the value of ε to use.

77

Chapter 6. Extending Kim and Hong calculations to the multi target
environment

6.5.3. Tradeoff Coefficient Adjustment
The value M appearing on the tradeoff refers to the number of entries necessary

on the table, and not the memory size needed to store the tables, which may vary
depending on the memory optimizations in use and the parameters chosen for the
tradeoff. To take into consideration the number of bits per table entry Kim and
Hong propose to define an adjusted tradeoff coefficient that takes into account the
number of bits needed to store each table entry. The proposed adjustment is shown
in equation (6.31). Using the results from the previous section, and equation (6.3),
the adjusted tradeoff coefficient is presented in equation (6.32)

F
D
atc =

(
3

2logN

)2

(number of bits per table entry)2F
D
tc (6.31)

F
D
atc =

(
3

2logN

)2

(log(m0) + ε)2 F
D
tc =(

3

2logN

)2(
log

2

2− Fmsc
+ log(m) + ε

)2

F
D
tc (6.32)

Where log(2/(2 − Fmsc)) + log(m) is the number of bits needed to store the
starting points, ε is the number of bits kept from the ending points in the ending
point optimization (including truncation), and (3/(2 logN))2 is simply a scaling
factor. ε takes into consideration both the effect of ending point truncation, and
the number of LSB bits left when using index tables. ε is chosen such that the
truncation does not increase significantly the on-line computation; in the paper
it is shown that 5 to 8 bits is enough to make the extra calculations due to end-
point truncation much smaller than the on-line calculations. This adjustment was
proposed by Kim and Hong for the D = 1 case, but we can use exactly the same
adjustment as none of the memory optimizations depend on the number of inver-
sion targets.

The adjusted tradeoff coefficient is useful both from a theoretical standpoint,
to compare the algorithm with other algorithms, and from a practical standpoint

as F
D
atc only depends on lD/t and not on the individual values of l, D and t so it

allows the practitioner an easier choice of parameters.

78

Chapter 7

Experimental validation of the results
from the previous chapter

In this chapter we will perform an empirical validation of the results from
chapter 6 on a problem with a small space size of N = 240, and show a possible
way to use the previous results to choose the parameters for a perfect fuzzy rainbow
table TMDTO.

In chapter 8 we will use these results to calculate the expected effort to mount
an TMDTO ciphertext only attack against A5/1 using the function to invert hc
calculated in chapter 4. For this chapter we build a reduced problem with space
size N = 240 by modifying function hc from chapter 4 to work on 40 bit values.
The (arbitrary) choice of N = 240 is simply based on the available computational
capacity. So the stated problem is to invert the modified h function using a perfect
fuzzy rainbow table tradeoff. We will use this problem to check the validity of the
previous results through experiments.
The distinguishing property we will use is asking the value to be less than a con-
stant te, that is x will be a DP if x < te. This means the expected length of each
sub-chain is N/te.
Throughout this chapter we will use software written to calculate the tables ne-
cessary for the TMDTO and then use those tables to perform the inversion both
on standard Intel CPUs and on Nvidia CUDA GPUs available on the cluster in-
frastructure of our college. For details see appendix F.

7.1. Step function
We choose to work with a modification of the one-way function hc presented in

section 4.1.1, which we will call h throughout this chapter. The modification from
hc to h consists in setting the most significant 24 bits to a fixed value (which we
can thus remove), and reducing the domain of the function to those values which
have the same fixed bits in the most significant bits.

We also need to choose reduction functions that do not change the 24 most sig-
nificant bits. We will use as reduction functions the exclusive OR with a constant

Chapter 7. Experimental validation of the results from the previous chapter

2

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

2,9

3

3 3,5 4 4,5 5 5,5 6

Fpc

Fatc

fatc 51

fatc 25

fatc 100

Figure 7.1: Fatc vs fpc for N = 239, F ps = 0.9

having the 24 most significant bits as 0 (different for each table and each color)

7.2. Validation for D = 1

For D = 1 our results in chapter 6 coincide with those in [48], so we will drop
the D subscript in all F parameters.

7.2.1. Reproducing Kim and Hong’s results

We will be using Kim and Hong’s results both to calculate the precomputation
and online effort given the parameters of the tradeoff, and to select the tradeoff
parameters given some objective. To make sure we understood their formulas and
implemented them correctly, we reproduced some of the calculations from [48]. In
this section we reproduce just a sample of the results.

In figure 7.1 we can see how F atc changes as a function of F pc for different
s values. It can be seen that the calculated plot agrees with figure 1 in [48] for
success probability F ps = 0.9 and logm∗ + ε = 21, taking N = 239.

We also recalculated Table 1 in the paper, obtaining consistent values (see
appendix E)

80

7.2. Validation for D = 1

0,99

1

1,01

1,02

1,03

1,04

1,05

1,06

0 5 10 15 20 25 30 35 40

sub matrix number

experimental/theory

Figure 7.2: Number of colour boundary points - theory vs experimental - parameter set 1

7.2.2. Sample application to our reduced h function
First checks

As a first test of the applicability of the fuzzy rainbow table TMTO to function
h as defined in section 7.1, we compare the expected number of boundary points
after each color with the experimental results. The number of unique ending
points for each color can be calculated iteratively from equation (6.1), or the
approximation in equation (6.2). We use the same parameters as the appendix
to [48] so that we can make a comparison with their results. m0 is calculated from
m using equation (6.2), and several tables are calculated storing the number of
unique boundary points at each color. We average the results over 100 tables. The
parameters are shown in the following table:

Property parameter set 1 parameter set 2
m (S) 3161 4916
N 240 240

Expected section length (t) 212 211

Calculated Fmsc 1.6882 1.5002
Calculated m0 20273 19673

Figures 7.2 and 7.3 show the quotient of the experimental average number of
boundary points after each color and the calculated value according to (6.2). The
maximum difference is less than 6% for parameter set 1, while it is less than 1.5%
for parameter set 2. The results match those from the paper.

If instead of equation (6.2) we use equation (6.1) to estimate the parameters
the result improves noticeably, for both parameter sets the difference between the
experimental average and the expected value according to (6.1) is less than 0.1%.
This implies that we may work with the approximate equation if an error of a few
percent is acceptable, but should use equation (6.1) if we want the extra precision.

In figure 7.4 we see the distribution of table sizes for parameter set 1 at the
last colour boundary in the experimental results. The average value is 3301, and
the standard deviation is 30.4.

81

Chapter 7. Experimental validation of the results from the previous chapter

0,998

1

1,002

1,004

1,006

1,008

1,01

1,012

1,014

1,016

0 10 20 30 40 50 60 70 80 90

sub matrix number

experimental/theory

Figure 7.3: Number of colour boundary points - theory vs experimental - parameter set 2

0

2

4

6

8

10

12

14

16

18

n
º

o
f

sa
m

p
le

s

Size

size - distribution for the last color

Figure 7.4: distribution of table size - parameter set 1

Applying the fuzzy rainbow table TMTO
As a first test we picked some parameter values, shown in the following table,

calculated the TMTO tables for function h, and then used the tables to implement
the TMTO attack for several targets to validate the predicted values against the
experimental values.

For this test we use the table 1 on the appendix to [48] which we recalculated
in appendix E as part of our validations. This table provides us the values of s and
Fmsc that minimise F atc,s given the desired success probability F ps and the values
of m∗ = m/s and ε. For N = 240, a reasonable choice is m/s = 213, which using
ε = 8 leads to logm/s + ε = 21. For this value, and choosing the target success
probability F ps = 0.9, we see that the values that minimize F atc are s = 50 and
Fmsc = 1.7167. Using the previous values we get:

m = 409600

t = 303.9

82

7.2. Validation for D = 1

Property set 1 set 2
Nº of colors (S) 50 50
Nº of initial values per table (m0) 2891634 2891634
Expected section length (t) 303.9 231.7
Nº of tables (l) 415 250

Table 7.1: Two parameter sets for TMTO validation

l = 415.2

We cannot calculate a non integer number of tables, so we use l = 415.
We added another value set with different values for t and l, t = 231.7 and

l = 250, keeping the same m0 value.

For each parameter set we calculated a set of tables and used them to find
the inverse of h for 10000 targets. The targets were the images of 10000 values
chosen at random, and we only consider an attack successful if the preimage found
coincides with the original value.

The expected values were calculated using the equations in the previous chap-
ter. The expected and average calculated values for set 1 are shown in the following
table:

Parameter Estimate Empirical value test/theory

m 408925 422305 1.033

Fmsc 1.72 1.77 1.033

F pc 5.49 5.67 1.033

F ps 0.898 0.904 1.006
Precomputation 6.0345× 1012 6.2331× 1012 1.033
Online complexity (T) 70767834 67910062 0.960

The expected and average calculated values for set 2 are:

Parameter Estimate empirical value test/theory

m 638375 657786 1.023

Fmsc 1.558 1.594 1.023

F pc 3.32 3.38 1.019

F ps 0.806 0.815 1.011
Precomputation 3.6505× 1012 3.7210× 1012 1.019
Online complexity (T) 42867238 41427521 0.966

As can be seen in both tests the estimate according to the equations in the
previous chapter is close to the experimental values.

7.2.3. Comparing the accuracy of the estimations
The example results in the previous section show that the difference between

the parameters calculated using the approximate formulas in the previous chapter

83

Chapter 7. Experimental validation of the results from the previous chapter

and the empirical values is small enough at least in the sample cases to be used
to estimate the values in a practical application. However, the first results in
section 7.2.2 show that at least some approximations done in deriving the formulas
introduce noticeable errors. Comparing the results when using equations (6.1) and
(6.2) we see equation (6.1) allows us to better estimate the number of remaining
chains at each step in the calculation of the tables, which in turn can improve the
calculation of the remaining parameters. The flip side is having iterative formulas
that are more difficult to operate with, and depend on more parameters, thus
making it more difficult to use them to calculate the parameters to be used.
Using equation (6.1) for the values in Example 2, the estimated m value is 653256,
which is much closer to the experimental average value in table 7.2.2 (less than
0.1% difference).

The number of iterations of function h in the precomputation phase can be
better estimated as (m0+· · ·ms−1)tl, which using the iterative formula to calculate
mi yields 3.7224× 1012 iterations, which again has less than 0.1% difference with
the experimental value.

For the success probability F ps the calculation can be improved by observing in
the demonstration of Proposition 4 and lemma 3 in [48] that in equation (16) and
(21) we can use the improved values for mi to obtain a better estimation. Using
this the calculated value for Example 2 is 0.813, much closer to the experimental
value (less than 0.3% difference).

Finally, the estimation of the on-line effort can be also improved by substitu-
ting the approximations for m0, F cr and F cr,i with the more accurate formulas.
Applying this to the parameters for Example 2 we get T = 41642714, again a much
better match for the experimental result (less than 0.6% difference).
For the values in example 1 a similar result is found.

The main takeaway from this subsection is that when using the approximate
equations to estimate the parameters for the tradeoff, the main deviations are
caused by the approximations made to arrive to the closed formulas, and better
estimations can be made if the more exact equations are used. In a practical
situation it may be useful to first use the approximate equations to choose the
values of the parameters for the TMTO, and then check the resulting parameters
using the results from this section.

We will mostly use the approximate formulas from now on unless explicitly
noticed.

