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Dr. Álvaro Pardo (Revisor externo) Universidad Católica del Uruguay
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Whitout analysis, we can never have a synthesis.

Hans-Joachim Koellreutter

Se me ocurre que la verdad profunda de las cosas
es necesariamente difusa, imprecisa, inexacta; que
el esṕıritu se alimenta del misterio y huye y se
disuelve cuando lo que llamamos precisión o rea-
lidad intenta fijar las cosas en una forma deter-
minada - o en un concepto.

Mario Levrero - Desplazamientos

Aside from weighty technical problem of collective
coherent thinking, there is a very human, even
social need for sympathy from all the members to
bend for the common result.

Bill Evans - Improvisation in Jazz
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Abstract

In this work the problem of transient and steady-state component separation of
an audio signal was addressed. In particular, a recently proposed method for sep-
aration of transient and steady-state components based on the median filter was
investigated. For a better understanding of the processes involved, a modifica-
tion of the filtering stage of the algorithm was proposed. This modification was
evaluated subjectively by listening tests and objectively by an application-based
comparison. Also some extensions to the model were presented in conjunction with
different possible applications for the transient and steady-state decomposition in
the area of audio editing and processing.

Esta tesis trata sobre la separación de señales de audio en componentes tran-
sitorios y estacionarios. En particular, se estudia un método reciente para la
separación en componentes transitorios y estacionarios basado en la utilización de
filtros de mediana. Para una mejor comprensión de los procesos involucrados, se
propone una modificación a la etapa de filtrado. La modificación propuesta es eva-
luada de forma subjetiva por medio de test de escucha y objetivamente mediante
la comparación de los resultado de algunas aplicaciones. Además, se presentan ex-
tensiones al modelo en conjunto con diferentes aplicaciones en el área de la edición
y procesamiento de audio.
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Índice de figuras 76

vi



Chapter 1

Introduction



Chapter 1. Introduction

This thesis is about sounds and music. Music is one of the most sophisticated
forms of communication ever created by humans. It finds the more diverse ap-
plications, such as: social control, entertainment, religious rituals, marketing, and
aesthetic pleasure, among others. Therefore, its detailed study under all the avail-
able human knowledge becomes a worthwhile effort to undertake. The following
section attempts to illustrate the relation between music and technology, and the
importance of the collaboration among musicians and engineers. This thesis is an
effort in this direction.

1.1 Historical context
From the beginning the humans are trying to understand and explain the sounds.
The Marin Mersenne observation in [53] is worth quoting:

“The string struck and sounded freely makes at least five sounds
at the same time, the first of which is the natural sound of the string
and serves as the foundation for the rest.”

Marsenne could not accept that the movement of one string could produce more
than one sound. Joseph Sauveur finds the explanation for overtones [70], which he
poetically resumes as:

“When a point of a calm surface of water is slightly agitated, cir-
cular waves are formed and spread around it. When the surface is
agitated at another point, new waves are formed and mix with the for-
mer; they travel over the surface disturbed by the first wave as they
would do over a calm surface, so that they can be perfectly distinguished
in the mixture. What the eye perceives with respect to waves, the ear
perceives with respect to sounds or aerial vibrations, which travel si-
multaneously without troubling each other and produce very distinct
impressions...”

In the year of 1807 Joseph Fourier releases his memories “On the Propagation of
Heat in Solid Bodies”, where he presents the theory of the Fourier Series. Most
of the works in audio signal processing are based on this foundational result, and
this thesis work is not the exception.1

Jumping in time to the early 20th century, the first electronic musical instru-
ments were developed. The Dynamophone, also known as Thelarmonium, was
presented before the public in 1906: it weighted 200 tons and could delivery elec-
tronic music through the telephone network. Approximately at the same time the
musicians perceived the necessity of new instruments to express themselves. In
1913 the Italian composer Luigi Russolo wrote [68]:

1This section is based [11], a complete reading of which is highly recommended.
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1.2. Motivation

“Musical sound is too limited in qualitative variety of timbre. The
most complicated orchestra reduces themselves to four or five classes
of instruments differing in timbre: instrument played with the bow,
plucked instruments, brass-winds, wood-winds and percussion instru-
ments... we must break out of this narrow circle of pure musical sound
and conquer the infinite variety of noise sounds,”

and in 1916 the composer Edgar Varèse stated:

“Our musical alphabet must be enriched... We also need new in-
struments very badly... In my own works I have always felt the need
for new mediums of expression.”

The technological advances after the World War II2 inspired two different
aestethic movements, the musique concrète in Paris and the elektronische Musik
in Cologne—the first exploring the creative possibilities of the tape recorder while
the second the synthetic generation of sound by the utilization of electronic oscil-
lators. The new mediums of expression that Varèse advocated where created. In
brief, as stated in [10]:

“Instrument and music can only develop together - and not as they
please, but according to a concurrence: potential in the instrument,
and need, in the player.”

The popularization of computers in universities in the sixties and the technolog-
ical revolution brought by the introduction of the microprocessor in the seventies
were the foundation of software-synthesized music. In the following decades, with
the massification of personal computers, it became an indispensable tool in every
studio. The personal computer and the software that runs on it are the instruments
of today.

1.2 Motivation
Audio signal modeling has now decades of development and involves a vast liter-
ature. To increment knowledge of the state of the art in this discipline is one of
the principal motivations of this thesis. In particular, the transient and steady-
state component separation problem is addressed. Along this work, transient com-
ponents are considered as broad-band, with highly concentrated energy in time,
whereas steady-state components are considered as discrete, narrow-band, with
smooth temporal behaviour. Such components connect with musical concepts
such as beat and pitch, and some of these relations are explored in this work.
Also, existing sound processing techniques can benefit from the utilization of this
kind of decomposition. For instance, the generation of artifacts can be reduced in
noise-reduction applications and transients smearing can be avoided in time-scale

2And in particular, the end of the war.
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Chapter 1. Introduction

modifications. Finally, the separation makes possible the precise control of each
component separately, which enables artistic applications for musicians and com-
posers. To explore applications of the separation techniques proposed is another
motivation of the present work.

1.3 Thesis outline
This document follows with an introduction of the principal concepts associated
with time, frequency, and their relations in the signal processing context. Time,
frequency, and joint time-frequency representations are presented and their limi-
tations discussed in Chapter 2. Some of these representations are the foundations
on which the transient and steady-state component separation relies. Next, in
Chapter 3 the transient/steady-state models are defined, an algorithm based on
median filters is described, and a modification of its nonlinear filtering stage is
proposed. The Chapter 4 has two principal sections: first, comparative subjective
and objective evaluations between the proposed modification and the original algo-
rithm are conducted and described. In the second part, various applications of the
transient/steady-state decomposition are presented and illustrated with examples.
Finally, the document ends with some conclusions and ideas for future work in
Chapter 5.
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Chapter 2. Audio signal representation

2.1 Introduction
This chapter describes some of the principal concepts associated with time, fre-
quency and their relations in the signal processing context. Time, frequency and
joint time-frequency representation are presented and their limitations discussed.

2.2 Time-domain representations
Signals have various definitions: in the information theory context signal is de-
fined as an entity that carries information, in electrical engineering a signal is a
measurable quantity that varies in time. In particular, sound signals represent the
variation of the air pressure along time. Time representation of audio signals is
the most intuitive, simple and common.

Although simple, useful information can be derived from the time-domain rep-
resentation.

Given a signal s(t) its total energy can be defined as:

E =

∫ ∞
−∞
|s(t)|2dt. (2.1)

One can considerate |s(t)|2 as its instantaneous power, or density of energy
expressed along time. Thus the average time, that represents the time value around
which this density is distributed, can be defined as follows:

< t >=

∫ ∞
−∞

t|s(t)|2dt. (2.2)

In a similar way the standard deviation σt, which represents the effective du-
ration of the signal, can be calculated as:

T 2 = σ2t =

∫ ∞
−∞

(< t > −t)2|s(t)|2dt. (2.3)

In the upper plot of figure 2.1, the time evolution of the amplitude of an audio
signal is shown. More precisely it is a male voice singing the English word “so”.

2.3 Frequency-domain representation
The Fourier Analysis is one of the major tools of Mathematics and Physics. It
plays a key role in all areas of knowledge in which periodic phenomena take place
(Acoustics, Optics, Geophysics, Economy, etc.). Frequency representation often
reveals useful information for the comprehension of the underlying processes.

In equation 2.4, the Fourier Transform is applied to a signal s(t), and in 2.5
the inverse Fourier Transform is shown:

F [s(t)](ω) =

∫ ∞
−∞
s(t)e−jωtdt, (2.4)
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2.4. Time-Frequency representation
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Figure 2.1: Time and frequency representation of an audio signal. A male voice singing “so”.
Starts with the unvoiced consonant [s] and ends with the voiced vowel [o].

s(t) = F̄ [S(ω)](t) =
1

2π

∫ ∞
−∞
S(ω)ejωtdω. (2.5)

The signal s(t) is decomposed in complex exponentials (ejωt) of infinite dura-
tion and frequency ω, each one contributing a relative amount indicated by S(ω).

One can interpret |S(ω)|2 as the energy per unit frequency at frequency ω, and
then derive via Parseval’s theorem the total energy:

E =

∫ ∞
−∞
|S(ω)|2dω =

∫ ∞
−∞
|s(t)|2dt. (2.6)

If |S(ω)|2 represents the density, the averages can be calculated as was done in
the time domain. The average frequency represents the frequency around which
the energy is distributed, and is defined as:

< ω >=

∫ ∞
−∞

ω|S(ω)|2dω. (2.7)

The standard deviation σω, often called the root mean squared bandwidth
(denoted B), is calculated as:

B2 = σ2ω =

∫ ∞
−∞

(< ω > −ω)2|S(ω)|2dω. (2.8)

The figure 2.1 depicts the module in decibels of the Fourier Transform (lower)
and their correspondent time-domain signal (top).

