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1 Introduction 

The price of compact digital cameras has dropped down in the last decade, 

mostly due to electronic devices decreasing costs. causing their massive mar- 

ket penetration. Unfortunately, image quality has not increased as fast as 

digital cameras sales have done. Digital images present certain characteristi- 

cal problems caused by the intrinsic nature of these devices. Blur produced 

by lieht diffraction, geometrical distortions caused by the use of low-cost 

lenses and thermal noise due to electronic circuits are examples of this kind 

of outcomes. 

In this report we describe a mathematical digital camera image formation 

model that takes into account the whole process of digital image acquisition 

and all their associated effects. Image blur can be a consequence of camera 

misusing (e.g. wrongly setting the camera focal distance). but also of phys- 

ical camera phenomena as light diffraction or sensor averaging. Our goal is 

to accurately estimate a function. called point spread function -PSF. that 

models the blur due to intrinsic camera phenomena. This function can be 

locallv interpreted as the impulse response of a linear translation invariant 

Svsten1. 

The most important application of PSF estimation is image super-resolution. 

hnage super-resolution is the process of enhancing the resolution of an imag- 

ing system. There are at least two different ways of approaching this prob- 

lem: bv interpolating a single-frame image or by fusing together several low- 

resolution images. If the PSF is known at an accurate subpixel resolution, 

then we can use this information to apply the inverse de-blurring procedure 

(also known as image deconvolution) to a single low resolution image. or we 

can fuse all the low resolution images in a more elaborated way. In most 

tvpical digital cameras, images are acquired at a sampling rate under the 

Nvquist rate, causing aliasing effects. While at first sight this miesht be seen 

hidden” information of higher fre- as a drawback. the acquired image has 

quencies components. If we do not impose a model over the original image 

(c.g. regular in some sense) the process of recovering the high resolution 

image is irreversible. By subpixel estimatine the PSF, we learn how the fre- 

quencies are mixed. which is very useful information for recovering the hieh 

resolution image. The proposed subpixel PSF estimation algorithmn is strictly 

connected with the proposed image formation model. 

Precise PSF estimation is also of great interest for the Modulation Trans- 

ter Function - MTE estimation problem. The MTE is the Fourier transform of 

the PSE and is widely used by lens sellers. like Canon or Nikon. to describe 

the quality of a lens. They offer the lens MTF as a chart showing the response 

of the system to thicker sets of parallel periodic straight lines. The patterns



are presented to the camera at some particular orientations, and the camera 

response is measured at certain locations of the image plane (see [1] for a 

description). This information given by optical designers is not exactly the 

Fourier transform of the PSF but is closely related to it. MTF charts usage for 

image quality evaluation is widely accepted by the photography community 

making PSF estimation a relevant topic for the area. 

Although there exists a significant amount of work in blind deconvolu- 

tion associated to image restoration. very little has been done in accurate 

PSF estimation. Existing PSF estimation methods can be classified into two 

categories: blind PSF estimation and non-blind PSF estimation. Blind meth- 

ods estimate the PSF without knowing the target scene: that is to make the 

estimation from a single or a set of “blurred” images. On the other hand. 

non-blind methods do the estimation using a known pattern calibration 

image. In the present work we propose a nonb-parametric PSF estimation 

method using a non-blind approach. For that purpose. we use a specially 

designed grid pattern that captures local blur information allowing local 

subpixel PSF estimation (see Figure 1). Our work is based in (2. 3] where the 

authors proposed an aleorithin for both blind and non-blind subpixel Psr 

estimation. 

  

    

  

  

Figure 1: Gird pattern for local PSF estimation 

The erid pattern presents checkerboard corners that are used to locallv 

register it. Because of the aliasing problem present on digital images. the 

task of detecting the corners at subpixel precision is not trivial. We analvze 

different corner detection algorithms and we compare their performance de- 

pendine on the aliasing and noise power levels. 

Using the detected local pattern features we estimate the egcometrical 

distortion introduced by the digital camera. We can model this distortion as



a mapping between 2D planes (i.e. the printed grid pattern and the digital 

image). There are several sophisticated models for geometrical lens distor- 

tion. However. according to the literature (4. 5] lens distortion is generally 

completely dominated by the radial components. In this work we explore 

two ways of modeling geometrical lens distortion. First, as a composition 

of a homographv and a radial distortion. and second as a non-parametric 

smooth 2D to 2D mapping. modeled by thin-plates splines. We slow that 

the non-parametric spline model is more accurate. 

Finally. as we know the geometrical transformation between the grid 

pattern and the captured digital image, we can search for the kernel that 

convolved with the grid pattern and distorted by the mapping, gives the 

best explanation of the observed image. We formulate this problem as a 

variational minimization adding a regularization constraint for stability. As 

we do the grid pattern registration locally we can find a local PsF. This also 

allows us to estimate other non local distortions (e.g. vienetting). 

Most digital cameras have only one CCD photo-sensor-arrav. so in order 

to acquire color information. each photo-sensor is filtered to capture only 

the wavelenegths of a particular band for the red, green. and blue channels. 

In order to avoid the preprocessing done by the camera built-in software we 

use raw image data (i.e. data accessed directly from the camera sensor) and 

compute a PSF for each of the channels. This also gives us an idea of the 

camera chromatic aberrations caused by the fact that different wavelengths 

focus at different planes. 

In order to validate the proposed methodologv we performed several 

tests with both simulated and real data. Using simulated data we were able 

to assess the correct performance of our PSF estimation algorithm. Good re- 

sults were obtained even in the presence of noise and aliasing due to under- 

sampling. In the case of real data tests the estimation could not be directlv 

validated as the ground-truth about the real camera PSF is not known. In- 

stead. we use the super-resolution problem to indirectly evaluate our PSF 

estimation. Our goal is not to develop a state-of-the-art super-resolution al- 

eorithm. but to show the advantages of having an accurate PSF estimation 

for this problem. Within a Bavesian framework, we propose a single im- 

age deconovolution/super-resolution algorithin that uses the subpixel PSF 

estimation to find the a posteriori most probable super-resolved image. We 

based our work in novel results on natural image statistics which justify a 

sparse model on the image eradient. 

This manuscript is organized as follows. In Section 2 we overview relevant 

work on PSF estimation and image deconvolution. In Section 3 we describe 

a mathematical digital camera model which will rule our PSr estimation.



In Section 4 we present our work in subpixel PSF estimation using a known 

calibration grid pattern and all the associated problems. In Section 5 we 

present experimental results generated with both simulated and real camera 

data. In Section 6 we introduce a single image superresolution algoritlhn 

that is based on our subpixel PSF estimation while in Section 7 we analvze 

its performance through simulations and real digital camera images. Finallv. 

in Section 8 we close with a discussion of our work and present some ideas 

for future work.



2 Review of PSF Estimation Methods 

There are several causes of image blur. Some of them, like light diffraction. 

are direct consequence of the optical system and of unavoidable physical 

phenomena. Others. like out of focus, are caused by the configuration of the 

scene or the photograph expertise. In this section we present an image for- 

mation model. which will be the cornerstone of the PSF estimation approach. 

First. because we need to know if it is possible to model a digital camera 

response with a PSF but also because our estimation will be conditioned by 

the adopted model. In the second part of this section. we review some of 

the existing methods for PSF estimation and how they are associated to the 

blind deconvolution problem. 

The goal of PSF estimation is to recover the kernel that causes an image 

to have blur. Nevertheless. as we have shown in the last section. this is 

strictlv attached to the image formation model that is considered. Most of 

the existing work estimates the best linear shift invariant kernel PSF, known 

as point spread function. which convolved with the true image generates the 

observation. 

gli-j)=f +pst(i,7) +n(6,5) => f(.Josf(k 5.1) +n(6.3) (1) 
(kl) 

where 1, € Zand n is a stochastic process modeling the random noise. 

From this equation it is clear that if we want to estimate the PSF from 

the observation y we also need to estimate f. There are two big different 

approaches for PSF estimation: blind estimation and non-blind estimation. 