7.2.4. Effect of the ending-point truncation
In section 6.5.2 we calculated the extra invocations due to the ending point

truncation, and claimed that our estimation is better than the one in Kim and
Hong’s paper. Both our equation and Kim and Hong’s depend on the value of the
probability 1/r of two truncated randomly chosen DPs to be identical, so to test
the equations we need to calculate r for our examples.

Given the chosen distinguished property, (that is, to be a DP a value v must

84

7.2. Validation for D = 1

.

Trnc extra inv. extra inv. extra inv.
bits r(×106) (practical) Kim eq (6.30) prac/(Kim) prac/eq (6.30)

20 1.049 33200611 22123036 33347167 1.501 0.995
21 2.098 16596926 11058312 16668751 1.501 0.995
22 4.199 8293430 5525951 8329544 1.501 0.995
23 8.408 4139710 2759771 4159942 1.500 0.995
24 16.855 2064485 1376684 2075145 1.500 0.995
25 33.868 1028028 685140 1032747 1.500 0.995
26 68.375 509402 339369 511547 1.501 0.996
27 139.38 249587 166483 250948 1.499 0.995
28 289.52 120035 80149 120812 1.498 0.994
29 627.29 55512 36992 55759 1.501 0.995
30 1483.56 23578 15641 23577 1.507 1.000
31 4450.64 7763 5214 7859 1.489 0.988

Table 7.2: Extra invocations with truncation for parameter set 1

be v < te), the blog2(N/te)c most significant bits will be zero and don’t need to be
stored. It is more convenient to truncate on the most significant bits, as if N/te is
not integer then the most significant remaining bit has a bias, so the first bit we
truncate has less than 1 bit of information.

If we leave b < dlog2(te)e bits after truncation, to calculate the probability
for two truncated endpoints to be identical, assuming the endpoints are uniformly
distributed between 0 and te, we observe that if te = a2b + c, then in the interval
[0, te) there are c values which repeat a + 1 times and 2b − c values which repeat
a times. The probability for two truncated endpoints x, y to collide is thus

P (x=y/y mod 2b< c).P (y mod 2b< c)+P (x=y/y mod 2b ≥ c).P (y mod 2b ≥ c)

=
a

te− 1
× (a+ 1)c

te
+

(a− 1)

te− 1
× a(2b − c)

te
(7.1)

If a >> 1 and te >> 1, this can be approximated by

a22b

te2
(7.2)

Using the previous value for r we can calculate the expected extra invocations
of the step function for the values chosen for the previous parameter sets using
both Kim and Hong’s result and our improved equation (6.30), and compare them
with the experimental values. For the values in set 1, t = 303.9, so the most
significant 8 bits are zero. In Table 7.2 we can see the calculated and experimental
extra invocations for several truncation values, where we can see equation (6.30)
gives a good match with the practical results. A similar result can be seen in table
(7.3) for parameter set 2.

85

Chapter 7. Experimental validation of the results from the previous chapter

.

Trnc extra inv. extra inv. extra inv.
bits r(×106) (practical) Kim eq (6.30) prac/(Kim) prac/eq (6.30)

21 2.0981 13895555 9202246 13953127 1.51 0.996
22 4.1980 6941145 4599089 6973480 1.509 0.995
23 8.4035 3466537 2297511 3483657 1.509 0.995
24 16.837 1730315 1146722 1738746 1.509 0.995
25 33.793 861446 571333 866297 1.508 0.994
26 68.069 427741 283640 430077 1.508 0.995
27 138.098 210971 139806 211985 1.509 0.995
28 284.32 102522 67906 102964 1.51 0.996
29 604.18 48215 31956 48454 1.509 0.995
30 1365.7 21358 14137 21435 1.511 0.996
31 3693.7 7823 5227 7926 1.497 0.987
32 25000.8 1157 772 1171 1.499 0.988

Table 7.3: Extra invocations with truncation for parameter set 2

set 1 section length set 1 total length set 2 section set 2 total

F ps 0.9038 0.9246 0.8155 0.8311
Te (on-line cost) 67910062 70347901 41427521 43257125

Table 7.4: Effect of using section length vs. total length

7.2.5. Effect of using the section length instead of total length
One of the assumptions we made, which is the same Kim and Hong made,

is that when building the tables, if a collision is found in color i the chain with
the longest DMi segment is retained. This choice was made to be able to use
previous results, and they give an informal justification in [48] to show that the
effect of using the section length instead of the total length has a minor impact
on the parameters of the tradeoff. We wont develop a theoretical comparison, but
to appreciate the effect of this choice we calculated the tables for the previous
parameter sets but changing the rule when a collision is found to retain the chain
with the largest total length. The effect is to slightly increase both the success
probability and the on-line effort. More tests should be done to check which criteria
is best, but at least in this two cases the effect is small. The results are resumed
in table 7.4.

7.2.6. Another practical scenario
In the previous section we restricted ourselves to use the values of s and Fmsc

precomputed by Kim and Hong, which were calculated so as to minimize F atc,s.
In a real world scenario the attacker may prefer to trade some on-line cost for
a decrease in precomputation cost, so we want to study the tradeoff between

86

7.2. Validation for D = 1

precomputation effort and on-line cost.

For a realistic exercise, we assume we have a fixed memory size, M = 231 bytes,
and want to choose an adequate set of parameters for a TMTO with a 90% success
probability. We take ε = 8 and ignore the effects of the ending-point truncation.

There are different possible mechanisms to find suitable parameters for the
tradeoff. One simple way to choose the parameters is to use the parameters from
appendix E. Estimating the number of bits per entry and searching the parameters
in the table, one finds the value of s and Fmsc that provide the minimum F atc value,
calculate all parameters and then verify that the estimated number of bits per entry
is correct. However an interpolation must be made on the value of m∗ = m× s, as
using the parameters on the table does not allow us a precise choice of the memory
used. This method is not very flexible, as we will get the point that minimizes
F atc irrespective of the precalculation cost, and we may be interested in trading
a higher on-line cost for a lower precalculation. The parameters we get using this
method are shown as “set 1” in table 7.5. To remain within the available memory
M and use it in the best possible way, while having an integer number of bits per
table entry, we had to do some trial and error to find the parameters.

We could also attempt to calculate the on-line cost versus the precomputation
cost for the value of s on the table and varying Fmsc and m∗. However in practice
the number of bits per table entry must be an integer, so the curve is not conti-
nuous due to the abrupt changes in the values when the number of bits per table
entry increment, and some trial and error is necessary for each value which makes
it less useful. Besides the value of s in the table is the one that minimizes F atc,
but is not necessarily the best for other tradeoff values.

To give the practitioner the maximum flexibility we decided to show how the
parameters can be chosen without imposing an a-priori relation, and created a
spreadsheet that automates most of the calculations. We consider reasonable va-
lue ranges for s and l, which must be integer, and for each pair (s, l) and using the
known parameters (N , M , F ps, ε) we calculate the rest of the parameters. The
procedure is detailed in the appendices, section D.1. For each pair s and l we get a
set of parameters and tradeoff coefficients, so we can make a choice of parameters
adequate to our application. In figure 7.5 the on-line cost T is plotted versus the
precomputation coefficient F pc for a range of s and l values, showing a detail of
the “interesting” part of the plot where the values seem useful for the practitioner.
The minimum value of T corresponds to F pc = 5.4313, so larger values of F pc do
not seem useful. Also low values of F pc quickly lead to a huge increase in T value,
also making those points impractical.
One interesting observation is that we cannot improve the on-line time by incre-
menting the precalculation effort beyond the point where the minimum is found.
The only way to improve the on-line time is to increase the available memory.

We can also see there is a range of F pc values for which the on-line effort varies
little, so it may be advantageous to trade a slight increase in on-line time for a
lower precomputation time. We should also take into consideration that there is
an error in all approximations we made, so small differences in the performance

87

Chapter 7. Experimental validation of the results from the previous chapter

5,00

7,00

9,00

11,00

13,00

15,00

2,5 3 3,5 4 4,5 5 5,5

T
a(

M
ill

io
ns

)

Fpc

On-lineacostavs.aprecomputationacost

Figure 7.5: On-line cost vs. precomputation cost

set 1 set 2 (minimum T) set 3

s 56 61 39
m 4331859 4732746 3033169
m0 33554293 33437234 16560113
l 119 110 177
t 88.85 80,96 123.4413
F pc 6.6519 5.4312 5.005
T 7365450 7296159 7389099

Table 7.5: Parameter sets calculated for M = 240

of the calculated parameters do not necessarily translate into a better practical
tradeoff.

The parameters for the minimum T value found using this mechanism are
shown as set 2 in table 7.5, and in set 3 we added another set of values, with a
lower F pc and a little increase in T . We implemented the TMTO for this last set
of parameters, and the experimental results averaged over 10000 inversions can be
compared to the theoretical estimations in table 7.6.

7.3. Calculations for D > 1

For D > 1 we want to validate the results in the previous chapter. We will
mostly do the same validations as the previous section for this new environment.

We will not do an exhaustive test for varying D values, leaving a thorough

88

7.3. Calculations for D > 1

Expected values experimental values

s 39 39
m 3033169 3127614
m0 16560113 16560113
l 175 175
t 123.4413 123.44
Total precalculation cost 5.503× 1015 5.688× 1015

F pc 5.005 5.173
T 7389099 7302665
F ps 0.9 0.905

Table 7.6: Calculated and estimated values for set 3

estimate estimate experimental
(eq. (6.15)) (eq. (6.14)) average

D = 2
F
D

ps 0.96288 0.966 0.965
T 41510818 40364661 39507210

D = 4
F
D

ps 0.99862 0.9989 0.9987
T 29951449 29350087 28171683

D = 8
F
D

ps 0.999998 0.99998 1
T 19335065 19200797 18712476

Table 7.7: Calculated and estimated values for set 2 for different D values

study of the influence of D on the tradeoff for future work, instead sampling
several combinations with various parameter values.

7.3.1. First validation samples
Observing the results of the previous chapter, it is obvious that the same

tables used for D = 1 can be used for the D > 1 case (although they are probably
not optimal). So we use the same tables we already calculated in section 7.2.2
corresponding to parameter set 2 in table 7.1, and only change the on-line phase
to account for the number of targets D. The results, averaged over 10000 attempts,
are shown in table 7.7 and compared to the estimated values according to equations
(6.15) and (6.14). Just as in the single target case, the best approximation in our
samples is equation (6.14).

To test larger D values we start by using a subset of the tables from the same
parameter set. As an example of the tests we made in table 7.8 is the result of
taking D = 20 and l = 17, where we can see there is a good match between theory
and practice.

89

Chapter 7. Experimental validation of the results from the previous chapter

estimate estimate experimental
(equation (6.15)) (equation (6.14)) average

F
D

ps 0.8935 0.900 0.9047
T 44001915 41656211 41897462

Table 7.8: Calculated and estimated values for a subset of set 2. D = 20, l = 17

estimate experimental average

l = 1
F
D

ps 0.9 0.8998

F pc 0.08818 0.0910
T 2051783 2058091

l = 2
F
D

ps 0.9

F pc 0,1088
T 2138271

Table 7.9: Calculated and estimated values. D = 64, l = 1 and l = 2

7.3.2. Finding parameters for different D values
To estimate the parameter and tradeoff constants we used the same method as

in section 7.2.6. For larger D values we expect l to decrease. When we increased D
to D = 64, even decreasing the available memory to M = 226 the minimum on-line
effort happens when l = 1 (and s = 55). In table 7.9 we see the parameters for the
minimum on-line effort. We also added the parameters for the minimum on-line
effort with l = 2, where we see both precomputation and on-line effort are worse.
However the difference is not large and it may be beneficial if it helps parallelize
the on-line effort.