2.4 Time-Frequency representation
Time-Frequency Representations are one of the most important tools in audio
signal processing. The historical development of the theory was driven by various
disciplines, such as Mathematics, Quantum Mechanics and Signal Processing.
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Chapter 2. Audio signal representation

2.4.1 Uncertainly principle
In signal analysis, the Heisenberg-Gabor uncertainly principle refers to the impos-
sibility of signals to be arbitrarily concentrated in time and frequency at the same
time. This result is very important because it imposes a theoretical limit to the
resolution of time-frequency representations. The original formulation was done
in the 1920s by Werner Heisenberg in the context of Quantum Mechanics, and by
Dennis Gabor after World War II in the Communication Theory field.

The demonstration assumes a signal with zero mean (both in frequency and
time) for simplicity, without loss of generality:

snew(t) = e−j<ω>(t+<t>)sold(t+ < t >). (2.9)

Equations 2.3 and 2.8 give an expression for the standard deviation of energy
in time and in frequency respectively.

T 2 = σ2t =

∫ ∞
−∞

(< t > −t)2|s(t)|2dt =

∫ ∞
−∞

t2|s(t)|2dt, (2.3)

B2 = σ2ω =

∫ ∞
−∞

(< ω > −ω)2|S(ω)|2dω = σ2ω =

∫ ∞
−∞

ω2|S(ω)|2dω =

∫ ∞
−∞
|s′(t)2|dt.

(2.8)
The product of duration (T) and bandwidth (B) is:

B2T 2 = σ2t σ
2
ω =

∫ ∞
−∞

t2|s(t)|2dt
∫ ∞
−∞

ω2|S(ω)|2dω. (2.10)

Applying the Schwarz inequality:

B2T 2 =

∫ ∞
−∞
|ts(t)|2dt

∫ ∞
−∞
|s′(t)|2dt ≥

∣∣∣∣∫ ∞
−∞

ts∗(t)s′(t)dt

∣∣∣∣2 = |I|2. (2.11)

Integrating by parts, and recalling equation 2.1, the integral I can be expressed
as:

I = t|s(t)|2|∞−∞ −
∫ ∞
−∞
|s(t)|2dt−

∫ ∞
−∞

ts(t)s′∗(t) = t|s(t)|2|∞−∞ − E − I∗. (2.12)

Supposing that x(t) decays fast enough to assure that t|x(t)|2 vanishes at
infinity (which is satisfied if x(t) has compact support)

|I| ≥ Re(I) =
E

2
(2.13)

Considering normalized signals (E = 1), and combining equations 2.11 and
2.13 the Heisenberg-Gabor uncertainly principle is

TB ≥ 1

2
(2.14)
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2.4. Time-Frequency representation

Figure 2.2: Representation of three Gaussian sinusoidal atoms: time, frequency and joint time
frequency representations.

In the figure 2.2 the energy distribution in the T-F plane of three different
atoms is shown. The Heisenberg-Gabor uncertainly principle is not the only pos-
sible approach to mathematically describe the Fourier duality, the Slepian-Pollak-
Landau [76] theory addresses the restriction of energy in compact support in time
and frequency.

2.4.2 Short-Time Fourier Transform
In the introduction of his fundamental article “Theorie et Applications de la Notion
de Signal Analytique” Jean-Andre Ville illustrates the drawbacks of the Fourier
analysis in an unbeatable manner:

“If we consider a fragment containing many measures (which is the
least we can demand), and one note, la for example, appears once in
the fragment, the harmonic analysis will present us with the amplitude
and the phase of the corresponding frequency, without locating the la
in time. Now then, it is obvious that in the course of the fragment
there will be instants when the la will not be heard. Nevertheless,
the representation is mathematically correct, because the phases of
the notes near la acts to destroy this note by interference when la is
not heard, and to reinforce it, also by interference, when it is heard;
but if there exists in this concept a cleverness which does honor to

9



Chapter 2. Audio signal representation

mathematical analysis, there is also a distortion of reality: in fact,
when la is not heard, the true reason is that the la is not emitted.”

As seen in section 2.3, the Fourier Transform decompose signals as a combina-
tion of sinusoids that last forever in time. Music never presents a strictly periodic
behaviour, by contrast its essence is the irregular variation over time. Although
irregular, a lot of musical signals observed locally present a pseudo-periodic be-
haviour.

The Short-Time Fourier Transform (STFT) represents signals in the form of a
time-frequency map commonly called spectrogram.

Figure 2.3: This diagram summarises the Short-Time Fourier Transform calculation.

The definition of the continuous-time STFT of a function x(t) ∈ L2(IR) with
a given window g(t) with unit area is:

STFTg
x(t, ω) =

∫ ∞
−∞

x(t′)g(t′ − t)ejωt′dt′. (2.15)

The STFT of the time-dependant signal x(t) is a linear transformation that
depends on the chosen window g(t).

Analysis window
The analysis window g(t) is generally an even function with positive real values
concentrated at time zero, and its Fourier Transform also has its maximum at zero

10



2.4. Time-Frequency representation

frequency. The analysis window leaves unchanged the signal value at some instant
t′ whereas attenuates the signal at distant times. One is looking at an excerpt of
the entire signal, as is done with a landscape and a real window.

The STFT can be considered as a projection of the signal x(t) into a family
of atoms generated by time translations and frequency modulations of a given
window g(t):

gt,ω(t′) = g(t′ − t)e−jωt′ . (2.16)

If g(t) is an even, real-valued function, atom’s energy is concentrated in t, ω.
Figure 2.2 shows three of such atoms with different time and frequency centres,
and energy concentrations in the T-F plane.

Energy Conservation

The energy Ex of the signal can be calculated by integrating the STFT:

Ex =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞

∫ ∞
−∞

STFT2(t, f)dfdt. (2.17)

This allows one to interpret the STFT as the distribution along the T-F plane
of the density of energy. The demonstration of this property can be consulted in
[29].

STFT Synthesis

The reconstruction formula given a STFTg
x of a signal x is:

x(t′) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

STFTg
x(t, ω)ejωt

′
dωdt. (2.18)

Discrete Fourier Transform

In practice, the spectral analysis for audio signals is done in the discrete time
domain. In this domain, the STFT is defined as:

Xn[ejωk ] =

∞∑
m=−∞

w[n−m]x[m]e−jωkm. (2.19)

Equation 2.19 has two equivalent interpretations: the overlapp-add (OLA) and
the filter bank summation (FBS).

The OLA interpretation consist in considering Xn[ejωk ] as a function of n, in
such a way that the STFT represents the Fourier transform of the moving signal
centered (and windowed) at time n.

In the filter bank summation interpretation, the signal x[m] is first frequency
shifted by e−jωkm so that the frequency ωk is moved to zero, and then low-pass
filtered by a filter with impulse response w[n].

11



Chapter 2. Audio signal representation

2.4.3 Constant-Q Transform
A representation with fixed frequency resolution (such as the STFT) has some
limitations when applied to music related signals. For example, if one considers
the register of a standard 88 key piano1, the first semitone is 1.6352-Hz wide,
while the last one is 235-Hz wide. To discriminate two notes whose fundamental
frequencies are separated by one semitone, a window with more than 27000-sample
2 duration is needed. When using a constant resolution representation its results
in oversampling at high frequencies. In 1991 Judith Brown presented in [4] a
constant Q spectral transform, where Q is the ratio of the center frequency to the
bandwidth of each frequency bin.

The quality factor Q for a quarter-tone resolution is calculated as:

Q =
f

δf
=

f

( 24
√

2− 1)f
≈ 34, (2.20)

N [k] =
S

δfk
=

S

fk
Q. (2.21)

The frequency resolution is proportional to the windows size, so a variable
resolution representation must have variable windows lengths. In the constant Q
transform (CQT), the k-th frequency component is 2πQ

N [k] , and the window length

is determined by N[k].
The constant Q transform is defined as:

X[k] =
1

N [k]

N [k]−1∑
n=0

W [k, n]x[n]e
−j2πQn
N [k] . (2.22)

In this case of quarter-tone resolution, the window lengths became N [k] =
Nmax

(21/24)k
. Time-frequency plane tiling for the CQT and two STFT with different

resolutions are illustrated in Figure 2.4.

Time
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TimeTime

Figure 2.4: Tiling of the time-frequency plane: STFT (left and center) and CQT (right).

Figure 2.5 depicts two spectrograms, one calculated using the STFT and the
other with the CQT. The CQT keeps a good compromise between time and fre-
quency resolution along the spectrum: higher resolution at low frequencies at the

1The piano register extends from A0 (27.5 Hz) to C8 (4186.01 Hz).
2Considering a sampling rate of 44100 samples per second.
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2.4. Time-Frequency representation

cost of time resolution, and higher resolution at high frequencies at the cost of
frequency resolution.

fre
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Figure 2.5: CQT and STFT spectrograms; frequency axis in logarithmic scale.

2.4.4 Sinusoidal Modeling
Spectral modeling can be seen as the task of decomposing a signal in its constituent
components with some known behavior in time and frequency.

In [52] a sinusoidal model for audio and speech waveforms was presented. This
model represents an audio signal x[n] as a sum of time-varying sinusoids:

x[n] =
K∑
k=1

Ak[n] cos(ωk[n].n+ θk[n]), (2.23)

where Ak[n], ωk[n] and θk[n] represent the amplitude, frequency and phase of the
k-th partial. The signal is divided and processed in frames, and the model assumes
that the sinusoid’s parameters remain constant along the frame.

The Sinusoidal Model can be directly related to the STFT, considering only
the spectral components with a pseudo steady-state temporal behaviour. This
pseudo steady-state tonal behaviour is commonly present in the sound of pitched
musical instruments after their attack phase [73].

One method to obtain the model parameters is to search for the peaks of the
power spectrum (computed via DFT) of each windowed frame. The frequency ωk
is related with the index k of the DFT sample which corresponds to a peak of the
power spectrum: ωk = 2πkFs

N , where Fs is the sampling rate and N the window
size.

The complex value of the spectral peak gives an estimate of its amplitude and
phase respectively. Figure 2.6 illustrates the steps involved in the algorithm for
sinusoidal modeling analysis and synthesis.