The first one considers that the original true image f is unkwnown, so the 

pair (f.PSF) is estimated simultaneously in order to give a good interpreta- 

tion of y. The second approach assumes that the true image f is given and 

known so it consists in finding the best kernel PSF which convolved with the 

true image f results in y. Intermediate approaches, where some information 

on the nature of f is known. have also been proposed, but are less common. 

Although there exists a lot of work in blind deconvolution associated to 

image restoration, there exists little work on accurate PSF estimation. We 

refer to [6] for a complete survey on blind deconvolution, aud to [7] for a 

state of the art blind deconvolution algorithms performance evaluation. 

Some researchers have approached the PSF estimation problem by esti- 

mating the modwuated transfer function (MTF) of a system. The MTF of an 

optical system is an accepted way of describing its optical properties and its 

quality (S]. If the convolution model of Eq. 1 is accepted. then by considering 

its Discrete Fourier Transform we get. 

Glu.v) = Flu.v) - FpsO) (a, v) ( ww
 

eS
, 

1



where F is the Discrete Fourier Transtorm (DET). F and G the DET of f 

and gy respectively. The MTF is defined as 

mtf= F(psf) 
« 

Hence. the problem of PSEF estimation and MTF estimation are equivalent. 

The MTF is widelv used in consumer lens sellers like Canon or Nikon 

to describe the quality of a lens. However. they offer the lens MTEF as a 

chart showing the response of the system to thicker sets of parallel periodic 

straight lines. The patterns are presented to the camera at some particular 

orientations, and the camera response is measured at some particular loca- 

tions of the image plane. Hence, the MTEF is given as a set of lines (figure 

2). This information given by optical designers is not exactly the Fourier 

transform of the PSF but is closelv related to. Here we do not pretend to an- 

alyze how to read an MTF chart (see [1] for a description). but our intention 

is to remark the importance of its estimation as it is well accepted bv the 

photograph community. 

t8mm 200rnrn 
       
          

Figure 2: Sample MTEF chart from a Canon EF-S 18-200mm f/3.5-5.6 IS lens. 

In (8. 9] the authors proposed a novel approach for MTF estimation by 

using a random target. The best advantage of this method is that it does not 

need to align or even to know the true pattern image. It only needs to know 

that it is a realization of a white noise process. Then, based on the fact that 

the input image has a flat spectrum. the estimate of the MTF follows directly 

from the computation of the power spectral density of the acquired image. 

However. as much of the work on MTF estimation. they do not estimate a 

bi-dimensional MTF. Instead they suppose that the PSF is svnimetric. so it 

is sufficient to give the MTF in a particular direction. As this could not al- 

ways be a valid hvpothesis. several authors and lens sellers present the MTE 

information as a set of curves reflecting the changes in different particular 

directions.



Another area which is closely related to PSF estimation is blur estimation 

which consist of estimating the level of blur in an image. Most of the work 

in this area assumes a simple PSF parametric model. such as a Gaussian 

function in [10]. However in [11] the author proposes a novel way of analyz- 
ing the blur formation. It is shown that the convolution model is imprecise 

especiallv when object occlusion occurs. In the best case where the convolu- 

tion model is valid, an estimation of the local blur level is given. The work is 

based on the analysis of the topographic map by using the mean curvature 

motion filtering to find the locations where the blur estimation can be done. 

In order to review the existing methods of PSF estimation we separate 

them arbitrarily in three arbitrary categories: blind PSF estimation. non- 

blind PSF estimation and parametric PSF estimation. These categories are 

not mutually exclusive, in particular the parametric methods belong to ei- 

ther the blind or non-blind category. 

Parametric PSF Estimation Im Section 3 we will describe the physical pro- 

coss that governs the image blur. There are some existing approaches that 

try to estimate the PSF in particular cases supposing a simple parametric 

PsF model. For example in [12] the authors propose a model for the out of 

focus blur. However more complex blur, like the one generated by general 

motion blur or simple, an accurate estimation of the PSF due to diffraction. 

cannot be represented by such a simple model. 

Several methods within this category use specific information about the 

true image. such as being formed by perfect point sources or by step-edges, 

in order to estimate the parameters of the PSF model. The most popular ones 

use the frequenev domain zeros of the acquired image to perform the PSF 

estimation [12]. From the simple model presented in Eq. 2 and supposing 

there is no noise. the observed zeros of € give some information about the 

zeros of the MTF. Then. in order to completely characterize the MTF. one 

needs to assume that the PSF is of a known parametric form and that given 

its frequency domain zeros, its associated parameter values can be uniquely 

determined. 

As out of focús. or simple motion blur estimation is not the goal of our 

work we do not dwell further on this. Behind low order parametric PSE 

models. we do not know any method of parametric PSF estimation. Possibly 

due to the complexitv of the phvsical process behind the acquisition. In 

particular, according to what we show in Section 3. the camera aperture 

shape need to be parametrized in a precise way.



Non-Blind estimation It is important to remark that even in the case we 

know exactly the true image. image deconvolution is an iN-posed problem 

due to the loss of information during the blurring process and the noise 

presented in the observation. Thus, the most important thing is to develop 

methods which impose some prior knowledge in order to disambiguate the 

inverse problem. 

The principal methods for image deconvolution are the Lucy-Richardson's 

algorithm. the Wiener filter deconvolution, least-squares deconvolution and 

deconvolution based in image priors derived from natural image statistics 

(13). 

The first three methods are classical ways of facing image deconvolution 

problem. while the last one is a novel significant improvement based in an 

sparse image eradient model. This sparse assumption seems to be reasonable 

in natural images. However, in our case in which what we want to estimate 

is the PSF a simpler least squares with some reasonable prior should be more 

appropriate. 

Blind estimation Blind image deconvolution is one of the most challenging; 

topics in image processing. It is by definition a very ill-posed problem. so 

some constraints on the image and also in the PSF should be imposed. For 

a formal definition of the problem where the most important aspects are 

considered see [6]. 

The most classical assumptions for the PSF are: 

e PSF values are non negative. In other words blurrineg in is a purelv 

additive process. 

e PSF preserves image energy. That is f ps£(x)dx = 1. 

e PSE is symmnetric. Central synnmetry along its barycenter or radiallv 

which is a stronger hypothesis. 

e'PSF is known in a parametric way. We have already commented this 

case. 

Notice that while the first two assumptions are very reasonable (as they 

should not eliminate any valid PSF). the rest are much more restrictive. as 

they suppose particular shapes of PSF kernels which in practice eliminate 

real camera PSFs. 

In order to give an accurate PSF estimation. it is important to also con- 

strain the class of true images to be utilized. As much as we restrict the set



of possible images, we can utilize more prior knowledge on the input set. 

and therefore we can stabilize the original idl-posed deconvolution problem. 

A tvpical assumption is that the edges presented in an image are step-edges, 

so in practice it is possible to recover the true image from the degraded 

observation. For example. this is done in (2]. Then a non-blind deconvolu- 

tion algorithm is used to estimate the PSF. Other assumptions are that the 

images are formed by point sources as found in astronomical images. 

Nevertheless, as the goal of this work is to give a precise subpixel PSF 

estimation we opted for a non-blind PSF approach. We do not discard to 

explore blind estimation approaches in future work.



3 Digital camera image formation model 

The formation of a digital image implies several physical processes that conm- 

vert the 3D world scene into a bounded digital 2D image. The goal of this 

Section: is to formalize the mathematical model behind this procedure. 

Up to our knowledge there is no suitable universal camera model. The 

main reason, is the difculty in giving an accurate model of the whole image 

acquisition chain, both because of its variabilitv and its complexityv. Never- 

theless. a lot of researchers typicallv assume a pin-hole camera model. that 

is a camera with no lens and a very small (a point) aperture. By assuming 

this, the process of image formation consists onlv in a perspective projec- 

tion which maps the 3D world into a 2D plane. The pinhole model is an 

ideal model: in practice a camera will have a lens which can introduce some 

eeometrical distortions. The aperture cannot be so small because it could 

produce high diffraction effects and a lens is needed to concentrate lieht in 

the aperture (otherwise the image would be extremely dark). This leads to a 

series of effects that are not taken into account by the classic pin-hole model: 

diffraction, averaging due to the non infinitesimal aperture size. geometric 

and chromatic aberration introduced by the lens. etc. 