We added another pair of parameter sets for D = 64 but lowering the available
memory toM = 225 bytes. The parameter set for l = 2 minimizes the on-line effort,
while the parameter set for l = 1 was chosen to show that we can substantially
decrease the precomputation time with a modest increase in on-line effort. The
results are in table 7.10

Finally we added an example with D = 16384 and M = 220 bytes, with desired

success probability F
D
ps = 0.9. The first observation is that all parameter sets have

very similar F pc values. This seems reasonable taking into consideration that the
coverage of the matrices does not need to be high, which means collisions inside
the matrices are rare and all parameter sets have almost the same coverage. The
second observation is that with this choice of D and M the values of s and l that
minimize the on-line effort T are s = 2 and l = 1. However, we must be careful, as
such a low value for s is outside the range of values for which the approximations
in the previous chapter are valid. However at least in this case we can see in table
7.11 that the estimated and averaged experimental values are very close.

90

7.3. Calculations for D > 1

estimate experimental average

l = 1
F
D

ps 0.9 0.89

F pc 0.04999 0.0500
T 9480697 9857608

l = 2
F
D

ps 0.9 0.903

F pc 0.08811 0.0912
T 7339199 7268391

Table 7.10: Calculated and estimated values. D = 64, M = 225, l = 1 and l = 2

estimate experimental average

F
D

ps 0.9 0.8990

F pc 0.000143043 0.000142643
T 6959689 6956052

Table 7.11: Calculated and estimated values for D = 16384, l = 1, s = 2

7.3.3. Some initial cualitative observations
The first observation is that when D is incremented we expect the needed co-

verage of the matrices to decrease. This in turn decreases the expected number of
collisions, thus decreasing the number of sub-matrices DMi necessary. As D incre-
ases we expect most reasonable parameter sets to require a similar precomputation
effort for the same success probability, easing the choice of parameters.

In an extreme case for very large D it may be advantageous to use a single
DMi matrix, which is nothing more than a perfect classic Hellman matrix with
distinguished points. Whether there are values of D for which a perfect Hellman
matrix obtains a better tradeoff than the prefect fuzzy rainbow matrix will not be
explored in this work.

The second observation is that most experiments agree substantially with the
estimated theoretical values. We made no effort to estimate the statistical signi-
ficance of our test’s results, but most experimental results in this section are the
average of at least 10000 runs of the test, which should give us a decent confidence
in the results.

Lastly, we ignored the effect of disk searches in our examples. This is an open
topic which can be studied in a future work, as the number of searches increases
with D and may become non-negligible for large values of D.

91

This page intentionally left blank

Chapter 8

Applying the fuzzy rainbow table
TMDTO to the ciphertext only attack
against A5/1

In this chapter we will apply the results from the previous chapters to calculate
the cost for an attacker to implement a ciphertext only attack against A5/1 using a
TMDTO. The function to invert is the hc function described in chapter 4. Finding
a preimage of hc implies finding the internal state of A5/1 leading to the captured
ciphertext, which in turn as seen in section 3.1.1 allows the attacker to find the
key used for encryption.

Before starting the precomputation phase of any of the TMDTOs, the attacker
needs to fix the parameters for the TMDTO. The parameters will depend on
the resources available for the on-line and precomputation phase, and the desired
success probability.
In the case of A5/1, the state space has size N = 264. The amount of available
ciphertext for analysis (D) varies with the amount of captured ciphertext, and
the tables should be calculated taking into consideration the expected use of the
attack and the available resources.

To calculate the parameters for the tradeoff we arbitrarily chose three possible
scenarios which vary on the resources available to the attacker.

The first scenario presents the most stringent conditions on the attacker: re-
quiring high success rates for very short calls. This means that a high success
probability for D ≈ 1 is needed. A second set of parameters is calculated for
an attacker with less stringent requirements, namely that a high success rate is
attained for long calls, where the attacker obtains a large number of ciphertexts
to attempt inversion. To make the calculations we assume the attacker aims for a
90% success rate for D ≈ 500, which implies a call longer than 8 minutes.

Finally an scenario with large D may be adequate for a demonstration. We will
calculate a set of parameters adequate for the computational capacity available at
most universities, taking as example the capacity available to us on our college’s
infrastructure.

Chapter 8. Applying the fuzzy rainbow table TMDTO to the ciphertext only
attack against A5/1

Parameter Value

F
D

ps 0.9
Memory in bytes (M) 1015

s 78
l 182
m 8.6189× 1011

Fmsc 1.803
F pc 1.226
Precomputation 2, 262× 1019

Online complexity (T) 862912672

Table 8.1: Parameter set for an attack with D ≈ 5

As a point of comparison, for the attack implemented by Nohl et al in the
known plaintext scenario, D = 408 and N ≈ 261 (N is less than 264 due to some
optimizations found by Nohl et al).

In this work we will ignore the time to search the ending points on the tables
assuming it is negligible. This must be checked if the attack is to be implemented.

8.1. Scenario 1
For this scenario we assume a powerful attacker who wants to have a high

success probability even having a small amount of ciphertext for analysis. Let’s
assume he wants a success probability of 90% for D = 5, and has available 1
petabyte of storage (1015 bytes, which is approximately 249,8 bytes), distributed in
several machines, and several modern CUDA or AMD GPUs to do the calculations.
We use the same spreadsheets as in the previous chapter to calculate a reasonable
parameter set the attacker might use, with the objective of minimizing the on-line
time. A possible set of parameters is shown in table 8.1

Some comments about the feasibility of the tradeoff.

For the precomputation phase using the Nvidia Tesla C1060 GPU cards avai-
lable at our college’s computation facilities, which are old cards rated for 622 Giga
FLOPs (GFLOPs) and similar number of integer computations, our implementa-
tion allows us to do approximately 226 iterations of the step function per second.
Extrapolating those results to modern Nvidia GPU accelerators, like the V100
GPU Accelerator rated for 14000 GFLOPs it seems reasonable to expect at least
230 iterations of the step function per second per GPU, possibly more if the pro-
gramming is improved. Taking 230 as a conservative estimate, the attacker needs
approximately 244000 GPU days to complete the precomputation phase, or little
more than 8 months if he uses 1000 top of the line GPU cards, which is feasible
for resourceful attackers like some government agencies.

For the on-line phase we cannot expect the same performance measured in
iterations per second as in the precomputation phase, as the parallelism is lower.

94

8.2. Scenario 2. D ≈ 500

Parameter minimum T set 1 set 2

F
D

ps 0.9 0.9 0.9
Memory in bytes (M) 1013 1013 1013

s 142 154 97
l 1 1 2
m 1.538× 1012 1.569× 1012 8.163× 1011

Fmsc 1.637 1.619 1.247
F pc 0.0124 0.00972 0.00729
Precomputation 2.29× 1017 1.792× 1017 1.345× 1017

Online complexity (T) 866000834 889109707 1002080222

Table 8.2: Parameter set for an attack with D ≈ 500

Using 224 as an estimate of the iterations per second per machine, the attacker
needs approximately 51 machine/seconds on average for the on-line phase. Having
91 dedicated machines, each one storing and processing two of the l = 182 tables
allows the average on-line time to decrease below 1 second, and allows the disk
searches to be spread among all machines easing the random access restrictions of
the hard disks.

8.2. Scenario 2. D ≈ 500

For this scenario we assume the available storage is 10 TB, and assume that
instead of searching for the absolute minimum on-line effort the attacker prefers
to trade some on-line efficiency for a shorter precomputation time. Shown in table
8.2 are three possible choices of parameters, the parameters that minimize the
on-line cost and two sets with lower precomputation cost.

Taking as example the parameter set 2, for the precomputation phase the effort
is approximately 200 times lower than in scenario 1, which means 16 GPU cards
working for a year can calculate the tables. Taking as a price point the cost of
leasing a p2.16xlarge instance in Amazon EC2, which offers 16 K40 GPUs and
can be leased for $80354 a year as of August 2017, it seems reasonable to assume
the precomputation phase can be carried out by any institution willing to spend
between $100000 and $200000 and wait a year to calculate the tables.

The on-line complexity is of the same order as the previous scenario, so assu-
ming the use of one or two machines for the on-line phase the expected on-line
time is of the order of 1 minute.

8.3. Scenario 3
As a demonstration of the usefulness of the method we can choose a set of

parameters for which the cost is within reach of our computational capacity and

95

Chapter 8. Applying the fuzzy rainbow table TMDTO to the ciphertext only
attack against A5/1

Parameter Estimate Empirical value test/theory

F
D

ps 0.9 0.825 0.917
Memory in bytes (M) 2.10× 1010 2.1× 1010 0.999999
m 4200000000 4199994669 0.999999
F pc 1.15297× 10−06 1.15296× 10−06 0.99999
Precomputation 2, 12686× 1013 2, 12686× 1013 0.99999
Online complexity (T) 9538510255 9496681501 0.995

Table 8.3: Parameter set for sample application 1

test it with synthetic data. This section is only intended as a proof of concept
of the method, as the amount of captured ciphertext necessary for the attack
is equivalent to several days of voice calls. We will not exhaustively study the
parameters for this case.

Our implementation of the algorithms allow us to do approximately 226 itera-
tions of the step function on each Tesla C1060 card, and we have 4 such cards.

We will have a large D value, which means the tables we will calculate do
not need to represent a large portion of the search space, so we will have a low
probability of chain merge and a relatively small amount of collisions inside the
tables. If we aim for a precomputation time between one day and one week, we
can do approximately between 244 and 247 iterations of the step function, and as-
suming few collisions the coverage will be between 2−20N and 2−17N . As a gross
approximation, to have a 90% probability of success we expect D to be such that
(1− 2−20)D ≈ 0.9 for the first case and (1− 2−17)D ≈ 0.9 for the later. We chose
D = 2000000 and D = 300000 and calculated two sets of parameters and two
corresponding sets of tables.

For both sample demonstrations we arbitrarily restricted the available storage
to 21GB after truncation. We did not implement the ending point truncation nor
index tables when storing the values of the TMDTO, so the effective storage used
is larger.

For the first demonstration we choose D = 2000000. The calculated values for
the tradeoff are given in the first column of table 8.3. The values that minimize
T are s = 2, l = 1 and t = 2529.2. We are outside the values of s for which we
know the results in chapter 6 are valid, so the error may be larger than in previ-
ous sections. We limit ourselves to show the practical results averaged over 475
inversions, and leave a more exhaustive investigation of the seemingly low success
probability for future work.

For the second sample demonstration the choice was D = 300000. The calcu-
lated values for the tradeoff are given in the first column of table 8.3. The values
that minimize T are s = 4, l = 1 and t = 3723. Again s is small, although a little
bit larger than the previous sample. The results again show a reasonable match

96

8.3. Scenario 3

Parameter Estimate Empirical value test/theory

F
D

ps 0.9 ≈ 0.82 0.91
m 4097560976 4098688593 1,0003
Precomputation 1, 43119× 1014 1, 45247× 1014 1.01
Online complexity (T) 10361344003 13089479755 1.26

Table 8.4: Parameter set for sample application 2

for the precomputation cost, but show a lower than expected success probability
and higher on-line cost.