The number of peaks changes along frames due to several reasons: audio signals
present pitch changes and/or rapidly varying spectrum in addition to side-lobe
interactions due to windowing. Aiming at the reduction of spurious peaks a set
of heuristic rules may be applied in order to group coherent peaks. In Figure 2.7
some of those rules are illustrated.
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Chapter 2. Audio signal representation

Figure 2.6: Analysis/Synthesis block diagrams of Sinusoidal Modeling (adapted from figure of
original article [52]).

There are many methods to estimate the frequency and phase of the spectral
peaks in the literature, among which: frequency reassignment [2], interpolation
[28] and signal derivative [50]; for a detailed comparison see [30].

Figure 2.7: Assignment of peaks to tracks is decided by proximity (adapted from [74]). Tracks
may be discontinued if not find adequate peaks for several frames; and new tracks may be
created if a series of coherent peaks is find for several frames.

Sinusoids-plus-Noise Model
Musical signals are not always properly modeled by slow varying sinusoids. Mod-
eling wideband noise as a sum of sinusoids results in hundreds of short-duration
and closely spaced partials.

A sinusoids-plus-noise model is proposed in [72] and [73]. In sinusoids-plus-
noise models two components are present: the deterministic part of the signal,
formed by the sum of slowly varying partials; and the stochastic part of the signal,
e[n]:

14



2.4. Time-Frequency representation

x[n] =

K∑
k=1

Ak[n] cos(ωk[n].n+ θk[n]) + e[n]. (2.24)

The stochastic part e[n] can be described as filtered white noise:

e[n] =

∞∑
k=−∞

hn[n− k]u[k], (2.25)

where u[k] is white noise and hn[k] is the impulse response of the time-varying
frequency shaping filter at frame n.

For example, wind-driven instruments are properly modeled by this model: the
sinusoidal part is associated with the self-sustained oscillation, while the noise-like
residual is produced by the turbulent airflow.
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Figure 2.8: Sinusoidal modeling resynthesis.

The analysis procedure first detects partials by studying the time-varying spec-
tral characteristics of the sound and represents them as time-varying sinusoids.
These partials are then subtracted from the original sound and the remaining
“residual” is represented as a time-varying filtered white noise component. Figure
2.8 depicts the original and resynthesized signals along with its separated sinu-
soidal and residual components, and Figure 2.9 shows the spectrogram and the
sinusoidal tracks for the previously described word “so”.
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Figure 2.9: Spectrogram with sinusoidal tracks superimposed for word “so”. One can observe
that the voiced part is well modeled by the sinusoidal tracks.

Sinusoids plus Noise plus Transients Model

The previously presented models implicitly assume that the signal evolves slowly
over time, and consequently also the model parameters. This assumption does not
always holds; a clear example is the sharp attack of a strumming note. Transients
modeled as short-time noise components result in distorted and poorly defined
attacks. Moreover, in applications where transients have to be processed in a
different manner3 a model for transient sounds needs to be defined [51, 83, 18].

Transient Modeling Synthesis

The first proposal for a low-order parametric model for transients was presented
in [83], the so called Transient-Modeling Synthesis (TMS). This model is inspired
in the isomorphic duality between well-developed sines and transients. Transient
components (like note attacks, or drum sounds) have an impulsive nature in the
time domain; then, due to the time-frequency duality, an oscillatory behaviour
can be observed in frequency. Thus, the tracks obtained by performing sinusoidal
modeling in the frequency domain, represent the transients in the time domain.

Mapping from the time domain to the desired frequency domain is done us-
ing the discrete cosine transform (DCT). For n, k ε [0, 1, ..., N − 1] one possible
definition of the DCT is:

3Time-frequency modifications and high-quality coding are examples of this.
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2.4. Time-Frequency representation

C(k) = β(k)

N−1∑
n=0

x(n) cos

[
(2n+ 1)kπ

2N

]
,

where β(k) =
√

1/N for k = 1, and β(k) =
√

2/k otherwise.
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Figure 2.10: Left: Time domain impulse/pulse. Right: Spectra

In Figure 2.10 two synthetic signals and their correspondent spectral contents
are displayed. In the upper plot a Kronecker delta in time (left) corresponds to a
sinusoid in frequency (right). The bottom plots illustrate a more realistic example,
an exponentially damped sinusoidal in time shows a clear sinusoidal nature in
frequency.

The analysis algorithm begins by taking non-overlapping blocks of the input
signal, (In [83], the authors recommend one second of audio duration per block).
The DCT is performed on each block and then sinusoidal modeling is applied. The
peak tracking algorithm in the sinusoidal modeling stage can be favoured if one
analyzes the DCT frame backwards. The model output is composed by amplitude
(Akl,m), frequency (F kl,m) and phase (φkl,m), where l is the frame, m the DCT block
and k the sinusoid index.

Dictionary-based Matching Pursuit

Orthogonal bases (e.g. the STFT seen in section 2.3) are a class of dictionaries
designed to be optimal in the sense of quantity of elements. A natural drawback
of these dictionaries is the high number of active elements needed to represent a
signal.

Minimizing the number of active elements as design criterion results in over-
complete dictionaries. In [49] the Matching Pursuit algorithm is presented as a
tool for solving the problem of decomposing a signal into the elements of over-
complete dictionaries. It is an iterative algorithm that, at each step, searches in
the dictionary for the element that captures most of the signal energy.
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Chapter 2. Audio signal representation

A method to separate an audio signal into tonal and transient components is
proposed in [75]. The main dictionary is the result of concatenating two dictio-
naries of Gabor atoms. A time-concentrated atom dictionary captures the energy
of the transient, while a frequency-concentrated dictionary captures the tonal in-
formation as illustrated in figure 2.11. Figure 2.12 shows the decomposition of a
glockenspiel sound using these two dictionaries.

Figure 2.11: Atoms from two Gabor Dictionaries with different time-frequency behavior.

2.4.5 Non-Negative Matrix Factorization NMF
Non-negative Matrix Factorization (NMF) is a linear algebra and signal-processing
technique with multiple applications [45]. With the NMF it is possible to obtain a
linear representation of reduced dimension with a part-based decomposition. Part-
based decompositions plays a fundamental role when the interpretation of physical
processes depends on their positiveness.

Given a non-negative matrix V with dimensions F ×N , the NMF looks for the
best approximate factorization:

V ≈WH, (2.26)

where W and H are non-negative matrices with dimensions F × K and K × N
respectively. Usually K is chosen such that FK+KN << FN in order to achieve
an effective reduction of the problem’s dimensionality.

18



2.4. Time-Frequency representation

−1

0

1
Signal waverform and STFT

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

1 2 3 4 5 6
 0

 5

10

15

20

−1

0

1
Signal waverform and transient content

1 2 3 4 5 6

 0

 5

10

15

20

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

−1

0

1
Signal waverform and tonal content

1 2 3 4 5 6

 0

 5

10

15

20

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

Figure 2.12: Matching Pursuit with different Gabor dictionaries: decomposition of a glocken-
spiel sound.

Figure 2.13: Matrix decomposition diagram.

The role of W and H is application dependant. In the context of source
separation, matrix W represents a dictionary of atoms, while H represents the
mixing matrix.

The NMF factorization problem is equivalent to the minimization with restric-
tions defined as:

min
W,H≥0

D(V |WH), (2.27)

where the cost function D(V |WH) is defined as:
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D(V |WH) =
F∑
f=1

N∑
n=1

d([V ]fn|[WH]fn) (2.28)

and function d(x|y) is a scalar divergence.
Multiple divergences with different properties can be utilized with the NMF,

and the best choice depends on the application. The Euclidean (Eq. 2.29) and the
Kullback-Leibler (Eq. 2.30) are two common divergences.

dEUC(x|y) =
1

2
(x− y)2 (2.29)

dKL(x|y) = x log(
x

y
)− x+ y (2.30)

NMF in Audio Applications
In the context of audio applications, the NMF algorithm is commonly applied to
the magnitude spectrogram4 [86].

The spectrogram is then decomposed in positive parts. The column wk of the
dictionary matrix W represent the spectrum of the k-th base element, while the
correspondent row hk of the activation matrix H represents the gain coefficient
along time frames. An important property is that the base elements wk belong to
the same space as the signal spectrum.

The product of the k-th column of W by the k-th row of H gives us an ap-
proximation of the spectrogram of the k-th source Xk.

Xk = wk.hk (2.31)

To account for musical structure (e.g. time continuity, frequency sparseness),
regularization can be added to the model [22], [85].

4Any non-negative T-F representation can be utilized with the NMF; the spectrogram
is the most common.
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Chapter 3. Transient and Steady-State separation

3.1 Model of transient and steady-state components
To precisely and meaningfully discriminate transient and steady-state components
is not an easy task. Along this work, transients components are considered as
broad-band with highly concentrated energy in time, whereas steady-state com-
ponents as discrete narrow-band with smooth temporal behaviour.

Several works have addressed this problem. In [81] a feature-based classifica-
tion of components extracted via Independent Component Analysis is presented.
In [32], the authors propose a two-stage processing, involving a non-negative matrix
factorization to decompose the spectrogram into components having fixed spec-
trum with time-varying gain, and a support vector machine to classify them as
either pitched or drum components. Recently, various separation methods based
exclusively in the anisotropy property were proposed [60, 23].
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Figure 3.1: Transient and steady-state components of a glockenspiel sound.

3.2 Separation Methods
For an audio signal s(t) with power spectrogram |S(n, k)|2, the transient and
steady-state separation problem consists in finding the transient and the steady-
state spectrograms St(n, k) and Sss(n, k) respectively that satisfy the following
properties:

• |Sss(n, k)| sparse in frequency and smooth in time,
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3.2. Separation Methods

• |St(n, k)| sparse in time and smooth in frequency,

• |St(n, k)|+ |Sss(n, k)| = |S(n, k)|,

This problem can be formulated as the minimization of a cost function J with
constraints (as suggested in [65]) as follows:

J(|St|, |Sss|) =
∑
n,k

D [S(n, k), Sss(n, k) + St(n, k)]

+
1

2σ2ss

∑
n,k

(|Sss(n− 1, k)| − |Sss(n, k)|)

+
1

2σ2t

∑
n,k

(|St(n, k − 1)| − |St(n, k)|),

(3.1)

with the restrictions: |St| ≥ 0 and |Sss| ≥ 0 and being D a divergence. The first
term measures the distance between |S(t)| and |St| + |Sss|, the second penalizes
the temporal discontinuity and the third measures the frequency smoothness. The
values σt and σss , determines the relative weights of the transient and steady-state
components in the cost function, respectively.