The model adopted here is a generalization of the ideal pin-hole camera 

model. It considers the diffraction effect due to finite camera aperture. the 

out of focus due to setting the focus only for a specific depth. and also the 

digitization process. We also incorporate a geometrical distortion transfor- 

mation in order to contemplate possible lens distortions. As tvpicallv lens 

systems are constructed from a series of individual lenses centered on a com- 

mon axis. it is difficult to preciselv define a model for the lens system. In the 

literature the one which seems to be the most realistic model is presented 

in [14]. Figure 3 shows a diagram of the image acquisition process. 

  

Apert Sensor 

Perspective Lens pan Sampling tes 
Projection Distortion - diffraction - averaging edo 

- out of focus - motion 

Fienre 3: Image formation Model. 

Perspective Projection 

A 3D perspective projection is a geometric transftorm that maps 3D world 

points to a 2D plane. The geometry behind this projection involves treating 

the 2D projection as being viewed through a camera with a point aperture. 

A perspective projection maps 3D straight lines in 2D lines or 2D points. 
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and 3D points in 2D points. Mathematically, if we consider a plane P in 3D 

space its perspective projection can be described by an homography. which 

is defined by 8 parameters or by the image of 4 points in generic position 

[15]. In Section 4.3 we comment on how to determine the parameters of the 

homographv by taking advantage of the grid pattern. 

In practice. geometric distortions occur causing that perfect lines in the 

3D world are not exactly projected as 2D lines. Consequentlv, the lens dis- 

tortion has to be considered in the camera model. 

Lens Distortion 

There are several sophisticated models that try to model lens distortion. 

however according to the literature (4, 5] in general the lens distortion is 

completely dominated by the radial components. The classical model for 

lens distortion is to consider a radial distortion governed by a low degree 

polvnomial. This requires to determine the center of the distortion (a point 

in the image plane which does not suffer from distortion) and the coefficients 

of the polyvnomial. In Section 4.3 we discuss this phenomena and we also give 

an approach to compute the radial distortion. 

Finite Aperture 

The finite aperture has two consequences: diffraction and out of focus. 

The first and most important is the diffraction due to a non-infinite 

aperture. lt can be modeled as a convolution. we refer the reader to (15] 
Theorem 1 (Fraunhofer Diffraction). The diffraction kernel is determined 

by the aperture's shape and size, the focal length and by the wavelength 

of the considered monochromatic light. Therefore, in theory each of the 

three channels RGB will have a different diffraction. If the shape and size of 

the aperture is known it can be explicitly computed. In practice, a circular 

apertwre is assumed. leading to the following diffraction kernel (Proposition 

2 [15)): 

(2 NY” rDya? + y? e 
AI withr E 

y ga 
  

The function J,() = UN cos(9 — tsin0)d0 is the Bessel function of first 

kind and order 1, f is the focal length. D the aperture diameter, and A the 

wavelength. 

Notice that in this case of circular aperture. the radius of the diffraction 

kernel (approximated as the first zero crossing of J] (1)) is r, = 1.29% . This 

is called ajry pattern and gives a reasonable estimate of the optical system 

11



resolution. Note. that the size of the central spot depends only on the so 

called F-anumber = $ and the wavelength A. Figure 4 shows a real camera 

aperture: the circular aperture hypothesis is doubtfully reasonable. 

  

Figure 4: Real camera aperture. Image taken from [13] 

The second consequence of a non-punctual aperture is the out of focus. 

The out of focus effect appears when the scene presents several objects at 

different depths and the picture cannot capture all of them in perfect focus. 

Tf the imaged scene is a plane parallel to the camera plane. we can alwavs 

take the photograph in perfect focus. For different wavs of describing the 

out of focus see [15] section 1.2.3 where a mathematical description in terms 

of the aperture shape is presented or [12] where a simple circular disk kernel 

is considered. 

Since both problems are consequence of the same part of the acquisition 

system process. the aperture kernel can be modeled as 

apela == Rai a Kaefocus 

However. we point out that the goal of this work is to estimate the PSF onlv 

due to the camera hardware and not to take into account extrinsic effects 

such as the out of focus. 

The Sampling Process 

The digitization process is performed bv a rectangular grid of photo-sensors 

(CCD or CMOS) located in the focal plane. Each photo-sensor integrates the 

liebt arriving at a particular exposure time. Since all the analvsis presented 

here considers monochromatic light we work independently with each of the 

RGB camera channels. Most digital cameras have onlv one CCD array. so in 

order to acquire color information. each photo-sensor is filtered to capture 

12



only wavelengths of a particular band for the red. green, or blue channels. 

This is done by the Baver filter mosaic. which covers the sensor plane with 

50% of green filters and 25% of blue and red filters respectively (see Figure 

5). The image formed by the data as it comes directly off the sensor array 

is called RAW image. Then the camera built-in software interpolates these 

patterns to get information of the three colors in each pixel. This process is 

called demosaicking. 

  

Figure 5: Typical Baver pattern. Image taken from (16). 

Sensor light integration can be modeled by a convolution with a kernel 

Ksensor = lc, the indicator function of the photo-sensor region C'. Also, as 

the sensor does not have a linear response for low and high energies, instead 

of acquiring the digital image /¿ we will acquire the image gy(/¿) where g(-) is 

a unknown non linear increasing function. In Figure 6 we show an example. 

For that reason. it should be avoided the work in dark places as well as very 

illuninated ones. 

If relative motion between the camera and the scene during image ex- 

posure time exists, the acquired image will present motion blur. In the case 

that the relative camera-scene motion is constant all over the scene. the mo- 

tion blur can be modeled as a convolution with a single kernel. In a general 

situation. the motion blur is not translation invariant therefore it cannot 

be expressed as a convolution. Nevertheless. if the motion is constant by 

regions. it can be locallv described as a convolution with a particular kernel. 

Since the photo-sensors are electronic devices they suffer from random 

noise. Also as the recorded intensities are quantized on a finite number of 

levels. this will also produce quantization noise. Finally instead of acquir- 

ing the digital image /¿, the camera captures the image g(l/) + n, where 

n models the random noise. Typicallv the noise variance increases with the 

LS
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Figure 6: Tvpical light sensor Response. 

intensitv level. 

In order to avoid the effect of the demosaicking algoritlom. we access 

directlv the RAW image file. which contents the Baver image. Then we can 

compute a PSF for each of the channels. Notice that due the conformation 

of the Bayer pattern. we have the double of samples in the ereen channel. 

Consequently. the green channel PSF estimation should be the most accurate 

one. 

Adopted Model 

In this work. the goal is not to make a parametric camera model. however 

in order to check if it is possible to estimate a single PSE we need to define 

the order in which each of the acquisition system stages Occurs. 

It seems reasonable to consider: first a projective transformation which 

maps the 3D world scene into a 2D image plane. then a geometric distortion 

due to the lens system. followed bv diffraction phenomena due to finite 

aperture. then a perspective transformation which maps the lens image plane 

into the CCD camera plane and finally the sampling process in the CCD arrav. 

This can be formallv described bv the following model: 

(Mo) Li = ll g(HaR(EU)) a Kaperture)) * Kocp) +2. 

where: 

- H¡(-) is the projective transform from 3D to 2D world. 

- Hoy(-) is the projective transftorm from 2D lens image plane to 2D cc 

image plane. 

- R(-) is the distortion function due to the lens system. 

14



Naperture is a convolution kernel due to the diffraction in the aperture. 

Keep is a convolution kernel due to the light integration in the sensor 

ECM: 

- y(-) is a monotone increasing function due to the not-linear CCD re- 

sponse. 

- To,» is the bi-dimensional ideal sampling operator due to the CCD array. de o > 

- n» models all the noise present during the acquisition process. 

This model is too complex to work with. and also it cannot be described 

bv using only one convolution kernel. So we will consider an approximation 

model, in which we will concentrate all the PSF like effects into a single PSF, 

that is 

(101) la =Tlzgg(R(A(1))xk) +n 

where. H(-) is the projective transform from 3D to 2D world and k isa 

convolution kernel due to all PSF like effects. 