97

This page intentionally left blank

Chapter 9

Applicability of the attack and
countermeasures

9.1. Conditions for applying the TMDTO attack against
A5/1

One obvious condition for applying the previous attack is that the communi-
cation must be using A5/1. This is the case in many networks today, and it is not
likely that the providers using A5/1 today will invest in fielding A5/3 in the future
as GSM is a legacy protocol and spending on network upgrades is not a priority
for operators.

Another practical consideration is whether the attack by Karsten Nohl et al [59]
[52] can still be applied. If a pair known plaintext - ciphertext can be found then
Nohl’s attack requires less effort both in the precomputation and in the on-line
phase than our attack.

To apply the described attack, the attacker should choose adequate parameters
for the perfect fuzzy rainbow table tradeoff depending on the available computa-
tional power and storage available and calculate the corresponding tables.

After the tables are calculated the attacker needs to capture enough ciphertext
from the target communication to have a good probability of inversion given the
chosen table parameters. This is not an easy task given that GSM uses channel
hoping from frame to frame, and the channel of the target communication is not
a priori known. In this work we will not delve into the difficulties of capturing
such ciphertext, one possible cheap solution is presented in [45]. One important
consideration about the captured ciphertext is that any error bit in the captured
ciphertext value (consisting on two SACCH frames) makes it unusable, as the
attack makes use of the redundancy provided by the error detecting and correcting
codes. As the attack uses the downlink channel, being close to the base station is a
must to decrease the error probability. One possible improvement is to investigate
if the extra known bits together with the error correcting codes could enable an
attacker to tolerate some bit errors.

Chapter 9. Applicability of the attack and countermeasures

9.2. Countermeasures
One obvious countermeasure to protect against this attack is to use the A5/3

algorithm to protect the communication, or to stop using GSM and migrate all
voice communications to UMTS (3G) or LTE (4G).

Another possible countermeasure is to randomly introduce a few bit errors into
each SACCH message, trusting on the error correction codes to correct them. This
can be safely applied unless the channel’s error rate is too high, meaning it can be
applied whenever the BTS detects the mobile equipment is close enough.

100

Chapter 10

Conclusions and future work

10.1. Conclusions
There are two main topics studied in this thesis. Our initial objective was

to study the security in GSM and in particular the security of the A5 family of
ciphers. During this study, when we decided to concentrate on the ciphertext
only attacks, it became apparent that we needed to study the TMDTO algorithms
available in the literature. The main results from this thesis are aligned with the
study of those two subjects.

We have shown that a ciphertext only attack against algorithm A5/1 as used
in GSM is feasible nowadays for a motivated attacker with enough resources, using
the results in [9] and a modern TMDTO. We calculated the step function in [9],
and calculated a possible set of parameters for a perfect fuzzy rainbow tradeoff
implementing the attack for different scenarios. The necessary resources vary
from very high (millions of dollars in 2017) if a short on-line time and high success
probability for short calls are desired, to almost negligible if the available ciphertext
is large (corresponding to several hours of communication available, or ciphertext
from many simultaneous calls) and a long inversion time is not an issue, for example
for a demonstration.

We implemented a demo attack with synthetic data under the assumption
that the available ciphertext corresponds to several hours of communication, and
showed that the attack works with parameters similar to those calculated theore-
tically.

We described a new step function based on the redundancy in the voice channel
of a GSM call. A TMDTO implemented using this step function is costlier than
using the redundancy in the SACCH control channel, but does not depend on any
knowledge of the contents of the messages, only on the redundancy introduced by
the error detection and correction codes.

Based on these results we can conclude that A5/1 can not be considered a
secure protocol against a resourceful attacker taking into consideration current (as
of 2017) computation and storage capacities. The best countermeasure against the

Chapter 10. Conclusions and future work

presented attacks is to move away from A5/1, either by moving to newer networks
(UMTS, LTE) and deprecating GSM, or by implementing A5/3 in the network.
We however present a possible countermeasure in chapter 9 that can be used to
mitigate the attack risk.

We studied and briefly documented the TMTO and TMDTO attacks presented
in the literature, and choose to work with the perfect fuzzy rainbow table time
memory data tradeoff, which was shown in [48] to be the best available tradeoff
for the single inversion target scenario.

The parameters of the perfect fuzzy rainbow time memory data tradeoff were
calculated for the case in which several targets are available for inversion, thus
extending the results in [48] to this new scenario.

10.2. Future work
The following ideas for future work were identified while working for this thesis

but could not be pursued within the scope of this work.

Regarding GSM security and A5/1, we worked with synthetic data for the
implementation of our demo attack against A5/1. Data from a test network or
a live network could be used to further validate our work. That would entail
capturing and decoding the raw GSM data and processing it. Tables with better
coverage could be built if more time and computational resources were available.

One interesting research topic is to investigate whether the existing correlation
attacks against A5/1, described in section 3.1.3, which work on a known plaintext
attack scenario, can be extended to work on a cyphertext only attack scenario,
using the redundancy in the signaling or voice channels to build sets of equati-
ons on which correlations can be found and exploited to determine equations on
combinations of bits from the internal state.

Regarding our study of TMDTO algorithms, we calculated the parameters for
the perfect fuzzy rainbow table tradeoff when the number of inversion targets D
is greater than one, but under certain assumptions about the parameters, namely
that the number of colors s is large enough so that the approximations in chapter 6
remain valid. Some of the results in later chapters suggest that when D is large low
values of s can provide a better tradeoff, however we did not study the accuracy
of the approximations under those circumstances.

No comparison was made with other TMDTO algorithms for the D > 1 case.
Some experiments show that as D increases we get a better tradeoff with few or
only one table and less colors. It may happen that for some D values a single
Hellman table with DPs gives a better tradeoff. We leave that study as a topic for
future work.

Another possible improvement in the calculations is to include the effect of the
ending point truncation into the calculations. In section 7.2.4 we calculated the
effect of the ending-point truncation optimization for our sample application, but
only to evaluate when the effect of the truncation could be ignored. An open topic
is whether the effect of truncating more bits, which increases the on-line effort

102

10.2. Future work

due to more false alarms, could be offset by the gains in coverage given that more
chains can be stored on the same amount of memory.

103

This page intentionally left blank

Appendix A

Finding known bits in the SACCH
Channel

The SACCH channel has the peculiarity ([28], 3.4.1.1) of requiring continuous
transmission in both directions while there is an ongoing call. When there is
no data to send (which is most of the time) it is used to transmit measurement
results in the uplink, and information messages in the downlink, cycling four types
of messages which carry general information about the cell and its parameters
(called System Information type 5, 6, 5bis and 5ter messages). Those messages
are carried in what are called “Unnumbered Information frames”. This means
most of the time traffic will consist of messages with a known format, and we
will use this fact to identify several bits with fixed values. There are some other
optional messages like ”Measurement information”, instructing the mobile to send
an enhanced measurement report, and ”Extended Measurement Order (EMO)”,
requesting extended measurements.
We will describe the format of those messages, identifying several bits with a fixed
value we can use.

A.1. Layer 1
The layer 1 header for the SACCH channel is described in [27]. It occupies

2 bytes and consists of four fields and a spare bit. The header for the downlink

Figure A.1: Layer 1 header

Appendix A. Finding known bits in the SACCH Channel

Figure A.2: LAPDM header - unnumbered frames

direction is shown in figure A.1, in the uplink direction the format is similar, re-
placing the ordered values with the Actual power level and Actual timing advance
reported by the mobile. Spare bits are always transmitted as a binary zero. Be-
sides, except for GSM400, the Timing Advance value has the most significant bit
in 0. This means that except for GSM400 we have two bits with known value in
this layer. GSM400 is a version of gsm for the 450 MHz frequency band which has
seen little use throughout the world.

A.2. Layer 2
Layer 2 uses a protocol known as LAPD mobile (LAPDm), which is a variant

of the layer 2 protocol used in ISDN for the control channel, but optimized for
the requirements of the wireless network. LAPDm is a relatively simple protocol
to exchange messages between two layer 2 entities, and has two modes of ope-
ration called acknowledged and unacknowledged. Acknowledged mode includes
sequence numbers, explicit acknowledges for a stream of messages, and procedures
for retransmitting lost messages, while unacknowledged mode provides a service
without any guarantee, being the upper layers responsible for the retransmission
of lost messages if needed. All the messages we are interested in are transmitted
in unacknowledged operation, so we will only describe this mode. For unacknow-
ledged operation, all messages are transported in Unnumbered Information (UI)
frames, which are simplified frames with several fixed fields. The format of UI
frames and the procedures of LAPDm are described in [26] and [30]. For the UI
frames in the SACCH channel the header is as shown in figure A.2.

106

A.3. Layer 3

Figure A.3: LAPDM Address Field

Figure A.4: LAPDM Control Field

In this case, the Address field and Lenght indication field are both one octet
wide. The least significant bit of the length indication field (EL bit) is one. The
address field is as shown in figure A.3, where the LPD and SAPI fields are 0, the
EA bit is 1, and BIT 8 is a spare (also 0). The Control field for UI frames is as
shown in A.4, where seven bits are fixed. We can also see in ([30] 8.2.1) that for
the “unacknowledged information transfer with normal L2 header” bit P is also 0.
Adding up, we have 16 bits with known value in layer 2

A.3. Layer 3
In layer 3 the messages we are interested in all belong to the Radio Resource

Control Protocol (RRC) as described in [28]. The layer 3 header is shown in A.5
([28] 10.1). For the messages of interest the SKIP field is 0. According to [33],
for the Radio Resource Management messages, the field ”Protocol Discriminator”
has the binary value “0 1 1 0”.

According to ([28] 10.4), the Message type has the following values:
For the uplink direction:

0 0 0 1 0 1 0 1 MEASUREMENT REPORT
0 0 1 1 0 1 1 0 EXTENDED MEASUREMENT REPORT

For the downlink direction:
0 0 0 1 1 1 0 1 SYSTEM INFORMATION TYPE 5
0 0 0 1 1 1 1 0 SYSTEM INFORMATION TYPE 6
0 0 0 0 0 1 0 1 SYSTEM INFORMATION TYPE 5bis
0 0 0 0 0 1 1 0 SYSTEM INFORMATION TYPE 5ter

We can see several bits with common values among the messages (6 bits in
uplink, 4 bits in downlink).

So in layer 3 we have 12 bits with known values in the downlink direction, and
14 in the uplink.

If we add the “EXTENDED MEASUREMENT ORDER” message, which ap-
pears less frequently in the message stream, we only get 3 bits in the downling
(Message type is 0 0 1 1 0 1 1 1 for this message).

107

Appendix A. Finding known bits in the SACCH Channel

Figure A.5: Layer 3 header - Radio Resource Control

A.4. Summary
Summarizing, we have:

2 known bits in layer 1

16 known bits in layer 2

12 or 14 known bits (downlink or uplink) in layer 3

Adding all up, we have 30 bits (29 if we add the “EXTENDED MEASURE-
MENT ORDER” message) in the downlink direction and 32 bits in the uplink
direction we can use to add equations to our system.