These components can be seen in the spectrogram as vertical and horizontal
ridges, respectively. Figure 3.2 shows a typical spectrogram, computed from a
scale played with a glockenspiel. The notes attacks exhibit a transient behaviour;
by contrast, the sustained part is clearly steady-state.
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Figure 3.2: Spectrogram of a glockenspiel (N=4096,Hop=256).
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Chapter 3. Transient and Steady-State separation

The minimization of the previous cost function can be thought as a non-linear
filter which smooths the original spectrogram. It filters out the horizontal ridges,
corresponding to transients, to obtain the magnitude of the steady-state spec-
trogram |Sss|, and removes the vertical ridges, which corresponds to partials of
steady-state components, to obtain the magnitude of the transient spectrogram
|St|.

3.2.1 Median Filter
As seen in figure 3.2, along the time axis the transient components are atypical
events, and thus can be considered as outliers, just as steady-state components can
be considered outliers along the frequency axis. A common procedure to eliminate
outliers is to use of a median filter.

Median filters are commonly used in signal processing for denoising, e.g. re-
moving salt and pepper noise in image filtering [63] or removing noise from digitized
vinyl records in audio [39], [37]. The median filter consist in sliding a window of
size 2N + 1 along the signal, replacing the centre value of each window by the
median of the samples within the window itself.

In [23] the utilization of median filters in the transient and steady-state com-
ponent separation problem is proposed.

�����
����	��
���

�� � ���	����


�	�
�

������ �� ���

������

����

����������
����	��
����

����	��
����
����

�

�

�������
����	��
���

���

���
t

ss

t

ss

ss

t

Figure 3.3: Diagram of the entire process.

The general procedure is illustrated in figure 3.3, and can be decomposed in
four stages as follows:

1. Obtain a time-frequency representation for the digital audio signal, typically
a spectrogram computed via the Short-Term Fourier Transform (STFT):

S(n, k) =
∑
i

x(i).w(i− nT )e−
j2πik
N . (3.2)

2. Apply a median filter to the power spectrogram S along the frequency axis
to eliminate steady-state components and obtain a “transient emphasized”
spectrogram St, as well as along the time axis to eliminate transient peaks
and obtain a “steady-state emphasized” spectrogram Sss:

St(n, k) = median(|S(n− l : n+ l, k)|), (3.3)

Sss(n, k) = median(|S(n, k − l : k + l)|). (3.4)
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3. From the emphasized spectrograms, calculate two soft masks based on the
Wiener filter, given by:

Mt =
S2
t

S2
ss + S2

t

, Mss =
S2
ss

S2
ss + S2

t

. (3.5)

4. Multiply each mask by the original complex spectrogram, and compute the
Inverse Short-Time Fourier Transform 1 (ISTFT) of the results to obtain,
respectively, the transient signal xt and the steady-state signal xss.

Procedure 1 Median Filter Separation

Input: s(n), Nss, Nt
2

Outputs: sss(n) and st(n)
1: S(n, k) = STFT [s(n)]
2: for i = 1 to nmax do
3: for j = 1 to kmax do
4: Ŝss(i, j) = median[|S(i−Nss : i + Nss, j)|]
5: Ŝt(i, j) = median[|S(i, j −Nt : j + Nt)|]
6: end for
7: end for
8: Mt =

S2
t

S2
ss+S

2
t

9: Mss = S2
ss

S2
ss+S

2
t

10: St(n, k) = Mt. ∗ S(n, k)
11: Sss(n, k) = Mss. ∗ S(n, k)
12: st(t) = ISTFT (St(n, k))
13: sss(t) = ISTFT (Sss(n, k))

The method allows for perfect reconstruction (x = xss + xt). Furthermore,
the processes involved are very simple, thus allowing an efficient implementation.
Figure 3.4 presents a spectrogram and the signals involved in the filtering stage, the
time evolution of a fixed bin and the spectra of a frame. The complete pseudo-code
for the algorithm is presented in Procedure 1.

3.2.2 SSE Filter
In [43] a nonlinear filter for stochastic spectrum estimation was presented, and
yielded very good results. The main idea is to remove the predominant partials
to obtain the stochastic spectrum estimation. We propose using this filter as
an alternative to the median filter utilized in the second stage of the procedure
described in Section 3.2.1.

1The ISTFT is calculated via an Overlap-and-Add procedure.
2Nss and Nt are the steady-state and transient median filter lengths respectively.
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Figure 3.4: Glockenspiel spectrogram (center), time evolution for a fixed FFT bin (bottom)
and spectral content of a frame (right).

The SSE algorithm can be resumed as follows:
Firstly, the reciprocal R of each element of the power spectrogram is calculated,

turning the peaks of S(n, k) into valleys of R(n, k):

R(n, k) = S−1(n, k). (3.6)

Then, a moving average (MA) filter is applied along the time axis to filter
the transient components, and along frequency bins to eliminate the steady-state
components. The MA applied to a valley in R (originally a peak in S) tends to
make it disappear. The estimated reciprocals of the desired “transient emphasized”
and “steady-state emphasized” spectra are given respectively by

R̂t(n, k) =
1

Mt + 1

Mt/2∑
i=−Mt/2

R(n, k + i), (3.7)

R̂ss(n, k) =
1

Mss + 1

Mss/2∑
i=−Mss/2

R(n+ i, k). (3.8)

The respective stochastic spectrum estimates (SSE) are then computed as

St(n, k) = R̂−1t (n, k), Sss(n, k) = R̂−1ss (n, k). (3.9)
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Procedure 2 SSE Filter

Input: S(n, k),Mss,Mt
3

Outputs: Sss(n, k) and St(n, k)
1: R(n, k) = S−1(n, k)
2: for i = 1 to nmax do
3: for j = 1 to kmax do
4: R̂ss(i, j) = 1

Mss+1

∑Mss/2
m=−Mss/2

R(n + i, k)

5: R̂t(i, j) = 1
Mt+1

∑Mt/2
m=−Mt/2

R(n, k + i)
6: end for
7: end for
8: St(n, k) = R̂−1t (n, k)
9: Sss(n, k) = R̂−1ss (n, k)

The complete pseudo-code for the algorithm is presented in Procedure 2.

Figure 3.5: Steps of the Stochastic Spectral Estimation applied along the time axis. Based on
[43].

Figure 3.5 illustrates the process along time for a fixed frequency bin and in
Figure 3.6, a typical spectrogram, computed for an excerpt of a western popular
song with piano, drums and vocal, is shown. In the first three seconds, when
only the instruments are present, one observes their respective steady-state and
transient behaviors. Afterwards, the voice, presenting a deep vibrato, enters.
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Figure 3.6: Left: Spectrogram of a excerpt from a popular music song. Middle: Spectrogram
with transient components. Right: Spectrogram with steady-state components.

3Mss and Mt are the steady-state and transient SSE filter lengths respectively.
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Chapter 3. Transient and Steady-State separation

One can observe in the first three seconds (when only drums and piano are
present) that the separation is as expected, meeting the transient and steady-state
models as defined, respectively. The deep vibrato voice that enters before second
three is outside the defined model, and thus it not completely modeled by transient
or steady-state components.

3.3 Extensions
Some extensions can be proposed to overcome limitations of the previously de-
scribed methods. The following sections present three extensions of the algorithm
which allows the model to best fit some particular signals or applications.

3.3.1 Iterative Filtering
The previously described procedure separates the input signal s(n) into two signals
st(n) and sss(n) containing the transient and steady-state components respectively.
A third kind of component, the residual component sres, can be defined as the non
steady-state and non transient each time the output signals sss(n) and st(n) are
re-filtered. Grouping the components that do not fit in the transient and steady-
state models as the residual, allows the isolation of the steady-state and transient
components that fit the models in their respective signals.

Figure 3.7 illustrates the process and figure 3.8 shows the results for different
numbers of iterations.

Figure 3.7: Diagram of the iterative process.

As the number of iterations increases, the residual component extracted at each
step tends to decrease. One possible way to determine the number of iterations is
by using psychoacoustic models to find when the residual increment is perceptually
irrelevant [33, 34].

When the model fits very well to the signal to be analysed, the utilization
of this iterative processing gives good results in the separation of transient and
steady-states components. As in the original method, the addition of the three
separated components, st, sss and sres results in the original signal s.
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3.3. Extensions

Figure 3.8: Steady-state, transient component and residual extraction for different number of
iterations.

3.3.2 Relaxed components
Modeling steady-state components as horizontal ridges in the spectrogram can be
too restrictive in some cases. As an example, free intonation instruments, such as
the human voice, which can change its pitch in a slow and continuous way over
time (glissando, vibrato, etc.) should be included in the steady-state part of the
signal. The voice with vibrato effect in figure 3.6 is an example.

An approach to relax the definition of steady-state component to permit slow
variations in the evolution of partials, is to define a time-frequency window as
depicted in figure 3.9 for each element of the spectrogram. First the maximum
along frequency is applied, and then the filtering stage (median or SSE) is applied.

In Figure 3.10, the spectrogram of a synthetic signal is shown together with
the respective decompositions. The signal is the superposition of a periodic signal
with fundamental frequency of 400 Hz and exhibiting sinusoidal vibrato to two
clicks at instants 0.3 s and 0.6 s. The figure shows that the original procedure
is unable to follow the vibrato, thus energy from the higher partials is present in
the transient component, while in the proposed extension the presence of vibrato
in the transient-component signal is just noticeable. In [47] a similar approach is
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Chapter 3. Transient and Steady-State separation

Figure 3.9: Time-frequency kernel.

applied to the source separation task.