Another simplified model can be derived if we consider the elementary 

stages in a different order: 

(Ab) La =TMzeg(R(A Us k))) +0 

where we imposed that the first process is the convolution with the PSF and 

then the rest. The model (1/,) seems more realistic than (1£>). as the order 

of the stages seems to be more appropriate. In Section 4.5, where we present 

our PSF estimation approach, we will comment on the differences between 

considering each of these model.



4 Proposed Approach to the PSF estimation 

There exist several methods to estimate the PSF, in Section 2 we mentioned 

some of them. As we have previously said, the goal of this work is to do an 

accurate subpixel PSF estimation, and with that in mind the most reasonable 

is to do a non-blind estimation. More specifically, our work is strongly based 

in (2, 3] where the authors proposed a novel method to do a superresolved 

PSF estimation in blind and non-blind conditions. 

In Section 3 we presented an image formation model that takes into 

account all phenomena involved the acquisition of a digital image. The pur- 

pose of this Section is to analyze how accurately we can estimate the PSE 

bv following the image formation model. First we introduce our non-blind 

approach for PSF estimation, then we discuss how to choose a suitable erid 

pattern. Next, we analyze all the necessary steps to do a correct estimation 

of the PSF. always bearing in mind that the observed images are aliased. 

The idea behind our approach is to solve an inverse problem in order 

to find the PSF. By using prior information about the smootlmess of the 

PSF we can make the inverse problem well posed. This can be formulated 

by considering one of the image formation model, for example (Af) and 

choosing k to minimize the functional: 

2 

L=IARI +) La RA VE |     

where Í is the sharp erid pattern image and £¿ the blurred degraded obser- 

vation. We have included a regularization term which penalizes kernels with 

large egradient. The regularization parameter A is related to the noise level 

but also to how over/under determined is the system. 

As inferred by the above problem, if we want to estimate the PSF by a 

non-blind method, we will have to face (explicitly or implicitly) the following 

problems: 

e Choosing a good grid pattern. 

e Getting rid of the non-linear CCD reponse - y(+) function. 

e Getting rid of the geometric transformation -R(-) function. 

e Estimation of the sharp grid pattern image /. We know the pattern as 

it is not-blind estimation but we do not know its intensity value and 

also we do not know its alignment to the observed image. 

e Numerical algorithms for solving the PSF. 

16



4.1 Choosing a grid pattern 

There are several ways of producing a good grid pattern. Suppose. we could 

do a perfect delta-like grid pattern (e. an image containing just a sinele 

point of zero measure). then its Fourier transform would be constant, and 

finallv the observed image would be exactly the PSF. However, in practice it 

is impossible to do this as we cannot print such an image. 

One easy way of implementing the idea behind this is considering a pat- 

tern with perfect step-edges. In this case. the observed image will give us 

information about the PSF response in the direction orthogonal to the edge. 

Then. we need the pattern having edges in all directions. Also, if we want 

to do a local PSF estimation we need a pattern having edges in all directions 

ot every location. 

As a previous step to tackle the PSF estimation, we need to alien the 

pattern and correct the geometrical transformation due to perspective and 

lens distortion. For that purpose, the pattern has to be locally alignable. For 

example. it has to contain some local features that are easily detected. 

In this work, we used the grid pattern proposed by Joshi et al. [2] which 

consists of perfect 120% ares connected in a way that they produce checker- 

board like corners (see Figure 7). We have drawn the grid in vectorial form 

(postscript language) to be able to rasterize it at any resolution. 

We leave for future research the study of other ways to produce good 

pattern erids. In particular, we would like to study the generation of white- 

noise-like grid patterns. 

4.2 Grid Alignment 

The approach adopted here assumes that we know the input to the system. 

As we know beforehand the pattern that the camera is acquiring. we only 

need to alien it to the observation. The main problem is that we do not 

know how the acquisition system (i.e. digital camera) degrades the pattern 

image. since this is what we want to measure. 

Following either models (111) or (A£2), presented in Section 3, in order 

to deal with geometric distortions the ideal pattern and its observation have 

to be locally aligened. Notice that actually, if the PSF does not exhibit radial 

syumetry misalienment due to its influence can occur. For that purpose 

we detect the checkerboard like corners, and if we suppose that the PSF is 

syimmetric then this x-corners will not suffer from shrinkage. Several meth- 

ods to detect corners have been reported in the Computer Vision literature,
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rangine from differential operators such as Harris detector to more specific 

correlation methods. 

4.2.1 Harris Corner Detector 

Harris and Stephens [17] analvzed this problem based on the local autocor- 

relation function of an image. The local autocorrelation function measures 

the local changes withing an image bv shifting patches a small distance in 

all directions. Given a shift (+. y) is defined as: 

Ele.y) = HR w(u,v) l(u+x.v+y)-— Ju, y. 

ue 

where w(u. ve) is a smoothing window (e.g. a Gaussian) centered in (e. y) 

and /(-.-) denotes the image intensitv. Then approximating /(u +... +) 

by its first order Tavlor expansion 

Fu+a, c+ y) = Hu. e) + (Lulu, 0). L (e. 0) > [ey].



and replacing this in £(v, y) we have 

Elx,y) = [2,y]Mz, y]! 

PL Ta, . . . . 
where Af =>), ,w(u, v) LI P captures the intensity behaviour of 

E e 

the local (+. y) neighborhood. 

Then observing the cigenvalues of M it is possible to construct a rota- 

tionallv invariant descriptor: 

e Both eigenvalues are small meaning the image region has constant 

intensity. 

e One eigenvalue is high and the other low. then there is an abrupt 

change in the image in one direction and little change in the orthogonal 

direction. This indicates the presence of an edge. 

e' Both cigenvalues are high, meaning that shifts in any direction will 

result in a significant change in the intensity image. This indicates the 

presence of a corner. 

Harris-Stephens proposed to measure this bv. R = det(AL) — ktrace(AL y? 

where k € [0.04. 0.15). 

Then big R values will mean a presence of a corner in the point (». y). 

There exist multi-scale and affine invariant generalizations of the Harris- 

Stephens corner approach [18]. but none of them were considered in this 

work. As we work under a totally controlled situation, we can always know 

exactlv the scale at which we are working. We concentrated our work in 

studying how we can refine the corner detector to get subpixel accuracy. 

4.2.2 Sub-pixel Corner Detection 

The procedure presented in last Section does not give subpixel precision as 

we are computing the R value only in the grid defined by image pixels. In 

order to get subpixel accuracy we studied three different variants to refine 

the initial position given by the Harris-Stephens algorithm. 

Image Interpolation In [19] the authors proposed to first apply a Harris- 

Stephens corner detector at pixel level and then interpolate the image in- 

tensitv in neighbours where corners were detected. Finally we could apply 

the corner detector to each of the interpolated neiehbours and if the inter- 

polation is precise we could get subpixel accuracy. The main drawback is 

that if the image is aliased then we do not know how to correctly inter- 

polate it. In practice, we used an iterative algorithm where we smooth the 
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image (as an antialias preprocessing) before interpolating it. then we run 

the Harris-Stephens algorithm. Bv doing this iterativelv, we can refine the 

corner position by decreasing the smoothing filter action. 

Saddle-points Detector In [20] the authors proposed a method for extracting 

X-junctions with subpixel precision. First. a Harris-like method is run to 

detect neighbours that contain X-junctions, then a quadratic function is fit 

to the intensity profile for each of the detected points. This is done by solving 

a linear least squares problen, 

m2 . £ sg) " 
arg min lar? + bay + cy? + deu +ey+f- teo le 
aiexdle, f : 

where Lx 4.4) represent a neighbourhood of the image /(+. y) centered in 

the point (vo. yo) where the Harris method detected a X-junction. As the 

critical point of the quadratic function is a saddle point, it is given bv the 

intersection of two lines, 

Zar +br+d=0 

be+2cy=e=0 

And finally the subpixel X-junction (+, y) is located at: 

be — 2cd bd — 2ae 
L= ———= Y = ————. 