Given that there are more bits with known values than needed in Chapter 4, we
can choose those which are useful in more cases. We can avoid using the MSB of
the Timing advance in layer 1, so the resulting tables can also be used in GSM400,
and avoid using the bits with fixed values in the different messages, in case some
other message is sent. Even discarding those bits, we still have 25 bits, more than
needed for the attack by Barkan, Biham and Keller.

108

Appendix B

Difference in the state after feeding the
key and COUNT, when COUNT varies

As we saw in section 2.6.1, the initial state of A5/1 is calculated in the following
way:

Zero out all three registers R1, R2, R3

Advance each register 64 times. In each step, xor the least significant bit of
each register with the corresponding bit from the key.

Advance each register 22 times. In each step, xor the least significant bit of
each register with the corresponding bit from COUNT.

Advance A5/1 100 times using the majority rule, discarding output.

We are interested in the values of R1, R2 and R3 just after feeding the value
of COUNT, before the final 100 clockings of the initialization.
Let COUNT = C21 · · ·C0. Bits from COUNT are fed starting with the least
significant bit.

Differences for R1

R1 is 19 bits long, and the feedback taps are in positions 13, 16, 17 and 18.
Let ri be the least significant bit of R1 at step i (for example, r0 = 0, r1 = k[0],
r14 = k[13] + r1, · · ·). After the first 64 steps, R1 will contain from r64 (in R1’s
LSB) to r46 (MSB).
Feeding COUNT bit by bit we get:

r65 = c0 ⊕ r51 ⊕ r48 ⊕ r47 ⊕ r46
r66 = c1 ⊕ r52 ⊕ r49 ⊕ r48 ⊕ r47
...
r78 = c13 ⊕ r64 ⊕ r61 ⊕ r60 ⊕ r59
r79 = c14⊕ r65⊕ r62⊕ r61⊕ r60 = c14⊕ c0⊕ r51⊕ r48⊕ r47⊕ r46⊕ r62⊕ r61⊕ r60
r80 = c15 ⊕ c1 ⊕ r52 ⊕ r49 ⊕ r48 ⊕ r47 ⊕ r63 ⊕ r62 ⊕ r61
r81 = c16 ⊕ c2 ⊕ r53 ⊕ r50 ⊕ r49 ⊕ r48 ⊕ r64 ⊕ r63 ⊕ r62

Appendix B. Difference in the state after feeding the key and COUNT, when
COUNT varies

r82 = c17 ⊕ c3 ⊕ r54 ⊕ r51 ⊕ r50 ⊕ r49 ⊕ r65 ⊕ r64 ⊕ r63 = c17 ⊕ c3 ⊕ r54 ⊕��r51 ⊕
r50 ⊕ r49 ⊕ c0 ⊕��r51 ⊕ r48 ⊕ r47 ⊕ r46 ⊕ r64 ⊕ r63

r83 = c18 ⊕ c4 ⊕ r55 ⊕ r51 ⊕ r50 ⊕ c1 ⊕ r49 ⊕ r48 ⊕ r47 ⊕ r65 ⊕ r64 = c18 ⊕ c4 ⊕
r55 ⊕��r51 ⊕ r50 ⊕ c1 ⊕ r49 ⊕��r48 ⊕��r47 ⊕ c0 ⊕��r51 ⊕��r48 ⊕��r47 ⊕ r46 ⊕ r64

r83 = c18 ⊕ c4 ⊕ r55 ⊕ r50 ⊕ c1 ⊕ r49 ⊕ c0 ⊕ r46 ⊕ r64
r84 = c19⊕ c5⊕ r56⊕ r51⊕ c2⊕ r50⊕ c1⊕ r47⊕ r65 = c19⊕ c5⊕ r56⊕��r51⊕ c2⊕

r50 ⊕ c1 ⊕��r47 ⊕ c0 ⊕��r51 ⊕ r48 ⊕��r47 ⊕ r46
r84 = c19 ⊕ c5 ⊕ r56 ⊕ c2 ⊕ r50 ⊕ c1 ⊕ c0 ⊕ r48 ⊕ r46
r85 = c20 ⊕ c6 ⊕ r57 ⊕ c3 ⊕ r51 ⊕ c2 ⊕ c1 ⊕ r49 ⊕ r47
r86 = c21 ⊕ c7 ⊕ r58 ⊕ c4 ⊕ r52 ⊕ c3 ⊕ c2 ⊕ r50 ⊕ r48

The value of R1 after initialization with the key and COUNT (before the 100
mixing cycles) is r86 · · · r68, which can be expressed using only r64...r1 (which only
depend on the key) and the bits from COUNT.
Let two values of COUNT be c21...c0 and c′21...c

′
0, where c′i = ci ⊕∆i. Then:

r′65 = r65 ⊕∆0

...
r′78 = r78 ⊕∆13

r′79 = r79 ⊕∆14 ⊕∆0

r′80 = r80 ⊕∆15 ⊕∆1

r′81 = r81 ⊕∆16 ⊕∆2

r′82 = r82 ⊕∆17 ⊕∆3 ⊕∆0

r′83 = r83 ⊕∆18 ⊕∆4 ⊕∆1 ⊕∆0

r′84 = r84 ⊕∆19 ⊕∆5 ⊕∆2 ⊕∆1 ⊕∆0

r′85 = r85 ⊕∆20 ⊕∆6 ⊕∆3 ⊕∆2 ⊕∆1

r′86 = r86 ⊕∆21 ⊕∆7 ⊕∆4 ⊕∆3 ⊕∆2

This shows it is easy knowing ∆COUNT and the state at step 86 for a certain
value of COUNT, to calculate the state for another value COUNT’ without kno-
wing the key.
The same calculation yields the differences for R2 and R3.

Differences for R2 and R3

R2 is 22 bits long, with the feedback taps in positions 20 and 21. Following
the same calculation as in the case ofR1, after the first 64 stepsR2 will be r64 · · · r43

r65 = c0 ⊕ r44 ⊕ r43
r66 = c1 ⊕ r45 ⊕ r44
...
r86 = c21 ⊕ r65 ⊕ r64 = c21 ⊕ c0 ⊕ r44 ⊕ r43 ⊕ r64

R2 at step 86 is r86...r65, which can be expressed using only r64...r1 (which
only depend on the key) and the bits from COUNT.

110

For 2 values of COUNT, c21...c0 and c′21...c
′
0 with c′i = ci ⊕∆i:

r′65 = r65 ⊕∆0

...
r′85 = r85 ⊕∆20

r′86 = r86 ⊕∆21 ⊕∆0

Doing a similar calculation for R3 (which is 23 bits long, with taps bits in
positions 7, 20, 21 and 22), we get:

r′64 = r64
r′65 = r65 ⊕∆0

...
r′72 = r72 ⊕∆7

r′73 = r73 ⊕∆8 ⊕∆0

...
r′80 = r80 ⊕∆15 ⊕∆7

r′81 = r81 ⊕∆16 ⊕∆8 ⊕∆0

...
r′85 = r85 ⊕∆20 ⊕∆12 ⊕∆4

r′86 = r86 ⊕∆21 ⊕∆13 ⊕∆5 ⊕∆0

Differences for the tables of Birham, Barkan and Keller
In this case, only the least significant bit of T3 changes, which is bit 5 in

COUNT. Replacing in the preceeding equations we get that only the following
bits have their values changed:

For R1, bits 2 and 16.

For R2, bit 16.

For R3, bits 0, 8 and 16.

111

This page intentionally left blank

Appendix C

Finding key KC from A5/1’s internal
state after key setup

Given the value of A5/1’s internal registers R1, R2 and R3 just after feeding
the key KC and the value of COUNT, we want to find KC . This can be easily done
by first reverting the effect of COUNT, and then inverting the linear initialization
from the value of KC to the values of R1, R2 and R3.

Just as in appendix B, let’s call C21 · · ·C0 the bits from COUNT, and let ri
be the least significant bit of R1 at step i. The contents of R1 after key setup are
r86 · · · r68, and we want to calculate r64 · · · r46

When feeding COUNT, just as in appendix B we have:
r65 = c0 ⊕ r51 ⊕ r48 ⊕ r47 ⊕ r46
r66 = c1 ⊕ r52 ⊕ r49 ⊕ r48 ⊕ r47
...
r86 = c1 ⊕ r72 ⊕ r69 ⊕ r68 ⊕ r67
In the last equation we can solve for r67 as r67 = c21 ⊕ r72 ⊕ r69 ⊕ r68 ⊕ r86
We can do the same for the other 21 equations finding r66 · · · r46 as we wanted.
For R2 and R3 we follow the same procedure, finding the corresponding values

just after feeding key KC .
Let’s call R the concatenation of R1, R2 and R3. As the initialization is linear,

there is a matrix MI such that R = MI ·KC . Inverting MI we can find KC as
KC = M−1I ·R

This page intentionally left blank

Appendix D

Calculating the parameters of the
TMDTO

D.1. Calculating the tradeoff parameters
Given the available memory M in bytes and the desired success probability,

we want to find possible parameters for the tradeoff. Given that s and l must be
integer, we will treat them as such. We pick a range of reasonable s and l values
and for each pair calculate the tradeoff parameters and constants in a spreadsheet.
Afterwards we can pick the value which best suits our application.
Given M and D.

- Choose ε (eg. 8)
- Call bpp the bits per point after truncation
For each s,l

calculate bpp (for this increment the estimated bpp and calculate m0, until
bpp >= log2(m0))

calculate m as M ∗ 8/(l ∗ bpp)

use equation (6.14) and the definition of Fmsc to calculate tF cr = −N log(1−
F ps)/(D ∗ s ∗ l ∗m)

Use the definition of Fmsc and the calculated value of tF cr to get Fmsc ∗F
2
cr

iteratively find Fmsc and F cr from the previous value

Calculate m0 = 2mFmsc/(2− Fmsc)

Calculate t from the previous values F cr and t ∗ F cr

Calculate F pc from equation (6.8)

Calculate the on-line effort T from equation (6.27)

This page intentionally left blank

Appendix E

Table 1 from Kim’s paper

Table E.1: Values of Fmsc and s that minimize Fatc

Fatcs
logm∗ + ε Fps 0,5 0,75 0,9 0,95 0,99 0,995 0,999

18 s 34 38 43 48 60 66 79
Fmsc 1,6881 1,6883 1,6847 1,6813 1,6698 1,6647 1,6531

19 s 36 40 46 50 63 68 83
Fmsc 1,7000 1,6997 1,6968 1,6922 1,6810 1,6754 1,6644

20 s 37 42 48 53 65 71 86
Fmsc 1,7095 1,7104 1,7071 1,7032 1,6911 1,6858 1,6747

21 s 39 44 50 55 68 74 89
Fmsc 1,7198 1,7202 1,7166 1,7126 1,7009 1,6956 1,6843

22 s 41 46 52 57 71 77 93
Fmsc 1,7294 1,7293 1,7256 1,7215 1,7101 1,7047 1,6937

23 s 43 48 54 59 73 80 96
Fmsc 1,7382 1,7379 1,7340 1,7298 1,7183 1,7133 1,7022

24 s 45 50 56 62 76 83 100
Fmsc 1,7465 1,7459 1,7418 1,7381 1,7264 1,7214 1,7105

25 s 47 51 58 64 79 86 103
Fmsc 1,7542 1,7527 1,7493 1,7454 1,7341 1,7290 1,7180

26 s 49 53 60 66 81 89 106
Fmsc 1,7615 1,7598 1,7562 1,7524 1,7410 1,7362 1,7252

27 s 51 55 63 69 84 91 110
Fmsc 1,7683 1,7665 1,7633 1,7593 1,7478 1,7428 1,7322

28 s 52 57 65 71 87 94 113
Fmsc 1,7740 1,7728 1,7695 1,7655 1,7543 1,7492 1,7387

29 s 54 59 67 73 89 97 116
Fmsc 1,7801 1,7788 1,7754 1,7713 1,7602 1,7553 1,7448

This table was calculated by finding the values of s and Fmsc that minimice
F atc. Comparing this table with Table 1 from Kim and Hong’s paper, we see they
are almost identical

This page intentionally left blank

Appendix F

Description of the test infrastructure

To implement a TMTO, even for a reduced problem, we need to calculate a
large number of images of the step function, specially during the precomputation
phase when many similar chains must be calculated. The precomputation phase
is highly parallelizable, so it seems a good candidate for computation using GPU
cards.