Figure 3.10: left) Spectrogram of a superposition of a periodic signal with vibrato to two clicks;
right) Comparison between the original and the modified decompositions.

3.3.3 Sub-Band processing
The sub-band processing strategy is commonly utilized in audio processing and
coding. The input signal x[n] is splitted by a bank of filters, each sub-band is
properly processed, and then the signal is filtered and recombined to obtain the
output signal y[n]. Figure 3.11 illustrates the process.

Figure 3.11: Diagram of the sub-band processing schema.

The algorithms presented in the previous section can be favored by sub-band
processing. The TF-representation can be selectively adjusted depending on the
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3.4. Reconstruction method

frequencies involved; typically window lengths utilized at low frequencies tend to be
longer than at high frequencies to allow better discrimination. Another advantage
is the flexibility in the choice of the process parameters: the length of the median
filter or the moving average in the SSE can be independently adjusted for each
band. The obvious disadvantage is the increased complexity of the process.

In figure 3.12 the frequency response of a 4-band filter-bank is shown: the
stop-band attenuation of each filter is 60 dB, and the passband ripple is less than
5%.
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Figure 3.12: Filters response for the Filter-bank analysis.

In figure 3.13 the result employing different window and filter lengths for each
band is shown. The window lengths are [4096 2048 1024 1024] samples and the
lengths of the moving average filters of the SSE algorithm are Mt = [15 13 11 11]
along time, and Mss = [11 13 15 15] along frequency.

The separation using sub-band processing presents some improvements in the
high-frequency range compared to the original method. This can be explained
by the more detailed time resolution in the time-frequency representation of the
upper-band due to the utilization of a smaller window. The overhead produced
by the sub-band processing and the limited benefits in the separation make it
justifiable under limited circumstances.

3.4 Reconstruction method
Wiener filtering is one of the most widely used methods for source separation.
Its objective is to minimize the mean square error, and succeeds when wide-sense
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Chapter 3. Transient and Steady-State separation

Figure 3.13: Transient and steady-state separation spectrograms for each sub-band. Band 1
is 0 to 1.5 kHz, band 2 is 1.5 to 4.4 kHz, band 3 is 4.4 to 10.3 kHz and band 4 is 10.3 to 22
kHz.

stationary processes are involved [31]. To design a Wiener filter is necessary to
state the Wiener-Hopf equations:

∞∑
l=−∞

h[l]ru[n− l] = rdu[n] = h[n] ∗ ru[n],∀n, (3.10)

where ru[n] is the autocorrelation of the input process u[n] and rdu[n] the cross-
correlation between the input and the desired signal d[n]. In the frequency domain
Eq. (3.10) becomes:

H(ω) =
Pdu(ω)

Pu(ω)
. (3.11)

In our problem, the input is the original signal s[n, t0] multiplied by a window
centered at time t0

4. The desired output signals are the steady-state and transient
component signals sss[n, t0] and st[n, t0], respectively, as depicted in figure 3.14.
Also, the input signal s[n, t0] is the sum of the steady-state sss[n, t0] and transient
st[n, t0] signals,

s[n, t0] = sss[n, t0] + st[n, t0], (3.12)

4Audio signals are in general non-stationary processes that locally observed can be
approximated as wide-sense stationary.
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where sss and st are zero-mean, independent processes renamed as desired signals
d2 and d1 respectively.

Figure 3.14: Wiener filter configuration for transient and steady-state component separation.

The autocorrelation of the input process can be expressed as:

ru[k] = E[s[n, to]s[n− k, to]] = rd2u[k] + rd1u[k]. (3.13)

As sss and st are uncorrelated, the cross-correlation between the input and the
desired signal rdiu[n] can be expressed as:

rd1u[k] = E[s[n, to]st[n− k, to]] = rd1d1 [k],
rd2u[k] = E[s[n, to]sss[n− k, to]] = rd2d2 [k];

(3.14)

in the frequency domain Eqs. (3.13), (3.14) become:

Pu(ω, t0) = |S[ω, to]|2 = Pd1u(ω, t0) + Pd2u(ω, t0), (3.15)

Pd1u(ω, t0) = |St(ω, to)|2,
Pd2u(ω, t0) = |Sss(ω, to)|2.

(3.16)

Combining Eqs. (3.11), (3.16) and (3.15) one finds that the frequency response
of the Wiener filter is:

Ht(ω) =
Pd1u

Pd1u+Pd2u
= |St(ω,to)|2
|St(ω,to)|2+|Sss(ω,to)|2 ,

Hss(ω) =
Pd2u

Pd1u+Pd2u
= |Sss(ω,to)|2
|St(ω,to)|2+|Sss(ω,to)|2 ;

(3.17)

hence, the steady-state and transient component spectrograms can be calculated
by the weighted average:

|St(ω,to]|2
|St(jω,to)|2+|Sss(ω,to)|2S(ω, t0),

|Sss(ω,to]|2
|St(jω,to)|2+|Sss(ω,to)|2S(ω, t0).

(3.18)

Finally, the transient and steady-state time signals are reconstructed applying
the overlap-add procedure to the correspondent spectrogram.
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Chapter 4. Tests & Applications

This chapter is divided in two sections. In the first section, a comparison of
the SSE and the Median filters as the non-linear filtering stage for the transient
/ steady-state separation algorithm is performed. The second section describes
different applications and examples of audio editing that benefit from the decom-
position in transient and steady-state components.

4.1 SSE and Median filter comparison
The performance of the transient and steady-state separation algorithm is evalu-
ated comparing the influence of the filtering stage when using the median and the
SSE filter. Two different types of experiment are considered:

1. Systematic listening tests are conducted to compare the original and pro-
posed methods as to their separation performances;

2. An application-based evaluation is carried out considering the beat-tracking
and the pitch-tracking problems.

The listening tests and the application to the beat-tracking problem where
presented at the “Congreso Internacional de Ciencia y Tecnoloǵıa Musical CICTeM
- 2013” [36]. For each type of experiment a different audio data set is used, both
described in the following section.

4.1.1 Data set description
Three data sets were used in these tests, one for the subjective listening test and
two others for the application-based evaluation. The audio files are mono and have
a sampling rate of 44.1 kHz and 16-bit resolution.

The data set for the subjective listening tests consists of ten-seconds length
excerpts of thirteen pieces of North American popular music (rock, folk and blues)
extracted from commercial records. It exhibits multiple combinations of transient
and steady-state components in the sense of perceptual presence in the mix.

For the application-based evaluation, datasets from the Music Information Re-
trieval Evaluation eXchange (MIREX) Contest [16, 15] were utilized. The MIREX
is a community-based formal evaluation framework within the Music Information
Retrieval domain. To measure the performance of a beat-tracking algorithm the
Audio Beat Tracking (MIREX 2006) data set was utilized. This data set is com-
posed of twenty excerpts of western popular music of thirty-seconds duration. The
beats of each recording have been annotated by 40 different listeners. For the per-
formance of a pitch-tracking algorithm the Melody Extraction Contest (MIREX
2004 and 2005) data sets [16] were utilized. The 2004 data set is composed of
twenty excerpts of western popular music of thirty-seconds duration and the 2005
dataset is composed of thirteen excerpts with different durations (from 10 to 15 sec-
onds). Each recording of the pitch-tracking datasets has a reference corresponding
melody frequency contour that was manually annotated.
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4.1. SSE and Median filter comparison

4.1.2 Tests
Subjective test
In order to measure the perceptual difference between utilizing the Median filter
and utilizing the SSE filter, a set of formal subjective tests was designed and con-
ducted following the recommendations suggested in [94]. Each participant should
listen and compare the separated steady-state and transient components produced
by both non-linear filters.

For this purpose, a graphical user interface specifically designed to comply with
the requirements of this test was adapted from [71]; a screenshot of the interface
is included in the annex BFor each song in the data set, the interface presents the
original signal as a reference together with the processed signals to be compared.
The order of the compared signals is randomized to assure the blindness of the
test. The interface implements audio controls to play/stop any of the signals, and
the listener can also define loop points to allow an in-detail listening of certain
parts of the audio.

Ten participants answered the next three questions for each transient and
steady-state output signal:
* Q1: How much of the desired components has been properly separated?
* Q2: How much of the undesired (residual) components has been left?
* Q3: How would you rate the integrity (in the sense of naturalness) of the sepa-
rated signal?

The questions were answered by controlling a slide bar that maps the responses
to values from 0 to 100. The complete individual results may be found in annex
A. The answers presents a wide variation between participants making it difficult
to be consistently compared. Then, the raw answers were thresholded to obtain a
binary value. This value indicates which algorithm performs better or otherwise
if their results can be considered perceptually equivalent.

Table 4.1 summarizes the results of the transient/steady-state separation sub-
jective test. The results show that both methods were considered virtually equiv-
alent regarding perceptual quality.

Q1t Q2t Q3t Q1ss Q2ss Q3ss

Median 23.1 30.8 27.9 24.0 21,2 25.0
SSE 26.0 25 23.1 30.8 25 20.2

Equals 50,9 44.2 49 45,2 54.8 54.8

Table 4.1: Result of subjective test. The subscripts (t) and (ss) indicates transient and steady-
state respectively.

4.1.3 Beat Tracking
Most of the beat information present in music is contained in its transient compo-
nents. Thus, beat-tracking algorithms could potentially be favored by a preprocess-
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ing stage after which only transient components are left. Such hypothesis is tested
by evaluating the performance of the state-of-the-art beat-tracking algorithm (pre-
sented in [20]) on the 2006 MIREX audio beat-tracking test database [16].

Dynamic Programming based beat-tracking algorithm

The output of a beat-tracker is the sequence of time instants derived from the music
audio signal that correspond to the instants in which a human listener would tap
his foot. For the authors of the algorithm used in this work [20] the beat times
need to satisfy two constraints: follow a regular rhythmic pattern, reflecting a
locally constant inter-beat-interval; and correspond to a note onset played by one
of the instruments.

These constraints are expressed as two functions: the transition cost function
and a local onset strength.