Zac 62% — Tas PP 

X-checkerboard Detector Im [21] the authors proposed a new method for 

detecting X-corners. Once they get an initial position (+, y) thev refine the 

localization by using a second order Taylor approximation, that is bv as- 

suming that the real position is (1 +s. y +t) then, 

Tle+s, y+t) =1I(2, y) + [st] [Lo 1,1 + 

N
|
r
E
e
 

[st] | Pr pe | sa) 
ay yy 

wliere 1, is the second derivate of / respect and y. and the same for the 

others. 

Then as an X-corner is just a saddle point of the intensity image. we can 

find it by setting the first derivate of Eq.3 to zero. That is solvine. 

Lvos E Lyyt + Ls =0 

dea EL + E =0 

Finallv the subpixel X-corner position is (1 +. y +) where: 

  LyLey — LeLuy / LuL oy —> Loros 
$ = e 

Log _— Izg? LyoL gy _ Iuy? 
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4.2.3 Evaluation 

We tried to simulate the same conditions as how the grid would be acquired. 

For that purpose we built a checkerboard corner image with perfectly known 

position. Then we filter the image with a small Gaussian filter and downsam- 

pled it 16x. Adjusting the variance a of the Gaussian filter we can control 

the amount of alias in the downsampled image. Finally some Gaussian white 

noise was added to get the test image. We ran all tested aleorithins in sev- 

eral images varving the alias level and noise level. Figure 8 shows an example 

image and its degraded version. 

Figure 9 shows the performance of the three evaluated detectors in three 

different situations: high alias, middle alias. low alias. We repeated the ex- 

periment several times for each variance noise and computed the mean error 

and the standard deviation. In solid lines it is shown the mean value and 

in dot lines the mean value +06 stripe. Note that if alias is middle-low all 

aleoritlims have an accuracy greater than 0.1 pe for medium-low noise. Also, 

Chen and Harris subpixel algorithin have a very similar performance. and 

if alias is low Lucchese algorithinm works worse. ln Figure 10 we show the 

accuracy vs. O (small o high alias - large a low alias) for additive Gaussian 

noise of power 0.03 (low noise) and 0.1 (median noise). In this case, we ob- 

served that for a > 0.6 —0.7 all algorithms have a high accuracy (error less 

than 0.1 px). For highly aliased images the Lucchese algorithmn has a better 

performance while in low alias situations Chen or Harris subpixel algorithm 

reach a greater accuracy. 

Images taken from typical digital cameras are normally middle-aliased 

lo = 1— 1.6). and as we are working in a laboratory we can control the 

acquisition process to have low noise level. Also, as we pretend to estimate 

the PSF superresolved at 16x we need a corner detector with accuracy less 

than 0.1 pe. From this evaluation we conclude that in this conditions all 

aleoritlams have similar performances, so for simplicity we adopt to utilize 

the Harris subpixel detector algorithm.
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Figure 8: checkerboard corner image example (a) and Aliased 16x downsampled 

noise corner image example ()). 

Mm W



045 

04 

035 

03 

  

0.2 

015 

01 

03 

02 

  

015 

01 

035 

  

0 
0 

Figure 9: Aliased checkerboard corner detector evaluation l. Aceuracy (in px. from 

the downsampled low resolution image) vs. noise standard deviation, prefiltered by 

a Gaussian ok. a = 0.3 - high alias (top). a = 1.3 - middle alias (center). 0 = 2.3 - 

low alias (bottom). 

  

  

    

    
0.02 008 01 

noise sd 
004 006 012 014 016 

la) a =0.3 - high alias 

  

  

    

    
0.08 01 

noise sd 
0.06 0.12 01 016 

(b) a = 1.3 - middle alias 

  

  

  

  Lucchese02 

  

    
0.08 0.1 014 016 

nome sd 
0.12 

(c) a =2.3 - low alias



      

      

Lucchese02 
Chen05 

03+ SE —-— Harris-Subpx | | 

0.25+ A 4 

  

    
  

      

      

          
  

= BaE 4 Z 
á 
$ 
2 das 

Jl 

0,1P- 
] 

n.osk A AAA 

A cl 

10] . L 1 y 

0 0.5 1 1.5 2 2.5 

sigma — prefilter 

(a) noise std = 0.03 - low noise 

0.35 T Y Y 

Lucchese02 

Chenos 
03+ -— Harris-Subpx 

SS 

0.25 Xx ZA 

= 02 A z 
á 
$ 
Y 0.15 

l 

01) a a 

IT WS 

0.05+- y 

0 - 1 1 

0 0.5 1 1.5 2 2.5 

sigma - prefilter 

(b) noise std = 0.1 - medium noise 

Figure 10: Aliased checkerboard corner detector evaluation IL. Accuracy (in px. from 

the downsampled low resolution image) vs. Gaussian standard deviation (prefilter). 

with additive white Gaussian noise : std= 0.03 - low noise (top). std= 0.1 - medium 

noise (bottom).



4.3 Geometric Transformation and Distortion Estimation 

The method studied in this work assumes that we know a subpixel corre- 

spondence between digital blurred image pixels and original image. However, 

there exists a geometric transformation between real world scene and the 

associated digital image captured in the CCD plane. In practice. from the 

model that we assumed in Section 3 the mapping between a point in a 3D 

plane P = (X.Y. Z] and its projection p = [+. y] is given by p = R(H(P)). 

where A(+) model the perspective transformation as a 2D homographv and 

R(-) models the non-projective distortion. 

We have studied two different approaches for computing the geometric 

mapping. First. the classical one (based on the work by Zhang (5)) estimating 

a homographv and a radial distortion. and a general. non-parametric one 

that directly approximates the geometrical transformation by thin plates 

splines. Both techniques require to know a set of correspondences: in our 

case we used the checkerboard detected features as we know their original 

location in the pattern image. 

4.3.1 Homography + Radial Distortion 

This geometric transformation is divided into a planar perspective projec- 

tion of coplanar detected features P; onto the image plane, p; = HP;. and 

radial distortion p, = d(p;). In this approach we have not considered tangen- 

tíal distortion while most authors consider it as usually negligible [22], if our 

model /estimation is not accurate enough we can introduce some artifacts in 
the estimation of the PSE. 

Radial distortion is usuallv modeled as a polynomial, 

P=p=+(p=po)d r + dor? + dar? + dyrt) (4) 

where po is the distortion center py € R?. += lIp=poll and d1.d>.d3.dy ER. 

A homographv between points lving in a plane (the calibration pattern) 

to points lving in another plane (CCD) is determined by 4 pairs of corre- 

spondine points (8 unknowns). 164 P=(X.Y] and p=L v.y). and h,; denote 

the matrix homography entries: 

huX +hpyY +hj 

A Y 1 
ha X + ho Y + hoz 

1 hy XK + liga Y +1 
Then. we can rewrite this equation to get a linear system: 

haXe+hyYe+2—hX —hypY —>hiz=0 

hyXy + h3Yy +y= ha X — hoY —= hoz =0 
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Suppose that we know the corresponding pais (P,p)).1= 1.2... 

of 3D world points in the erid pattern and points to image plane without 

radial distortion. Then a linear system on (h,;) can be conformed and the 

problem reduces to solve a linear least square problem: 

hai Xx + ha Y 1 +ar—hXi —=hi9Y—=hj=0 

hay + ha Yi + y ha Ay — ho) — hoz =0 

hi Xx n, 1 has Ya ¿Ur + Lip — lui Ar, E ho Ya, > Maz =0 

hinAnins + Re YaYro + Un. — Rom. — hi2 Ya, — log =0 

From the adopted radial model (Eq. 4). distortion near the center is 

minimal. so we utilize feature points located at the center of the image to 

estimate an initial homographv. However. notice that this minimization does 

not minimize the euclidean distance between feature points Y Ip, = HP,IP. 