Graphic processing has always been a demanding task for computer systems,
which in many cases has been delegated to specialized hardware, called Graphics
Processing Unit (GPU). Since about 2001, with the advent of programmable
shaders and floating point support in GPUs, they have been used for general com-
putation, at first by reformulating computational problems in terms of graphic
primitives, until the advent of general purpose programming language extensions
and APIs which enabled programmers to abstract the underlying computation
resources. The usage of GPUs for general computing is called General-Purpose
Computing on Graphics Processing Units (GPGPU), and has been applied to
multiple high performance computing problems in areas such as genomics, materi-
als science, and cryptography. GPUs cards excel at problems where a high degree
of parallelism can be achieved.

Nowadays there are two main competing producers of GPU chips, AMD (Ad-
vanced Micro Devices, Inc.) and NVIDIA, and both companies produce general
purpose GPU cards for graphics processing, and cards optimized for the GPGPU
community, with higher double precision floating point performance, proportio-
nally larger memory, and higher computation capacity. For our problem we are
not concerned with floating point performance, as our problem does not involve
floating point computations. Both card brands are equally capable for high per-
formance computation, and our choice of hardware was dictated by the available
resources at our college’s computation cluster when this work started, namely a
NVIDIA S1070 GPU Computing Server, which contains four C1060 computing
modules. There are two popular extensions to programming languages that can
be used to program NVIDIA GPU cards, one is called CUDA and is NVIDIA pro-
prietary, while the other, OpenCL, is open and available for other GPU cards and
CPUs. When this project was started OpenGL was not as stable as CUDA and
the examples we had were programmed using CUDA, so that’s the programming

Appendix F. Description of the test infrastructure

extensions we choose.

F.1. Programming on CUDA cards
The GPU architecture is well suited for data-parallel computations and has a

high ratio of computation to memory operations. State of the art CPUs in 2017
have several complex cores, up to 24 in top of the line CPUs, executing two thre-
ads per core using hiperthreading. In contrast GPUs have thousands of cores, but
they are simple ones and function at their fullest capacity when groups of threads
share the same execution flow and with relatively little main memory access. GPU
cores have available more internal registers than CISC CPUs, memory bandwidth
to main memory is higher in GPU cards, but memory latency is also much higher
than in CPUs.

There are many different CUDA cards, with varying features and performance.
Features are grouped in what nvidia calls “Compute Capability” of a device. We
will not go into the details of the architecture, nor the differences between different
cards, they can be found on the NVIDIA website 1, only describing them from the
developer’s point of view. A good source of information is the ”Nvidia CUDA
Programming Guide” and in general all the documentation that comes with the
CUDA libraries which is also freely available at the NVIDIA web site.

The main abstraction in CUDA programming is called a “kernel”. Kernels are
C (or C++/Fortran) functions that, when called, are executed N times in parallel
by N different CUDA threads on the GPU card. The number of threads N is
specified at each kernel invocation, and the thread number is available to each
thread to enable differentiation among threads.

Processor cores in CUDA are grouped in multiprocessors, which share resour-
ces, a set of registers, a block of local shared memory, and some other resources.
The minimum thread grouping is called a warp, and consist of 32 threads, which
are assigned to the same multiprocessor. All 32 threads on a warp start at the
same instruction, and while execution can diverge via a data dependent conditional
branch, maximum performance is obtained when all 32 threads of a warp agree on
the execution path. Multiple warps are grouped in thread blocks, which execute
concurrently on one multiprocessor. Several blocks can be defined, and different
blocks will be automatically assigned to available multiprocessors.

Taking as example the architecture of the available C1060 card, there are 30
multiprocessors, each containing 8 cores. Each multiprocessor can host up to 8
blocks, with a maximum of 1024 threads. There are 16K registers per multipro-
cessor which are divided among all concurrent threads, and each thread can have
a maximum of 124 registers. There is a 16 KB block of shared memory on each
multiprocessor. To improve performance the size of each thread block and the
number of blocks must be carefully chosen. Too few threads and the performance
suffers because there are not enough active threads to use all resources and hide

1http://www.nvidia.com/object/tesla_product_literature.html

120

http://www.nvidia.com/object/tesla_product_literature.html

F.2. Some comments on the implemented algorithms

memory latency. Too many threads per block and the number of registers for each
thread is not enough to keep the necessary data locally. In the precomputation
phase of our algorithm, for the C1060 card we were able to maximize performance
when using 30 blocks of 128 threads each, meaning we need at least 3840 threads
running concurrently.

We also implemented the algorithms in the CPU, useful for calculating only a
few chains, which negate the efficiency of the GPU parallel calculation.

F.2. Some comments on the implemented algorithms
In this section we include some comments on the decisions taken for our im-

plementation, and a high level overview of some key points of the implementation.

After initial implementation tests, which allowed us to get acquainted with
CUDA programming, we decided to split the processing so that the kernel im-
plemented in the GPU calculates complete chains starting either from N starting
points (for the precomputation step) or from N points at any color. The paral-
lel programming would have been probably easier if only the step function was
calculated on the GPU, however we determined that, at least with the sample
parameters we used initially, the overhead of copying data to and from the GPU
card after each step was too high compared to the time it took to calculate each
step.

To maximize parallel execution, the calculation was divided into a section that
calculates a step of the hc function, in which all threads execute exactly the same
code, and a section where the distinguishing property is checked, the comparison
with a possible candidate is done if we are in the on-line phase, and changes
are made if necessary, either on the color if a distinguished point is reached, or
changing to a new chain if the current chain is finished. In this way for the most
expensive step, the calculation of hc, all 32 threads on a warp execute the same
calculations which is a necessary condition to maximize performance.

The calculation of the step function hc can be subdivided into the application
of function A5/1 and the multiplication with matrix Hc. The later is easily im-
plemented using binary XOR functions and does not merit further analysis. in
our implementation the calculation of A5/1 for both initial states as needed for
function hc takes approximately twice as long as the matrix multiplication.

For the calculation of A5/1, we implemented two versions, one which maximizes
performance when many chains are calculated in parallel, and another better suited
for the online phase when fewer chains must be calculated.

A5/1 using table lookups

In [15] Biryukov et al propose to use precomputed tables to advance A5/1.
Nohl et al initially used an implementation of A5/1 using search tables. We imple-
mented a version of A5/1 using tables to calculate, given 4 bits from each register

121

Appendix F. Description of the test infrastructure

starting at the current clocking bit, how much each register should advance, and
the corresponding output bits given the contents of the registers. The choice of 4
bits was given by the size of the shared memory on each multiprocessor, as tables
using more bits needed to be stored on main memory and the slower speed and
much higher latency of main memory negated all speed gains. Each A5/1 register
is stored on a 32 bit GPU register.

It takes approximately 45 integer/bitwise operations plus 6 table accesses to
advance A5/1 4 clockings, plus 15 extra operations and two extra table accesses
when the output bits must be calculated (that is, after the 100 initialization cicles
60 operations are needed at each clocking, and 8 table lookups).

Algorithm using bit slicing

Bit slicing is a technique that improves the performance of certain calculations
when several instances of the same algorithm can be calculated in parallel. It is
well suited to algorithms consisting mostly on bitwise logical computations. It
was initially presented by Eli Biham in 1997 [11] as a faster implementation of
DES, although he did not use the name “bit slicing”. Bit slicing was used in the
implementation of the tool “Kraken” by Nohl et al for the AMD implementation
of their attack, and we implemented our step function hc using this technique for
the CUDA cards.

As described in [56], “Bit-slicing regards a W-bit processor as a SIMD parallel
computer capable of performing W parallel 1-bit operations simultaneously”.

Taking as an example the implementation of A5/1, instead of storing the inter-
nal state of an instance of A5/1 using individual registers as we did in the previous
implementation, we use 64 32-bit registers to store the internal state of 32 A5/1
instances (the native register size in the available CUDA cards is 32 bits). Register
number n holds the nth bit of the internal state of the 32 A5/1 instances.

Let’s call lfsr1i the register that contains the ith bit from register R1 for the
32 instances of A5/1. In the same manner define lfsr2i and lfsr3i for R2 and R3
respectively.

Using this representation, to advance A5/1 we must first calculate the majority
value for the clocking bits of all A5/1 instances, and decide which registers should
advance. The registers that should advance for the 32 instances are calculated
using the following C code

u in t 32 t major i ty=(l f s r 1 8&l f s r 2 1 0) | (l f s r 1 8&l f s r 3 1 0) | (l f s r 2 1 0&l f s r 3 1 0) ;
u i n t 32 t c l ock1=˜(l f s r 1 8 ˆmajor i ty) ;
u i n t 32 t c l ock2=˜(l f s r 2 1 0 ˆmajor i ty) ;
u i n t 32 t c l ock3=˜(l f s r 3 1 0 ˆmajor i ty) ;

Next we calculate the feedback bit that will be fed if the register advances. For
example for R1:

l f s r t emp=l f s r 1 1 3 ˆ l f s r 1 1 6 ˆ l f s r 1 1 7 ˆ l f s r 1 1 8 ;

The action of advancing the registers consists in, for the bit in position j,
keeping the bit constant if the corresponding clock bit is zero, and substituting
the bit for the bit in position j − 1 if the register should advance. For j = 0, the

122

F.2. Some comments on the implemented algorithms

feedback bit substitutes the j−1 bit. After the 100 initialization steps, the output
bits are also calculated.

l f s r 1 1 8 &= ˜ c lock1 ;
l f s r 1 1 8 |= (l f s r 1 1 7 & c lock1) ;
· · ·
l f s r 1 1 &= ˜ c lock1 ;
l f s r 1 1 |= (l f s r 1 0 & c lock1) ;
l f s r 1 0 &= ˜ c lock1 ;
l f s r 1 0 |= (l f s r t emp & c lock1) ;
// past the 100 i n i t i a l i z a t i o n cyc l e s , c a l c u l a t e b i t output
i f (round>=100)

b i t s a l i d a [round−100]= l f s r 1 1 8 ˆ l f s r 2 2 1 ˆ l f s r 3 2 2 ;

Calculating ~clock1 once for each register, approximately 64×3+8 operations
must be performed to advance one clocking of A5/1 (withouth counting looping,
etc.), and as we are calculating 32 instances in parallel, each clocking of each in-
stance implies approximately 6-7 instructions and requires no table lookups in the
initialization step, and a two table lookups (for the 32 A5/1 instances) for multi-
plication with matrix H.