The beats are then the set of time instants that minimize those cost functions.
The best-scoring set of beats is found by Dynamic Programming, which decom-
poses the entire problem (find the global optimum within a exponential-sized set)
into simpler optimization problems at each step, finding the globally optimal beat
sequence.

Performance evaluation

In order to perform an objective comparison of the beat-tracking algorithm with
and without the preprocessing stage, the performance was evaluated with the Beat
Tracking Evaluation toolbox [14]. A brief description of each of the evaluation
methods implemented in the toolbox follows; for a complete survey, see [13, 12].

The F-measure is a generic performance measure in the information retrieval
context. It is determined by the relation between the correctly estimated beats, the
false positives and the false negatives. An estimated beat is considered correct if it
falls into a 70-ms wide tolerance window centered at each annotated beat. Cemgil
et al [8] propose the utilization of a Gaussian error function to take into account
the beats estimation accuracy . An error function is build centering a Gaussian at
each annotated beat. Then, the performance indicator is calculated as the sum of
the values of the error function at the closest estimated beat of each annotation,
normalized by the maximum between the number of annotations and the number
of estimated beats. In the PScore, the beat accuracy is determined by taking
the sum of the cross-correlation between two impulse trains, one representing the
annotations and the other representing the extracted beats. Goto [26] proposes
measuring the performance by evaluating the proportion of time in which the beat
is correctly tracked. The classification of the beats as correctly tracked or not
relies on statistical properties of the difference to the annotated beats . CMLc,
CMLt, AMLc, AMLt are continuity-based performance indicators computed
over the correctly tracked regions. The CMLc and the CMLt are defined as the
ratio of the longest continuously tracked region or the total length of correctly
tracked regions, respectively, to the total signal length. The AMLc and AMLt
are defined in a similar way, but are more permissive in the definition of correctly
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tracked beat, allowing off-beat estimation and beats at the double and half of
the correct metrical level. To calculate the Information Gain, two timing error
histograms are constructed, one between the annotated beats and the estimated
beats and vice-versa. Then, the Information Gain is the minimum of the Kullback-
Leibler divergence between the previously calculated histograms and an uniformly
distributed histogram.

In order to avoid unfair comparisons, we searched for the optimum performance
of each algorithm via a grid search over its respective parameters.

Results

Original Median SSE
F-Measure (%) 48 48,5 51.4

Cemgil (%) 35,6 35,5 37,5
Goto (%) 6,75 7,25 7,24

PScore (%) 50,8 50,9 53
cmlC (%) 10,2 10,3 11,2
cmlT (%) 18,3 18,4 20,7
amlC (%) 19,3 20,8 22,4
amlT(%) 36,8 39,7 43,1

InfGain (bits) 1,2 1,3 1,4

Table 4.2: Average beat-tracking performance measure.

The average results of the evaluation over the complete data set are presented
in Table 4.2, while the corresponding histograms can be found in annex C. It is
worth to point-out that the performance with preprocessing improves the beat
detection for almost all performance measures. The improvement is small but
consistent. In the comparison between separation methods, the proposed SSE
filter outperforms the Median filter in all the measures except one of them.

More detailed information can be derived from the results presented in Figure
4.1. It depicts one of the measures for beat-tracking performance evaluation for
the complete data set. The transient preprocessing highly increases performance
in the case of files train12 and train18 while the SSE filtering yields much better
results in the case of files train10 and train13.

The Figure 4.2 illustrates the different outputs of the beat-tracking algorithm
for the files train10 and train13 along with the manually annotated beats. It can
be seen in Figure 4.2a that when the beat-tracker input is the unprocessed signal or
the median filtered transient components signal, the beat-tracking algorithm locks
into a metric level four time faster than the manual annotated beat, while when
the signal is filtered by the SSE the metric level and phase match the annotated
beat.

In the example of Figure 4.2b the metric level detected by the beat-tracking
algorithm coincides with the manually annotated beat. But, the beats produced
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Figure 4.1: One of the performance measurements for beat tracking (Information Gain); com-
parison for all elements in the data set.
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Figure 4.2: Beat-tracking outputs.

by the algorithm in the original and the median filtered cases are in counter-phase
with the manually annotated beats. By contrast, the beat-tracking output for the
SSE filtered signal matches both, the metric level and the phase.

4.1.4 Pitch-tracking
Pitch can be defined as the perceptual attribute which allows the ordering of sounds
on a frequency-related scale. It can be objectively measured asking a listener to
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match the frequency of a sine wave with the tone of the target sound.

In [35] an Harmonic/Percussive separation algorithm (Harmonic Percussive
Sound Separation - HPSS) is utilized as the first stage in a singing pitch extraction
algorithm, and good results are reported. The HPSS algorithm presented in [59]
is also utilized in [77] to estimate the melodic line.

The “tonal” information can be assumed to be carried by the steady-state com-
ponents of a signal. Analogously the performance improvement of beat-tracking
algorithms when tonal information is discarded, a pitch-tracking algorithm can
be favoured by the elimination of the transient components. We evaluate the ad-
vantage of pre-processing a signal to eliminate the transient components before
performing the pitch-tracking, and compare the median filter to the proposed SSE
filter.

A state-of-the-art pitch-tracking algorithm presented in [69] was utilized. This
algorithm has been developed as a VAMP plug-in for the semantic visualization
software Sonic Visualizer [7]. A brief description of the algorithm follows.

Pitch-tracking algorithm

The MELODIA plug-in extracts the principal melody and respective F0 contour
of polyphonic audio. The method is comprised of four main blocks:

The Sinusoid Extraction stage begins with an equal loudness filter to mimic the
human auditory system sensitivity. It enhances the mid frequencies and attenuates
low frequencies. Then, the STFT of the result is computed with window length
M = 2048, FFT length N = 8192 and hop size H = 128. Then, the estimation of
spectral peak frequencies is improved by a phase-vocoder based technique [40].

The previously calculated peaks are employed to compute the salience function
in the range from 55 Hz to 1760 Hz. For a given frequency, the salience function
is defined as a weighted sum of its harmonics’ energies.

For each frame of the salience function, the peaks are selected as potential F0
candidates. Then the peaks are grouped into continuous pitch contours. Each
contour has a limited time span and corresponds to a short phrase. Firstly, the
peaks are filtered by hard thresholding. Later, this peaks are grouped into contours
using heuristics and auditory analysis cues.

A set of contour characteristics are calculated from the previously generated
contours to determine which ones belong to the melody. The characteristics are:
pitch mean, pitch deviation, contour mean salience, contour salience deviation,
length and vibrato presence. Those contour characteristics are then utilized to
filter out the non melodic contours. Finally, the F0 melodic contour is selected
from the remaining contours.

Performance measures

The evaluation metrics adopted are the ones used in the MIREX 2005 melody
transcription task, which are reviewed and described in [61]. The overall tran-
scription accuracy (OTA) combines the pitch transcription and the voicing
detection task. It is defined as the proportion of frames correctly labelled with
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raw pitch accuracy and voicing detection. The raw pitch accuracy (RPA) is
defined as the fraction of frames in which the estimated pitch is within a quarter
tone from the reference. The raw chroma accuracy (RCA) is equal to RPA
but allows octave transpositions. The voicing detection rate (VDR) is the
proportion of estimated voiced frames from the total of voiced frames in the ref-
erence. The voicing detection false alarm rate (VDFAR) is the proportion
of unvoiced frames labeled as voiced by the algorithm.

Original SSE Median
OTA (%) 67 65,9 65.9
RPA (%) 73 71,5 71,3
RCA (%) 73,3 72,2 72,1
VDR (%) 77,6 77,2 76,9

VDFAR (%) 13,7 13,7 14,5

Table 4.3: Average pitch-tracking performance measure.

Results
The Table 4.3 shows the averages of the pitch-tracking performance indicators.
The effect of eliminating the transient components decreases the pitch-tracking
average performance measures by approximately 1%.

A more detailed analysis shows that the problem arises from the hypothesis
that the principal melody corresponds to a steady-state behaviour. In fact, the
melody line exhibits pitch variations that are far from being steady-state. Thus,
the preprocessing stage eliminates some useful information from the tonal com-
ponents. As an example, the pitch-tracking OTA for the file opera male5 are
78.2%, 57.4% and 59.3% for the original, SSE filtered and Median filtered signals
respectively. Figure 4.3 depicts the pitch-tracking algorithm output, and also the
intermediate stage signals for this signal. The most noticeable difference between
the original and the SSE filtered tracking is the octave error between seconds 9 to
13, not present in the tracking with the original sound. Simple approaches can be
thought to solve some of this errors. However, the decrease in the RCA for the
filtered signals shows that besides the above mentioned, other types of errors are
introduced.

The melody in the opera male5 example presents a deep vibrato, which is
not correctly modeled as a steady-state component. The method proposed in
section 3.3.2 that accounts for some variations in the frequencies of the steady-state
component can improve the separation and also the pitch-tracking performance.
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Figure 4.3: Steps of the pitch-tracking MELODIA; involved signals.
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4.2 Applications in audio editing
The transient and steady-state decomposition can be helpful in audio editing tasks.
In the following sections some audio editing applications are described.

4.2.1 Removing undesired transients
A simple idea is that the separation in transient and steady-state components can
simplify a difficult edition task. A real-life example of this is the removing of an
unintentionally hit on the guitar body when a sustained note is being played. This
undesirable sound is very difficult to edit, and in general when it is possible, a
re-recording of this passage is necessary. The difficulty arises from cutting the
hit noise while leaving unaltered the sustained guitar note. As depicted in fig-
ure 4.4 the undesired sound its just noticeable in the original waveform, but the
characteristics of the scene make it clearly audible. The decomposition makes the
edition process straightforward; the noise can be properly silenced while leaving
untouched the guitar sound.
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Figure 4.4: Transient/steady-state separation for manual editing.