Instead of simultaneously estimating both the homographv and radial 

distortion parameters that minimize the euclidean distance between feature 

points. we proceed in an iterative way. Given a homographv we estimate 

the radial distortion that best explains the difference between the observed 

feature points and the points projected through the homogeraphv. Then. bv 

the inverse radial distortion we compute a new set of points and estimate a 

new honmograplwv. We proceed iterativelv till the difference between param- 

eters is less than a small threshold. We do this in order to accelerate the 

convergence of the algorithm as estimating at the same time the whole set 

of parameters is reallv slow. 

To estimate an initial radial distortion. we compute the projection of 

all detected feature points P; through the homographv already estimated p, 

and solve for the pairs (P;.p;).¿=1....n 

N 

R= arg min) lb; — RDP 

q=1 

Observe that R is characterized by (v09.y0.d1.d>.d3.d1). This problem is 

non-linear and we solve it using the Levenbere-Marquart algoritlm. 

Once we have computed an initial Hoy and Ry. we can proceed in an 

iterative way. For doing this we need to invert the radial distortion. This can 

be done by a Newton fixed-point algorithaim. Consider rg the distance of the 

distorted pixel to the distortion centre and d(+) = (dir+dar? dardo). 

Then following the assumed radial model, 

ro = (Di — Po) = [Di — Po) QU +d(1)) = + (1 +d(1))



and then we can invert r (1 +d(r)) = ro by the following iterative process: 

diri +2dyr + 3d3r + 4dy1ó — 19 

1+2d]1), +3d212 +4Adgr3 + 5dyr 
Pa+l = 
  

Once we have estimated the radial distortion parameters we compute p; = 

RT U(p;) and from these points we compute the new homography proceeding 

iteratively. 

4.3.2 Thin-plate smoothing spline 

For our purpose of PSF estimation we do not need to separate the distor- 

tion in homographv and non-homography distortion. The idea behind usina 

thin-plate splines is to avoid that computation and to utilize a more gen- 

eral model. Since we have previously detected the (p;) checkerboard corners 

from the grid and we know exactly their corresponding points (P,) we can 

use these correspondences to find a smooth mapping from the non-distorted 

to the distorted space. 

Although thin-plates were originally used as an exact interpolation method 

23] they can be easily extended to the approximation problem [24]. Also, it 

is considered that the problem can be subdivided in two problems. one for 

cach component of the transformation. One way of weaken the interpolation 

condition is by minimizing the functional: 

E= lr ple RA [| (8 +2 ay + $3) dedo, 

Then. the solution of this functional is of the form 

n 

Fe, y) = 40 +a12+a2y + UP; — (2. y)l)). 
t=l 

sl : 9 ma > 
where U(») = 2 log r”, the coefficients ap. 41,42, (10,)/ can be found by solv- 

ing a linear system (see [24)). 

We utilized the Matlab Spline Toolbox*M for computing the thin-plate 

smoothine approximation. 

4.3.3 Evaluation: Straight lines rectification 

In order to evaluate both approaches. we added a rectangular frame to our 

pattern grid. Then we proceeded to correct the digital images by the two 

methods. If the transformation was correctly estimated then all sides of the 

rectangular frame should be rectified (corrected to be straight lines) and the 

rectanele should be parallel to the horizontal and vertical axes respectively. 
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In this experiment we used the blue channel of a raw image taken from 

a Pentax K-M camera using a 40mm focal length at £/5.6. Figures 11 and 

12 show that in all cases the best correction is obtained by the thin-plates 

method. 

Although the distortion does not seem to be large. it is important to 

model it as better as possible to be close to the proposed image formation 

model. For that and also as we do not need to decompose the distortion. we 

decided to use the thin-plate approach. 
tu
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4.4 Sharp image reconstruction 

Once the blurred image is aligned to the grid pattern, only rests to estimate 

the black and white pixel values of the sharp pattern image. The estimation 

is performed locally, i.e. for every local grid pattern, in order to make it more 

robust and deal with non-uniform illumination. This can be formulated as 

estimating a and b for corresponding black and white pixel values, according 

to: 

: Lelx,y) = (0— a) (x,y) +4 

where Z¿(w. y) is the adjusted contrast sharp local image pattern, and /(x, y) 

is the normalized contrast local sharp image pattern with 0 for black pixel 

values and 1 for white ones. 

If we suppose that the PSF support is not too large (in comparison to 

the size of the local grid pattern), which in our estimation of in-focus-no- 

movement case is a reasonable hypothesis, we can estimate the black and 

white values by taking the mean of pixels in black and white regions respec- 

tively. This is a direct consequence of the adopted model, suppose (te. Ye) 

is the central pixel of the black flat region, and W,.. y. a window centered in 

pixel (te. ye) and totally included in the black region. Then the estimation 

of a. 4 can be written: 

a. = Wen)” y Blx.y) 

(1.y)EWre.ye 

= Wo yA y / h(s,t)L Lx, y)dsdt 
J(s,t)Esuppí(h) 

(19 EWeo. yo 

=Weego y a Jus. oyase 
(1.yEWee.ye 

= dl / h(s, t)dsdt. 

For the sake of clarity in this analysis we have omitted the noise, sampling 

and distortion operators. Also, we have supposed that the size of W is small 

enough to keep constant the image value. 

Then. if we assume that the PSF is normalized, Le. fh(s.t)dsdt = 1, 

assuming random noised of zero mean our estimator is unbiased (i.e. the 

expected value is equal the true value). In practice, this will not be strictly 

true and in Section 

estimation of a and b will affect the PSF estimation by introducing some 

artifacts. As we have found that the precise estimation of this values are a 

5 we show by simulations how a small error on the 

critical step for an accurate PSF estimation, in Section 4.5.4 we propose a 

more robust way of estimating the PSF, without a precise knowledge of these 

values. 

31



4.5 Local PSF Estimation 

Once we have an estimate of the sharp image. we can solve the PSF estima- 

tion by solvine an inverse problem. Bv using prior information about the 

smoothmess of the PSF we can make the inverse problem well posed. This 

can be formulated by choosing k to minimize the functional 

L=lI*k- BI? +AIVkI?, (5) 

where 7 is the estimated sharp image and B the blurred degraded observa- 

tion. We have included a regularization term which penalizes kernels with 

large eradient. The regularization parameter A is related to the noise level 

but also to how over/under determined is the system. 

In order to be consistent with the acquisition process that we have 

adopted. we reformulate the problem described in Eq. 5 by considering the 

already introduced model (1/>) as: 

k = arg min [ze (g(R(L +) — BI? + AVE, (6) 
k 

where we have included: gy(-) the non-linear increasing function modeling 

the non-linearity response of the sensor. (+) the geometrical transforma- 

tion. and II the sampling operator. 

As we have already mentioned we cannot get rid of the non-linearitv of 

the sensor response. However, if we work in middle range intensities then 

its response is almost linear. Due to our freedom to set up the laboratory 

experiment, we can choose the illumination conditions and the grid contrast 

value to work in the mentioned situation. So, from now on we will omit the 

function g(-) always remembering that we have to be careful in how we carry 

out the experiment. 

We have two different ways of taking into account the eeometrical trans- 

formation to solve the problem. We could directly correct the observation 

B. by applving the inverse transformation. However. as the observation is 

aliased we do not know how to correctly interpolate the image. Instead. 

we prefer to solve directly the problem as it is originally formulated. Al- 

though. this is possible to do as it is a convex functional. we prefer to write 

down a simplified linear version of the problem. By doing this. we can use 

fast aleorithms to solve the problem. Suppose that we can approximate the 

geometrical distortion by an affine transformation by its first order Tavlor 

expansion: 

R(x + h) = R(x) + J(x)h + o([[hl]?) =
]



Then. 

Hs) (R(x) —s) ds 

y
 (R(s))n (RG) —R(s)) |J|ds' 

T(R(SD) (JT (xs) |Jlds' 

In(s”)h(x =— s')ds' 

Y 
=Ir*xhj(x) 

where we have applied Eq. 7 and a change of variable s' = R7!(s). Observe, 

that by holding this assumption, we can modify the sharp image 7 by the 

eeometrical distortion (to get /) and then solve for the kernel /./. However. 

we have to take into account that the solution hy is perturbed by the linear 

transformation / due to the jacobian of the distortion. 