The main disadvantage of the bit slicing algorithm is the added parallelism,
as each thread is calculating 32 A5/1 instances simultaneously, and we need 3840
parallel threads, meaning we need at least 122,800 simultaneous A5/1 calculations.
This is not a problem for the precomputation step, but makes this algorithm unu-
sable for the on-line phase unless there are a large number of captured ciphertexts
to attempt inversion.

123

This page intentionally left blank

Bibliography

[1] 4G Americas. Mobile market shares by technology. http://www.4gamericas.
org/en/resources/statistics/statistics-global/, 2016. On-line re-
port. Last accessed Dec. 2016.

[2] Ross Anderson. A5 (was: Hacking digital phones), mes-
sage to the sci.crypt group on usenet. Can be read at
http://groups.google.com/group/sci.crypt/msg/ba76615fef32ba32. Last
accessed August 2014.

[3] Ross Anderson. On fibonacci keystream generators. In Bart Preneel, editor,
Fast Software Encryption, volume 1008 of Lecture Notes in Computer Science,
pages 346–352. Springer Berlin / Heidelberg, 1995. 10.1007-3-540-60590-8 26.

[4] Gildas Avoine, Pascal Junod, and Philippe Oechslin. Time-memory trade-offs:
False alarm detection using checkpoints. In Subhamoy Maitra, C. Veni Mad-
havan, and Ramarathnam Venkatesan, editors, Progress in Cryptology - IN-
DOCRYPT 2005, volume 3797 of Lecture Notes in Computer Science, pages
183–196. Springer Berlin / Heidelberg, 2005.

[5] Gildas Avoine, Pascal Junod, and Philippe Oechslin. Characterization and
improvement of time-memory trade-off based on perfect tables. ACM Trans.
Inf. Syst. Secur., 11:17:1–17:22, July 2008.

[6] Steve Babbage. A space/time trade-off in exhaustive search attacks on stream
ciphers. In European Convention on Security and Detection, IEE Conference
Publication No.408, 1995.

[7] Elad Barkan. Cryptanalysis of Ciphers and Protocols. PhD thesis, Technion
— Israel Institute of Technology, 2006.

[8] Elad Barkan and Eli Biham. Conditional estimators: An effective attack
on a5/1. In Bart Preneel and Stafford E. Tavares, editors, Selected Areas
in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages
1–19. Springer, 2005.

[9] Elad Barkan, Eli Biham, and Nathan Keller. Instant ciphertext-only cryp-
tanalysis of gsm encrypted communication. In Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa

http://www.4gamericas.org/en/resources/statistics/statistics-global/
http://www.4gamericas.org/en/resources/statistics/statistics-global/

Bibliography

Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 600–616. Springer, 2003.

[10] Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In Cynthia Dwork, editor, Advances in Cryptology
- CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages
1–21. Springer Berlin / Heidelberg, 2006.

[11] Eli Biham. A fast new DES implementation in software, pages 260–272.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[12] Eli Biham and Orr Dunkelman. Cryptanalysis of the a5/1 gsm stream cipher.
In Bimal Roy and Eiji Okamoto, editors, Progress in Cryptology —INDO-
CRYPT 2000, volume 1977 of Lecture Notes in Computer Science, pages
43–51. Springer Berlin / Heidelberg, 2000.

[13] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-
memory trade-offs with multiple data. In Bart Preneel and Stafford Tava-
res, editors, Selected Areas in Cryptography, volume 3897 of Lecture Notes
in Computer Science, pages 110–127. Springer Berlin / Heidelberg, 2006.
10.1007/11693383.8.

[14] Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs
for stream ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology,
ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
1–13. Springer Berlin / Heidelberg, 2000.

[15] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of
a5/1 on a pc. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Bruce
Schneier, editors, Fast Software Encryption, volume 1978 of Lecture Notes in
Computer Science, pages 37–44. Springer Berlin / Heidelberg, 2001.

[16] Johan Borst, Bart Preneel, Joos Vandewalle, and Joos V. On the time-
memory tradeoff between exhaustive key search and table precomputation.
In Proc. of the 19th Symposium in Information Theory in the Benelux, WIC,
pages 111–118, 1998.

[17] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementa-
tion of the gsm a5/1 and a5/2 “voice privacy” encryption algorithms, 1999.
http://cryptome.org/gsm-a512.htm.

[18] J. Eberspächer, H.J. Vögel, C. Bettstetter, and C. Hartmann. GSM - Archi-
tecture, Protocols and Services. John Wiley and Sons, Ltd, 2008.

[19] P. Ekdahl and T. Johansson. Another attack on a5/1 [gsm stream cipher]. In
Information Theory, 2001. Proceedings. 2001 IEEE International Symposium
on, page 160, 2001.

[20] P. Ekdahl and T. Johansson. Another attack on a5/1. Information Theory,
IEEE Transactions on, 49(1):284–289, Jan 2003.

126

Bibliography

[21] Victor Shoup et al. Ntl: A library for doing number theory. http://www.

shoup.net/ntl/, 2013. Last accessed October 2014.

[22] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); channel coding. TS 100 909 (3GPP TS
05.03), 2000.

[23] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); security-related network functions. TS 143
020 (3GPP TS 43.020), 2009.

[24] European Telecommunications Standards Institute. Universal mobile tele-
communications system (umts); specification of the 3gpp confidentiality and
integrity algorithms; document 2: Kasumi algorithm specification. TS 135
202 (3GPP TS 35.202), 2009.

[25] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); channel coding. TS 145 003 (3GPP TS
45.003), 2011.

[26] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); data link (dl) layer general aspects. TS 144
005 (3GPP TS 44.005), 2011.

[27] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); layer 1; general requirements. TS 144 004
(3GPP TS 44.004), 2011.

[28] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); mobile radio interface layer 3 specification;
radio resource control (rrc) protocol. TS 144 018 (3GPP TS 44.018), 2011.

[29] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); mobile station - base station system (ms -
bss) interface; channel structures and access capabilities. TS 144 003 (3GPP
TS 44.003), 2011.

[30] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); mobile station - base station system (ms
- bss) interface; data link (dl) layer specification. TS 144 006 (3GPP TS
44.006), 2011.

[31] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); multiplexing and multiple access on the radio
path. TS 145 002 (3GPP TS 45.002), 2011.

[32] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); physical layer on the radio path; general
description. TS 145 001 (3GPP TS 45.001), 2011.

127

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Bibliography

[33] European Telecommunications Standards Institute. Digital cellular telecom-
munications system (phase 2+); universal mobile telecommunications system
(umts); lte; mobile radio interface signalling layer 3; general aspects. TS 124
007 (3GPP TS 24.007), 2011.

[34] Timo Gendrullis, Martin Novotný, and Andy Rupp. A real-world attack bre-
aking a5/1 within hours. In Elisabeth Oswald and Pankaj Rohatgi, editors,
Cryptographic Hardware and Embedded Systems – CHES 2008, volume 5154
of Lecture Notes in Computer Science, pages 266–282. Springer Berlin / Hei-
delberg, 2008.

[35] Tim Güneysu, Timo Kasper, Martin Novotny, Christof Paar, and Andy
Rupp. Cryptanalysis with copacobana. IEEE TRANSACTIONS ON COM-
PUTERS, 57(11):1498–1513, 2008.

[36] Ian Goldberg, David Wagner, and Lucky Green. The (real-time) cryptanalysis
of a5/2. Rump Session, Crypto ’99, 1999.

[37] J. D. Golic. Cryptanalysis of three mutually clock-controlled stop/go shift
registers. IEEE Trans. Inf. Theor., 46(3):1081–1090, September 2006.

[38] Jovan Dj. Golic. Cryptanalysis of alleged a5 stream cipher. In Proceedings of
the 16th annual international conference on Theory and application of cryp-
tographic techniques, EUROCRYPT’97, pages 239–255, Berlin, Heidelberg,
1997. Springer-Verlag.

[39] M. Hellman. A cryptanalytic time-memory trade-off. Information Theory,
IEEE Transactions on, 26(4):401 – 406, jul 1980.

[40] Jin Hong. The cost of false alarms in hellman and rainbow tradeoffs. Designs,
Codes and Cryptography, 57:293–327, 2010. 10.1007/s10623-010-9368-x.

[41] Jin Hong and Sunghwan Moon. A comparison of cryptanalytic tradeoff
algorithms. Cryptology ePrint Archive, Report 2010/176, 2010. http:

//eprint.iacr.org/.

[42] Jin Hong and Sunghwan Moon. A comparison of cryptanalytic tradeoff algo-
rithms. Journal of Cryptology, 26(4):559–637, 2013.

[43] David Hulton and Steve. Cracking gsm. Technical report, Black Hat Briefing,
Washington DC, 2008, 2008.

[44] GSMA Intelligence. Gsma intelligence global data dashboard. https://

gsmaintelligence.com/, 2016. On-line report. Last accessed Jun 2016.

[45] Sylvain Munaut Karsten Nohl. Gsm sniffing. Presented at 27th Chaos
Communication Congress, 2010. https://events.ccc.de/congress/2010/

Fahrplan/events/4208.en.html.

[46] B. Keller, J. ; Seitz. A hardware-based attack on the a5/1 stream cipher. ITG
FACHBERICHT, pages 155–158, 2001.

128

http://eprint.iacr.org/
http://eprint.iacr.org/
https://gsmaintelligence.com/
https://gsmaintelligence.com/
https://events.ccc.de/congress/2010/Fahrplan/events/4208.en.html
https://events.ccc.de/congress/2010/Fahrplan/events/4208.en.html

Bibliography

[47] Byoung-Il Kim and Jin Hong. Analysis of the non-perfect table fuzzy rainbow
tradeoff. In Colin Boyd and Leonie Simpson, editors, Information Security
and Privacy, volume 7959 of Lecture Notes in Computer Science, pages 347–
362. Springer Berlin Heidelberg, 2013.

[48] Byoung-Il Kim and Jin Hong. Analysis of the perfect table fuzzy rainbow
tradeoff. J. Applied Mathematics, 2014, 2014.

[49] Ga Won Lee and Jin Hong. A comparison of perfect table cryptanalytic
tradeoff algorithms. Cryptology ePrint Archive, Report 2012/540, 2012.
http://eprint.iacr.org/.

[50] Daegun Ma and Jin Hong. Success probability of the hellman trade-off. Inf.
Process. Lett., 109(7):347–351, March 2009.

[51] Alexander Maximov, Thomas Johansson, and Steve Babbage. An improved
correlation attack on a5/1. In Helena Handschuh and M. Hasan, editors,
Selected Areas in Cryptography, volume 3357 of Lecture Notes in Computer
Science, pages 1–18. Springer Berlin / Heidelberg, 2005. 10.1007/978-3-540-
30564-4 1.

[52] Karsten Nohl. Attacking phone privacy. Presented at Black Hat USA 2010,
Las Vegas (July 2010), 2010. https://www.blackhat.com/html/bh-us-10/
bh-us-10-archives.html#Nohl.

[53] Martin Novotný. Time-area efficient hardware architectures for cryptography
and cryptanalysis. PhD thesis, Ruhr University Bochum, 2009.

[54] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729
of Lecture Notes in Computer Science, pages 617–630, Berlin, Heidelberg,
August 2003. Springer Berlin / Heidelberg.