4.2.2 Percussion extraction and remixing
The remixing process can be defined as the alteration of an edited song to create
a new version, that sounds different in some sense, e.g. create stereo mixes from
original mono tapes, adapt for radio broadcast, alter the song to reach different
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Figure 4.5: Remixing application.

audiences, etc. Ideally, the raw material for remixing are the original multi-track
records. Often, this records are non-available or do not even exist, as in the case
of the recordings of the first half of the twentieth century. In some other cases, the
number of tracks are very limited, for example, the first two Beatles’ albums were
recorded with two-track machines, since the eight-track recorders were introduced
only in 1968 [46].

The original tracks can be approximated by audio source separation algo-
rithms [84, 91],which in general need manual tuning and the previous knowledge
of mixed sources, thus becoming not suitable for fully-automated processing. The
transient/steady-state decomposition presented in the previous chapter seems to
be appropriate for percussion track extraction. Due to the short attack time of
the percussive instruments’s sound, the spectral content of percussive instruments
is broadband [1], thus, correctly modeled by the transient definition utilized along
this work.

Figure 4.5a depicts a detail of the decomposition of an audio signal, and figure
4.5b shows a signal decomposition and a remixed version after applying 6dB of
gain to the transient components. Along with the percussive sounds, some note
attacks of non-percussive instruments are modeled as transients, as depicted in
figure 4.5a. Although the separation of percussive instruments is not perfect, it is
adequate for remixing. The requirements for separation in the remixing context
are less strict than for pure source separation, as the introduced artifacts may
often be masked by the mix itself.

4.2.3 Noise Reduction
Noise reduction is an essential tool in different areas as communications, recording
and restoration where corrupted or noise-contaminated audio material is involved.
Spectral subtraction is the classic technique for stationary-like noise removal [3, 21],
meanwhile non-linear filters are used for transient and impulse-like noise removal
[38, 41, 82].
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The noise reduction process is not transparent; depending on the amount of
noise and filter settings, some noticeable artefacts may appear. Undesirable effects
such as pre-echo and transition smearing may happen when one applies stationary
noise removal techniques. This effects can be mitigated by decomposing the signal
and applying noise reduction techniques for stationary-like noise to the steady-
state component signal, and impulse noise removal techniques only to the transient
components.

Deteriorated vinyl record

Time (s)

F
re

q
u
e
n
c
y
 (

K
H

z
)

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.6: Spectrogram of a vinyl record.

Figure 4.6 shows a spectrogram of a digitized vinyl record. The horizontal
ridges are clicks probably produced by dust in the grooves while the low frequency
stationary noise is due to electrical hum. In Figure 4.7 the spectrogram of the
decomposition in transient and steady-state components and their correspondent
noise-reduction processed spectrogram are shown. The clicks are present in the
steady-state components while the electrical hum is present in the steady-state
component, as expected. Applying this work-flow is expected to be more resilient
to artifacts; a formal assessment of how much the pre-decomposition can improve
the noise-removal methods needs to be done yet.

4.2.4 Transient shaping
Another application of the transient/steady-state decomposition is commonly called
in the audio production context by commercial names as Transient Shaper [79],
Transient Designer [55]. We denote transient shaper to the process of adjusting
the dynamic of a sound, but unlike the dynamic compressors, transient shapers
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Figure 4.7: Noise reduction.

operates only when a sudden change in energy is present. It has generally two pa-
rameters, the transient gain (or attack gain) and the sustain gain (or release gain),
and it is often applied in the mixing process to precisely control the amount of
attack of drum sounds. The process can be applied to non-percussive instruments
such as piano and electric guitar. In the latter case, for example, the transient
shaper controls the sound of the pluck.

Transient/steady-state decomposition can be utilized as a transient shaper, as
they exactly decompose the signals in that way. Adjusting the transient component
level, is what the industry calls attack gain, and adjusting the steady-state gain
correspond to the sustain gain. Unlike dynamic compressors, the transient and
steady-state decomposition is level-independent.

4.2.5 De-reverberation
The reverberation is the effect of the multitude of echoes arriving from reflections
on the surrounding space. Although a certain amount of reverberation is consid-
ered pleasant to human perception, and even artificial reverberation is commonly
used as an artistic effect in records and live concerts, excessively reverberated
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rooms are troublesome. In such cases speech intelligibility is decreased [42], and
hinders the accuracy of automatic note onset detection algorithms [89].

The process of reverberation removal is called de-reverberation, and when no
information of the acoustic impulse response is available it is called blind de-
reverberation. Various methods exist to accomplish de-reverberation as can be
seen in [48, 56, 58, 80, 92, 88, 44].

Reverberations of transient components (considered as broad-band components
with highly concentrated energy in time) has a steady-state behaviour (in the sense
of smooth temporal evolution). Then for example, applying a transient/steady-
state decomposition to a reverberated drum tends to segregate the reverberations
(wet sound) into the steady-state signal and the direct (dry) sound into the tran-
sient signal. In the Figure 4.9 the decomposition of a synthesized drum sound with
artificially applied reverb is shown.
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Figure 4.8: De-reverberation of a drum sound.

By controlling the mixing of transient and steady-state components signal,
the amount of de-reverberation can be adjusted. The effectiveness of the method
depends on the kind of reverberation. The results improves as the decaying time
of the reverberations increases.

4.2.6 Time/Pitch Modifications
Playing a record at double speed reduces the playtime to half, and at the same
time the sound pitch elevates an octave. Similarly, playing a record at slower
rate makes the record duration longer and lowers the sound pitch. In some cases,
such as music transcription, audio synchronisation and language translation, it
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is desirable to change the speed of a record without altering the pitch. In pitch
correction and harmonization for example, the opposite effect of changing the pitch
without altering the articulation is desirable. This technique is utilized for artistic
purposes in electro-acoustical musical composition [90] and in popular music.
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Figure 4.9: Different time-pitch modifications.

Time-domain [67, 9] and frequency- domain algorithms [62, 54, 52] exist to
perform those tasks (see [57] for a complete survey). The phase vocoder presents
some undesirable effects, in particular a smearing effect appear when processing
transients as depicted in Figure 4.10. Various methods were proposed to mitigate
this problem [66, 19]. As suggested in [17] the transient/steady-state component
decomposition is suitable to avoid transient smearing in the time-scale modifica-
tions. The idea is to leave the transients unprocessed while applying a classic
Time/Pitch modification algorithm to the steady-state signal.

The results are shown in Figure 4.11,where one can see that the transient
components are preserved while the steady-state components are effectively pitch-
shifted.
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5.1 Conclusions
In the preceding chapters, the transient/steady-state component separation prob-
lem was studied. In particular, a recently proposed method for separating transient
and steady-state components based on the median filter [23] was investigated. For
a best understanding of the processes involved, a modification of the filtering stage
of the algorithm was proposed. The modification consisted in utilizing a non-linear
filter, originally devised to perform Stochastic Spectrum Estimation (SSE) [43], as
the filtering stage instead of the median filter.

To evaluate the perceptual quality of the decomposition, subjective listening
tests were designed and conducted. These tests allowed a perceptual comparison
between the original and the proposed filtering stage. The results indicated that
there are no significant perceptual differences among them, both providing the
same quality of separation.

Besides, an application-based comparison was performed by applying the tran-
sient and steady-state decomposition as a pre-processing stage for two Music In-
formation Retrieval problems, namely the pitch-tracking and beat-tracking tasks.
The hypothesis that the transient components carry the beat information while
the steady-state components carry the pitch information was tested. The evalu-
ation showed that the beat-tracking can benefit from the transient components
extraction, notably increasing the performance in some cases. On the other hand,
the pitch-tracking algorithm did not improved its performance by applying the
preprocessing. This seems to indicate that the partials of the melody line are not
properly captured as steady-state components, due to its frequency fluctuations.
Part of this work was presented in a conference paper [36].

To overcome some of the model limitations that were identified, three exten-
sions were delineated. First, an iterative filtering scheme was proposed, which
implicitly defines the residual components as non-steady-state and non-transient
components. In other proposed extension, the definition of steady-state compo-
nents was relaxed to allow for slow variations in partials’ evolution. This effect is
typical of, but not limited to, free intonation instruments. Finally, to allow more
flexibility in the choice of the parameters of the algorithm, a sub-band processing
technique was proposed. For each band, the window length, the hop size and the
length of the non-linear filters can be adjusted for a fine-tuning of the separation.

Another part of this work was to study possible applications of the decom-
position into transient/steady-state components in the area of audio editing and
processing. Six applications were surveyed and illustrated with real audio exam-
ples. With this technique a very complex editing task such as the removal of
undesired transients in presence of steady-state sounds can be done in a simple
way. The transient/steady-state separation can also be used as a preprocess-
ing stage to increase the performance of some audio processing techniques. For
instance, it allows the application of specific noise-reduction algorithms to each
of the obtained components, such as stationary noise-removal techniques on the
steady-state signal, and impulse-like noise removal techniques on the transient
signal. Since each noise-reduction technique is applied to a signal which mainly
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contains the type of component for which it was devised, the number of undesired
artifacts is reduced. Analogously, the transient smearing effect that appears when
time/pitch modifications are applied can be avoided by modifying only the steady-
state components while leaving the transients unchanged. In the other cases, by
controlling the amount of transient and steady-state components in a mixture,
different audio editing applications can be implemented. This was illustrated by
some examples, namely de-reverberation of percussive sound, transient shaping
and percussive sound extraction for remixing.

5.2 Future perspectives
All along this work, various topics that deserve further investigation were identified
at different levels.

Although the STFT was the TF representation used in this work, it has some
drawbacks, such as constant time-frequency resolution. Therefore, other type of
representation may be more suitable depending on the type of signal. For example,
adaptive representations such as Fan Chirp Transform [6] seem to be useful when
harmonic signals with pitch fluctuations are involved.

On the other hand, the original definition of steady-state component proved
to be too restrictive in some cases. An extension of the model was proposed in
this work to take into account pitch fluctuations commonly present in music signal
such as the ones produced by glissando and vibrato. Its validity was illustrated
by synthetic examples as a proof of concept, but further investigation is necessary.
In future work, a systematic evaluation of the extensions proposed in Section 3.3
will be conducted.