The assumption does not generally hold, due to the non-affine distor- 

tion introduced by the lens. Nevertheless. if we solve for local point spread 

functions. then locally the distortion can be well approximated by an affine 

transformation, and everything holds. 

Note that if we assume the other image formation model (11) the PSE 

estimation can be done in the same way. However, the results follows di- 

rectly from the model where we can write Ig*h(x) so the kernel will not be 

modified bv the geometrical distortion. This difference is due to the adopted 

model but conceptually in both cases we are estimating a point spread func- 

tion that will characterize the digital camera. 

Finally we can rewrite Eq. 6 by approximating the samples of the con- 

tinuous convolution If x h(x) by the discrete convolution. Note that this 

is true, if the sharp image and the kernel are sampled at frequency higher 

than the Nyquist frequency. In the case of the sharp image this cannot be 

true. as it has infinite support. Then 

k = arg min [[MIk — MB? +AJVkl?. (8) 
k 

We have written the convolution as a linear operator by the convolution 

matrix 1 formed from /;. The M operator is a mask that only evaluates the 

functional in those pixels that add information. It is not used to calculate 

the difference in every pixel. as the pixels deeplv inside the flat regions do 

not incorporate any information apart from adding noise. In practice, the 

binary mask operator consist of a band of ones around the circular edges 
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(see figure 13). 

  

(a) (b) 

Figure 13: Masking operator. Unmasked observation (a). masked observation (b). 

4.5.1 Superresolved PSF 

With the aim of computing a superresolved PSF, we can take advantage of 

the a priori analytic knowledge of the grid pattern. As we have studied in 

Section 4.2 we can alien the grid pattern and the blurred observation with 

subpixel accuracy. Then, we can rasterize the grid pattern at the resolution 

we want to estimate the PSF. Let us call this rasterized image 1/7. Next. 

we introduce a down-samplineg operator D, that takes a high resolution 

image Ip and generates [, as [(m,n) = Ip (sm, sn) where s = 9 == 

0,1,..). Observe that we can replace the old data misfit term in Eq. 6 bv 

[MDI 4 — MB? and solve for ky to find a superresolved PSF. Finally 

the minimization problem can be written as 

(P) ¿=argmin [MDI 4 —- MB? +AVkgl]P 
hu 

This formulation also improves the approximation of the continuous convo- 

lution as it is done in a higher resolution domain. 

4.5.2 Choosing the regularization parameter A 

As we have already mentioned in the previous Section. the parameter A 

should be an increasing function of the noise level but also on how much 

determined is the liner system due to the data misfit term. ln a Bavesian 

interpretation, A is the ratio of data and model variance. 

In the original work [2] the A parameter was fixed only taking into ac- 

count the noise level and the size of the PSF support. la our opinion. the A 

parameter should be at least a function of: 

e How local we are doing the estimation (i.e. number of local grid pat- 

terns). this will have an impact in how well the observed step-edges 

response is sampled. 
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e How much we are increasing the resolution of the estimated PSF (ie. 

s parameter). 

e Noise level. 

There exist two popular ways to give an estimation of the regularization 

parameter: the L-curve [25] and Generalized Cross Validation (Gcv) [26]. 
The L-curve approach consists of selecting as the regularization parameter 

the point of largest curvature (called “L” point) in the plot Euclidean norm 

data misfit error vs. norm of regularization term. 

In this work, we opted for GCvV for determining A. In Section 4.5.3, we will 

also explore a different way of posing the PSF estimation in a parameterless 

way. We leave for future investigations the performance of other Á estimators 

like the L-curve approach. 

Generalized Cross Validation The argument behind Generalized Cross Vali- 

dation is that if A is a good choice, then the A estimated from a part of the 

data should be a good estimation for regularizing the problem and doing 

a prediction for the other part of the unseen data. We used leave-one-out 

cross validation (LOOCV) which means to compute the model by removing 

one observation and then calculate the residual between the removed value 

and the value predicted by the model. 

Consider the general regularized least squares problem, where 4 is a m 

by n matrix (mn data values), and bis am by 1 vector (observations), D is 

an by on regularization matrix, 

Ar —d]P+AJDa]P? 
    argmin 

E 

The cross validation residual [26] can be written as. 

2 
ñ n . 9 

va) = 92 (01h) 
i=1 

217 — N(AJ 1? 

Ltrace(1 - Nay? 

where N(A) = (44 +nAD'D)7L Al, bj is the ¿-th observation and Dis) is the 

predicted value by the model estimated with the other (n — 1) observations. 

Finallv we choose as the regularization parameter the A* minimum of 

function V(A).



4.5.3 Parameterless minimization - Noise estimation 

In Section 4.5.2 we presented the PSF estimation problem as the minimiza- 

tion of a functional composed by a data misfit term plus a regularization 

penalty:term. Although we commented a way for choosing the weieht of the 

penalty term (by a generalized cross validation approach). here we present 

a different way to estimate the PSF that only involves the estimation of the 

noise level. 

Suppose that we know that the image noise follows an additive zero 
E 4 4 7 o. 

mean Gaussian white noise model. whose variance 0? is known. Then we 

can recast the problem (Pp) as: 

(Ps) k = arg min [RAP 
k 

subject to 

[MDIk — MB? < [Mjo? 

Notice. that this problem selects the most regularized of the kernels from all 

the feasible solutions. We consider a feasible solution if it can explain the 

observation due to the adopted noise model. 

For this we need to give an estimation of the noise level. Due to the pat- 

tern erid we used, this can be easily done as it has several constant intensitv 

parts. If we suppose that changes in illumination are smooth. then we can 

proceed as follows. Take a small window in the center part of the black re- 

eion (analogous for the white region) and compute the intensitv variance 

inside the window. Then, the estimated variance will be close to the noise 

level per black pixel. 

In practice, we found that image noise depends on the intensitv value. 

and higher intensity regions (white regions) have more noise than lower ones. 

We solved this by doing an average of the noise level. As for generalizing 

this to solve for a non-local kernel by using A local grid patterns. we can 

rewrite (P,) as: 

(Porc) k = arg min [[Rkl]? 
k 

subject to 

[M, DI, — MB? < [M; lo? 

[M2DI>4 — M> Ba? < [Maloz 

IA
 

[Mi DIyk - Mi Br]? < [My lo; 
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Section 5 shows some simulations and real camera results by using this 

approach to solve for a local PSEF kernel. 

4.5.4 Minimization without contrast estimation 

In Section 4.4 we presented an approach for sharp image reconstruction. 

We mentioned that in order to estimate the PSF it was important to esti- 

mate the black and white intensity values of the sharp image pattern. Also, 

in Section 4.5.1 we discussed how from the sharp image and the observed 

bluwred image. we can find a superresolved PSF that satisfies the adopted 

image formation model. 

Here we present a different approach, in which the black and white sharp 

image values do not need to be estimated. Therefore, this novel method 

should be more robust than the previous one. 

Consider the original problem presented in Eq. 5 (we have left out the 

regularization term for readability but it does not change anything). remem- 

bering L. = (b—a)Í +a. where 7 is the binary sharp image, 

min [L. + k — Bl? = min min (dba) +a) + k — Bl? 
ab 

. . 11/ ¿ > 

= minmin [07 * k-= «a — Bl? 
E abr 

min min [1 + k — al — BI? 
Y a 

Observe that we have included the scale term (b— a) inside the kernel, so 

we can get the best kernel k upto a scale factor. This is not important, as 

we know that the kernel should be normalized. Next, we can apply 

min [7 +*k=a! - Bl? =|1x*k-B-Tx*k- Bl? 

which is a direct consequence that the best estimator for a vector in a least 

squares sense is its mean value. Finally we have 

. 2 . HA “FF 2 

min [+ k—= Bl? =mmn[[1*k-=Ixw*k-=(B-— B)Il*, 
k k 

where we have substracted to each term its respective mean value. Then. we 

can rewrite the minimization problem (P) as: 

(Pe) k=argmin [MCDI¡ 4, - MB. 1? + A[Rkyy 11? 
hp 

  where C is the centering operator defined as C =I-— E, E is a matrix 

of ones of size mx mn by mxmn, Lis the identity matrix of same size. and 

B.= B-— B are the centered observed values. Also, we can reformulate the 

37



non local kernel estimation problem in the same way. 