[55] Thomas Pornin and Jacques Stern. Software-hardware trade-offs: Application
to a5/1 cryptanalysis. In Çetin Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2000, volume 1965 of Lecture
Notes in Computer Science, pages 155–184. Springer Berlin / Heidelberg,
2000.

[56] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R.
Rao, and Pankaj Rohatgi. Efficient Rijndael Encryption Implementation with
Composite Field Arithmetic, pages 171–184. Springer Berlin Heidelberg, Ber-
lin, Heidelberg, 2001.

[57] Andy Rupp. Computational aspects of cryptography and cryptanalysis. PhD
thesis, Ruhr University Bochum, 2008.

[58] Francois-Xavier Standaert, Aert Francois-xavier, Rouvroy Gael, Jean-Jacques
Quisquater, and Legat Jean-didier. A time-memory tradeoff using distinguis-
hed points: New analysis & fpga results, 2002.

129

http://eprint.iacr.org/
https://www.blackhat.com/html/bh-us-10/bh-us-10-archives.html#Nohl
https://www.blackhat.com/html/bh-us-10/bh-us-10-archives.html#Nohl

Bibliography

[59] Various. A5/1 cracking project webpage. Online. No longer accessible,
but archived at the Wayback Machine, https://web.archive.org/web/

20120426060932/http://reflextor.com/trac/a51, 2012.

130

https://web.archive.org/web/20120426060932/http://reflextor.com/trac/a51
https://web.archive.org/web/20120426060932/http://reflextor.com/trac/a51

Glossary

3GPP 3rd Generation Partnership Project. 2, 3

3GPP2 3rd Generation Partnership Project 2. 2

AMPS Advanced Mobile Phone System. 1

AuC Authentication Center. 7, 18

BCCH Broadcast Control Channel. 9

BSC Base Station Controller. 6

BTS Base Transceiver Station. 6, 8, 17

burst In GSM, a burst is the minimum unit of transmission, with a duration of
3/5200s . 131

COUNT In GSM, COUNT is a number calculated from the Frame Number FN,
used to seed the encryption algorithm for each new burst. 19, 35, 36

CRC Cyclic Redundancy Check, error detection and possibly correction codes
well suited for the detection of burst errors. 14, 131

DP Distinguished Point. 49, 65, 79

EIR Equipment Identity Register. 7, 8

ETSI European Telecommunications Standards Institute. 2, 32

FACCH Fast Associated Control Channel. 12

FDM frequency division multiplexing, a method to share a RF channel between
different users, by dividing the available frequency range in smaller ranges
and assigning a different sub-range to each user. 5

Fire code a type of CRC, error detection and possibly correction codes, well
suited for single burst detection or correction of errors. 14

Glossary

FN TDMA Frame Number, a counter that identifies each frame counting from
an arbitrary starting time, and running from 0 to FNMAX = (26 × 51 ×
2048)− 1 = 2715647. 9, 19, 20, 35, 36, 131

FPGA Field Programmable Gate Array. 31

GFLOP GigaFLOP, 109 floating point operations per second, a measure of the
computation capacity of a system. 94

GMSC Gateway Mobile Switching Center. 7

GPGPU General-Purpose Computing on Graphics Processing Units. 119

GPU Graphics Processing Unit. 31, 119–121

GSM Global System for Mobile communications. 1, 2, 4, 33, 101

GSM400 GSM adapted for the 450 MHz band. Has seen little use globally. 106

GSMA GSM Association. 5

HLR Home Location Register. 7

HSN Hopping Sequence Number. 10

IMEI The International Mobile Equipment Identity (IMEI) is an identification
of the mobile device (eg. phone) which should be unique. 7

IMSI The International Mobile Subscriber Identity (IMSI) is a unique identifica-
tion associated with a user of a cellular network. 7, 18

Kasumi Kasumi is a block cipher designed by the SAGE group of ETSI, based
on the Misty1 cipher which in turn was designed for Mitsubishi Electric in
1995. 2, 20

LAPDm LAPD mobile. 8, 106

LFSR Linear Feedback Shift Register. 20, 26

LSB Least Significant Bit. 39

LTE Long Term Evolution, an ETSI/3GPP standard for 4rd. generation cellular
systems. 2, 22, 33

MA Mobile Allocation. 10

MAIO Mobile Allocation Index Offset. 10

MCC Mobile Country Code. 8

MNC Mobile Network Code. 8

132

Glossary

MS Mobile Station, the phone or device used to connect to the GSM network. 6,
7, 17–20, 23

MSC Mobile Switching Center. 7, 18, 19

MSISDN Mobile Station Integrated Services Digital Network number, this is
a number uniquely identifying a subscription in a GSM or UMTS mobile
network. This is the “phone number” of the subscriber. 7

RF radio frequency. 5, 131, 133

RRC Radio Resource Control Protocol. 107

SACCH Slow Associated Control Channel. 12, 33, 34, 101

SDCCH Stand-alone Dedicated Control Channel. 12

SIM Subscriber Identity Module, a smart card which stores the subscriber’s
shared key with the network, and implements the algorithms needed for
authentication and session key derivation. 6–8, 18

SNR Signal-to-Noise-Ratio. 10

TCH Traffic CHannel. 11, 12

TCH/FS Full rate Traffic CHannel. 11, 34

TCH/HS Half rate Traffic CHannel. 11

TDM time division multiplexing, a method to share a RF channel by assigning
the whole frequency range to every user during different non-overlapping
time intervals. 5

TMDTO Time Memory Data Tradeoff, a kind of Time Memory Tradeoff opti-
mized for the case when the attacker has several captured texts available to
find out the key. 4, 30–33, 37, 41–43, 64, 79, 93, 96, 101, 102

TMSI Temporary Mobile Subscriber Identity. 7, 18

TMTO Time Memory TradeOff, a technique to invert a function by using pre-
computed tables to speed up the attack. 3, 4, 26, 29–31, 43, 50, 55, 56, 63,
68, 87, 88, 102, 119

TN Timeslot Number. 9

UMTS Universal Mobile Telecommunications System, 3rd. generation cellular
system standarized by the 3rd Generation Partnership Project (3GPP). 2,
22, 33

VLR Visitor Location Register. 7

133

This page intentionally left blank

List of Tables

5.1. Initial example of Hellman tables and Rainbow tables 56

7.1. Two parameter sets for TMTO validation 83
7.2. Extra invocations with truncation for parameter set 1 85
7.3. Extra invocations with truncation for parameter set 2 86
7.4. Effect of using section length vs. total length 86
7.5. Parameter sets calculated for M = 240 88
7.6. Calculated and estimated values for set 3 89
7.7. Calculated and estimated values for set 2 for different D values . . 89
7.8. Calculated and estimated values for a subset of set 2. D = 20, l = 17 90
7.9. Calculated and estimated values. D = 64, l = 1 and l = 2 90
7.10. Calculated and estimated values. D = 64, M = 225, l = 1 and l = 2 91
7.11. Calculated and estimated values for D = 16384, l = 1, s = 2 91

8.1. Parameter set for an attack with D ≈ 5 94
8.2. Parameter set for an attack with D ≈ 500 95
8.3. Parameter set for sample application 1 96
8.4. Parameter set for sample application 2 97

E.1. Values of Fmsc and s that minimize Fatc 117

This page intentionally left blank

List of Figures

2.1. GSM Architecture . 6
2.2. GSM frame hierarchy . 11
2.3. GSM normal burst . 11
2.4. TCH/FS multiframe . 13
2.5. SDCCH multiframe . 13
2.6. Authentication procedure . 19
2.7. Coding of COUNT . 20
2.8. A5/1 Cipher . 22

4.1. Coding and interleaving in the voice channel 40

5.1. Hellman’s table . 45
5.2. Chain Merges . 47
5.3. Rainbow table . 53

7.1. Fatc vs fpc for N = 239, F ps = 0.9 80
7.2. Number of colour boundary points - theory vs experimental - para-

meter set 1 . 81
7.3. Number of colour boundary points - theory vs experimental - para-

meter set 2 . 82
7.4. distribution of table size - parameter set 1 82
7.5. On-line cost vs. precomputation cost 88

A.1. Layer 1 header . 105
A.2. LAPDM header - unnumbered frames 106
A.3. LAPDM Address Field . 107
A.4. LAPDM Control Field . 107
A.5. Layer 3 header - Radio Resource Control 108

This is the last page
Compiled Tuesday 19th June, 2018.

http://iie.fing.edu.uy/

https://iie.fing.edu.uy/

	Acknowledgements
	Abstract
	Introduction and motivation
	Privacy in cellular telecommunications
	Organization of the rest of this work

	The GSM architecture and its security properties
	Brief description of the GSM architecture
	Identification of the subscriber
	The radio link in GSM
	Physical and logical channels
	Voice communication in the GSM network

	Channel Coding
	Coding for SACCH y SDCCH channels
	Coding for a TCH/FS channel

	GSM security
	The A5 family of stream ciphers
	The A5/1 algorithm
	The A5/2 algorithm
	The A5/3 algorithm

	Security considerations in GSM

	Known cryptographic attacks against A5/1
	Cryptoanalysis of A5/1
	Determining the key from A5/1 internal state
	Guess and determine attacks
	Correlation attacks
	Time Memory Data Tradeoff Attacks

	Outline for the rest of our work

	Two ciphertext-only attacks against A5/1
	The results of Barkan, Biham and Keller
	Description of the attack
	Practical details of the attack

	A new ciphertext only attack based on the redundancy in the Voice channel
	Initial comparison of the attacks

	Time Memory Data Tradeoff Attacks
	Hellman's Time Memory Tradeoff
	Distinguished Points
	Rainbow Tables
	Time Memory Data Tradeoffs
	Rainbow Time Memory Data tradeoffs

	Memory optimizations
	Comparison of the TMTO methods in the literature

	Extending Kim and Hong calculations to the multi target environment
	Summary of the notation
	Problem statement and assumptions
	Detailed description of the algorithm
	Preliminaries
	Analysis of the perfect fuzzy rainbow table tradeoff
	Success probability and precomputation effort
	Effect of memory optimizations
	Tradeoff Coefficient Adjustment

	Experimental validation of the results from the previous chapter
	Step function
	Validation for D=1
	Reproducing Kim and Hong's results
	Sample application to our reduced h function
	Comparing the accuracy of the estimations
	Effect of the ending-point truncation
	Effect of using the section length instead of total length
	Another practical scenario

	Calculations for D>1
	First validation samples
	Finding parameters for different D values
	Some initial cualitative observations

	Applying the fuzzy rainbow table TMDTO to the ciphertext only attack against A5/1
	Scenario 1
	Scenario 2. D 500
	Scenario 3

	Applicability of the attack and countermeasures
	Conditions for applying the TMDTO attack against A5/1
	Countermeasures

	Conclusions and future work
	Conclusions
	Future work

	Finding known bits in the SACCH Channel
	Layer 1
	Layer 2
	Layer 3
	Summary

	Difference in the state after feeding the key and COUNT, when COUNT varies
	Finding key KC from A5/1's internal state after key setup
	Calculating the parameters of the TMDTO
	Calculating the tradeoff parameters

	Table 1 from Kim's paper
	Description of the test infrastructure
	Programming on CUDA cards
	Some comments on the implemented algorithms

	References
	Glossary
	Table Index
	Figure Index