More audio processing applications for the transient/steady-state decomposi-
tion could be developed. For example, lossy audio coding of transients tends to
generate undesired pre-echo effects that can be minimized by applying different
coding schemes to the transient and the steady-state components [93, 87]. Further-
more, it will be interesting to develop a real-time implementation of the algorithm
suitable for live performances. The algorithm latency in the current implementa-
tion is in the order of 100 ms, which is not suitable for real-time. A low-latency
causal version of the algorithm will be developed in future work.

Finally, further developments of the present technique in collaboration with
professional musicians will be encouraged. To do that, it is necessary to build user-
friendly applications within popular frameworks such as Pure Data [64], Steinberg
Virtual Studio Technologies [78] or LADSPA [25]. Musicians can contribute by
finely evaluating the quality of the separation and also by proposing novel appli-
cations.
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Appendix A

Subjective Quality Test Data

Steady-state/transient component separation

Listener 1

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 61 51 58 65 51 58 32 28 30 34 28 32

1 75 59 70 73 58 68 58 27 25 54 26 26

2 51 56 37 49 55 34 60 38 43 58 39 45

3 73 51 70 73 51 71 62 60 32 73 62 35

4 46 49 42 52 48 42 41 30 38 42 32 38

5 57 47 51 56 46 50 54 37 47 57 38 47

6 59 66 73 58 66 69 49 44 49 50 47 51

7 75 63 84 74 63 85 47 50 67 75 63 74

8 81 79 76 81 78 74 58 45 63 57 43 61

9 82 70 72 82 68 72 69 64 61 69 64 59

10 55 37 52 56 40 52 59 55 76 59 53 75

11 51 67 68 50 69 66 62 44 42 48 35 41

12 50 51 45 50 51 44 54 38 43 55 40 44

13 58 52 55 58 52 55 69 49 37 58 45 39



Appendix A. Subjective Quality Test Data

Listener 2

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 71 65 63 69 29 80 77 88 21 77 71 26

1 90 65 100 81 76 100 72 37 47 59 22 24

2 64 62 70 29 75 29 82 46 41 68 34 55

3 76 79 75 85 78 52 86 81 71 79 71 70

4 91 55 87 82 56 73 67 49 22 81 55 20

5 85 87 100 85 78 87 89 71 73 81 79 60

6 83 80 65 83 85 72 85 69 74 86 84 63

7 80 100 67 79 81 85 92 92 91 79 79 77

8 77 90 100 79 100 100 84 67 58 100 80 50

9 100 86 82 98 92 63 82 79 82 72 56 57

10 84 74 92 84 85 77 84 82 90 100 85 100

11 83 77 75 100 88 67 82 62 55 81 72 30

12 84 82 100 94 83 91 80 72 67 80 83 60

13 88 78 86 90 69 100 69 72 84 67 81 68

Listener 3

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 44 38 45 44 61 50 41 48 32 54 48 40

1 46 50 50 45 49 50 49 46 37 38 49 37

2 58 24 40 46 22 35 50 44 43 57 46 56

3 46 40 43 45 40 43 67 69 66 67 64 67

4 53 44 56 41 44 50 48 37 60 47 37 60

5 50 46 48 48 48 48 46 66 68 47 42 50

6 49 49 58 38 50 49 48 54 52 49 55 50

7 56 49 46 38 48 45 43 39 42 57 63 55

8 55 55 55 34 45 44 47 52 51 48 45 38

9 56 53 56 45 45 48 45 44 48 46 50 54

10 31 28 28 26 21 24 46 48 70 44 47 73

11 41 41 36 42 41 37 44 50 45 46 41 41

12 44 45 46 45 45 46 51 49 48 51 49 50

13 38 50 42 53 35 41 42 38 43 41 56 52

56



Listener 4

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 66 34 22 79 29 39 33 49 0 33 44 0

1 65 37 47 83 36 69 36 72 20 34 69 21

2 50 30 25 30 30 21 47 35 41 30 50 30

3 50 72 39 51 56 59 61 48 44 65 51 45

4 47 61 34 47 80 18 61 43 31 58 41 29

5 50 68 43 29 80 23 29 63 28 27 64 27

6 86 16 88 86 17 87 66 71 29 56 72 29

7 97 0 43 96 0 41 57 42 40 68 44 40

8 53 65 30 53 35 40 68 35 52 66 52 53

9 60 50 52 72 41 50 51 69 37 51 70 37

10 38 65 12 39 67 12 68 38 56 66 39 54

11 76 53 31 83 50 29 60 62 42 52 59 43

12 82 55 65 90 56 70 65 63 41 59 62 43

13 57 43 50 69 42 53 58 53 54 68 44 57

Listener 5

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 0 44 0 48 0 50 8 0 0 27 24 26

1 49 0 54 0 54 0 30 0 25 0 0 0

2 0 50 51 57 0 0 0 0 26 30 27 0

3 0 50 0 50 0 48 0 32 0 24 0 28

4 0 54 0 50 0 51 31 0 32 0 34 0

5 0 0 0 0 0 0 23 0 30 0 30 0

6 49 0 54 0 55 0 0 31 0 31 0 33

7 0 56 0 49 0 47 0 29 0 29 0 29

8 0 0 0 0 0 0 0 26 0 29 0 25

9 0 47 0 51 0 50 30 0 28 0 30 0

10 0 45 0 42 0 58 0 26 0 28 0 28

11 0 60 0 50 0 47 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 31 0 30 0 35 0
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Listener 6

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 100 100 100 63 56 100 51 21 42 52 35 58

1 100 26 77 57 26 79 56 38 50 69 37 76

2 0 0 40 47 40 0 46 23 39 65 22 59

3 40 50 62 45 66 59 72 36 63 58 26 26

4 0 0 69 22 63 70 24 35 34 26 35 72

5 76 75 53 80 83 56 0 71 30 0 54 36

6 67 100 45 53 100 28 50 34 46 37 40 30

7 100 100 43 100 100 24 44 20 0 62 18 18

8 67 18 0 81 30 11 42 39 49 31 36 36

9 57 39 68 46 40 79 47 56 32 47 61 44

10 65 81 47 50 70 40 47 24 45 71 22 69

11 55 75 100 55 74 100 55 17 70 55 17 73

12 100 92 66 100 100 62 47 61 65 70 58 38

13 77 50 76 76 23 100 62 21 70 63 19 71

Listener 7

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 100 100 100 63 56 100 51 21 42 52 35 58

1 80 23 74 50 26 79 56 38 50 69 37 76

2 0 0 40 47 40 0 46 23 39 65 22 59

3 40 50 62 35 66 59 72 36 63 58 26 26

4 0 0 69 21 63 70 24 34 34 26 35 72

5 76 75 52 79 83 56 0 71 30 14 54 36

6 67 100 3 53 100 28 50 34 46 37 40 30

7 100 100 43 100 100 24 44 20 0 62 18 18

8 67 18 0 81 30 11 42 39 49 31 36 36

9 57 39 68 46 40 79 47 56 32 47 61 44

10 65 81 47 50 70 40 47 24 45 71 22 69

11 55 75 100 55 74 100 55 17 70 55 17 73

12 100 92 66 100 100 62 47 61 65 70 58 38

13 77 50 76 76 23 100 62 21 70 63 19 71
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Listener 8

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 0 100 4 19 87 0 0 63 73 0 0 0

1 0 77 0 0 95 17 0 37 0 92 0 80

2 0 27 0 24 69 32 0 0 0 0 39 0

3 34 84 31 21 69 19 29 0 67 0 55 0

4 26 92 65 0 28 39 0 58 97 53 0 0

5 0 42 18 52 68 73 0 41 57 0 0 0

6 58 32 34 21 77 37 0 0 0 49 16 0

7 78 87 53 48 48 41 0 38 0 0 0 33

8 0 0 0 8 21 24 0 28 0 0 0 20

9 58 66 66 33 66 50 0 0 0 0 28 21

10 0 0 63 0 0 0 0 37 0 24 0 0

11 0 0 0 34 78 55 0 27 40 0 0 0

12 0 0 0 32 32 32 0 54 51 41 0 0

13 0 0 0 21 21 0 0 0 0 0 0 0

Listener 9

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 0 0 0 0 0 0 80 19 52 80 34 53

1 0 40 0 47 47 0 83 24 56 82 23 56

2 0 0 0 51 0 0 92 52 64 91 33 62

3 66 0 0 63 0 0 80 50 55 80 51 55

4 64 0 0 0 0 0 82 61 65 82 60 65

5 0 0 0 37 0 0 62 74 79 77 75 79

6 0 0 0 0 0 0 100 90 88 100 92 87

7 0 0 0 0 0 0 82 74 57 82 47 59

8 0 0 0 39 0 0 68 44 74 67 43 72

9 48 0 0 0 0 0 96 82 91 95 58 91

10 50 0 0 0 0 0 71 37 63 70 36 61

11 0 0 0 50 0 0 88 69 76 86 67 74

12 0 0 0 56 0 0 69 53 55 70 59 54

13 0 0 0 0 0 0 0 0 0 0 0 0
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Listener 10

Audio
Steady-state Transient

Median Filter SSE Filter Median Filter SSE Filter
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Fake 14 18 41 41 61 54 41 48 34 54 48 90

1 42 51 54 42 59 51 49 46 37 40 49 41

2 58 24 40 46 22 33 50 44 43 52 46 56

3 48 40 43 45 40 43 63 63 63 67 64 67

4 52 44 56 41 44 51 48 37 60 47 37 60

5 51 46 48 48 48 41 46 66 68 47 42 50

6 44 49 58 38 50 49 48 54 52 49 55 50

7 54 49 46 38 48 45 43 39 42 57 63 55

8 55 55 55 34 45 44 47 52 51 48 45 38

9 56 53 56 45 45 48 45 44 48 46 50 54

10 31 28 28 26 21 24 46 48 70 44 47 73

11 41 41 36 42 41 37 44 50 45 46 41 41

12 44 45 46 45 45 46 51 49 48 51 49 50

13 38 50 42 53 35 41 42 38 43 41 56 52
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Appendix B

Subjective Quality Test Interface

Figure B.1: Subjective listening test web interface.
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Appendix C

Complete Beat-Tracking results
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