In Section 5 we show some results obtained by solvinge this approach 

instead of the original one.



4.6 Numerical methods to estimate the PSF 

In Section 3 we gave a list of hvpotheses that the PSF should satisfv. One of 

then: mentions that the kernel must be positive as negative light does not 

exist. This implies that our solution must be non negative, so we can impose 

this to shrink the set of possible solutions. 

Suppose that the local grid pattern observation B is of size mx n and 

we want to estimate a PSF at sx. Also suppose that the estimated support 

of the PSF is inside a p x q image. Then. the problem to be solved can be 

formally written as 

. 9 ; 
(Po) h= are au [MDI ky — MBl|* =+ ARA 1? 

ku 

subject to  kjy, >0 

where MDIy isamxn by pxq matrix, which in practice can be too large. 

R is the matrix associated to the gradient operator. 

If we want to estimate a PSF but taking into account A local grid pat- 

terns. then we would have to concatenate the associated MDIy,, matrices 

and B, observations for ¿ = 1..... Y. This would require a huge amount of 

memory. Let us call P; = MDI, and Q; = MB) for each local grid pattern. 

Then we can re-write the problem (Pp) as 

2 

(P1) k=aremin y piP:P; +RR]ky- > piPiO, 

kn i ¿ 

subject to  ky, >0 

Notice. that in this case all matrices are of the size pxq by pxq which is con- 

siderably smaller than the case before. We have substituted the parameter A 

by a parameter p; which performs the same (opposite) role but in a local way. 

4.6.1 Studied Methods 

With the aim of solving the problem (2%) subject to the non-negativity 

constraint. we studied several different methods: 

e A Gradient descent with projection method [27] J 

e Two-Point Step size gradient method with projection (based on [28])) 

e An Uzawa's Method [29] 

e A Newton interior point method [30] 
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e Disciplined convex programming - Semidefinite-quadratic-linear pro- 

eramming implemented in Cvx [31] 

For a general survey of the development of algorithms for nonnegativitv 

constraints see [32] and for more general convex optimization [33]. 

Although a simple gradient descent with projection manages to get the 

correct solution. its convergence time is really slow. We also studied the 

two-point step size gradient algorithm described in [28]. This algorithin was 

modified by projecting the actual point. at the end of each iteration. in order 

to satisfy the non-negativitv constraint. However, we could not manage to 

get it to converge. 

We also implemented an Uzawa's based method. Although this method 

achieved good results for finely tuned parameters, we found that the results 

were very sensitive to the step-size chosen. 

The general framework CVvx [31] in which all problems are rewritten in 
an standard way, also succeeded in getting a solution of the problem. This 

disciplined convex programming toolbox. uses solvers based on predictor- 

corrector variants of interior-point methods [33]. 

As the interior-point method described in [30] gets similar results to 

CVX, besides of being simpler and direct to implement we decided to use it 

to solve our problem (P;). 

A Newton interior point method described in [30] The goal is to recover a 

non-negative vector + which explains the observation b as well as possible 

in a least squares sense, 

| Ax — b[1?   (P)  argmin 
T 

subject to .:>0 

This problem. can be rewritten as a quadratic progranming (QP), 

(QP)  argmin A Av —2A!b 
E 

subject to  :>0 

According to the Karush-Kuhn-Tucker optimality conditions. if the vector 

x is a minimizer for (P), there exists a vector y such that 

(LCP) y=AlAr—ADd, y>02>0y=0 
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This problem is called the linear complementarity problem (LCP) associated 

to the (P) problem. 

The aleorithm we used is based in a Newton approach to solve the LCP. 

Consider the following non-linear equation, 

XYe 

FieuU=| nAxe-Ye- Alb |” 
0 

where NX. Y € R"*" are square diagonal matrix whose diagonal elements are 

the components of + and y respectively. and e € RY is a vector of ones. The 

idea is to solve for function F(+.y) =0 in the set S = ((+%.y): + >0.y > 0). 

For that purpose, consider a sequence of points (1%) by, 

(AL y AL) _ (ar. y) E Our, vb) 

where 0), is a positive stepsize and (uy. v,) is the Newton descent direction 

eiven by the solution of, 

y+ x* ue o —xtyYke + lige 00) 

AA —I e] | A tAX Fe + Y “e+ Alb 

The value of 11 must be positive to assure all the variables to be positive. 

Let 0, be the largest value of 0, such that (arel, qiero E S. In fact. we 

need at +0yu* > 0 and y* + 0j0* > 0. so 0% = min(0). 0) where, 

k A 
0 = ña :i=1....n and ul < o) 

Ur 

de 

: : 0 e y s 
0% = min (3 :i=1....nand ol <0). 

Yn 

Also. we want that g(x. y) = +! y decreases in each iteration. Then. 

ll 

k+1 . Al ) _ gle gl, 27) = (at Oyye + 00) — (AY 
= (a - Caty + Gb, 

= (UR RA + nu) 

where we want this expression to be negative. Two cases can be differenti- 

ated, 

if (UDAES<O then 0<0.<0%. 0< p< fix 

if (ubA> O then 0<0, <minf0 0). 0< 4 < fly 
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where. 

0, E (yy — NHk 

(ubYipk 

: _ TS 

e > 
n 

In [30] the authors give some ideas. base on their computational expe- 

rience on how to set the parameters 0 and ¿1,. Finally the Newton based 

aleorithm can be sunmarized in the following steps: 

1. Initialization 

e Choose: toll and tol2 two tolerances for zero, and (v0.yo) > 0 

initial point. 

e|'Set k=0. 

2. Main Loop 

Step 1 Compute u* and e* given bv Eq. 9. 

Step 2 Choose an appropriate 0, by respecting all the conditions given 

and update (a+, yk, 

Step 3 1£ (¿*+DEyH+ < tol1 and [4442 *+ — At) =yt+ 
El 

1? < tol2 stop 
and set? = as the solution of the siven problem. Otherwise 

update k =k +1 and return to step 1. 

  

We do not investigate different munerical methods to solve the problem 

(Py). Instead we use the already introduced convex optimization toolbox 

Cvx which can manage to solve this kind of quadratic constraint problems.



5 — Experimental Results: psf estimation 

5.1 Simulations for objective evaluation 

Considering that we do not know the PSF camera ground truth (¡.e. the 

real camera PSF) we propose an evaluation method that includes different 

simulations trying to recreate the camera acquisition process. This way. 

the proposed subpixel PSF estimation methodology is evaluated using data 

simulated under different conditions and representing different outcomes of 

the acquisition process. We pay particular attention to the aliasing effect 

caused by sampling under the Nyquist frequency. 

Manual A, known real contrast 

This experiment is probably the most important one. It validates the possi- 

bilitv of performing a subpixel PSF estimation with the proposed approach. 

For that purpose we rasterize the grid pattern at a high resolution. we con- 

volve it with a PSF like kernel (not necessary anisotropic) and we down 

sample it to get the observed digital image. The image is down sampled at 

a rate 16x (i.e. one pixel from a 16 x 16 block) and the kernel is chosen so 

that the low resolution image presents aliasing artifacts. We also add white 

Gaussian noise of s.d. a = 0.05. We call this experiment the base test. We 

ran the basic algorithmm manually setting the regularization parameter A and 

the contrast values: a and b. The alienment was done automatically. We es- 

timated 1x, 2x and 4x PSrF. 

The estimation results, performed with one local grid pattern and a 

elobal estimation using 81 local patterns, are presented in Figure 14. We 

interpolated (using a Lanczos window) the estimated kernels in order to 

compare them with the original one. As a performance measure we decided 

to use the PSNR between the interpolated kernel and the original one. Al- 

though a high PSNR could indicate a good estimation, it is important to 

notice that the kernel could still present artifacts. For that reason we also 

sive a qualitative description of the estimation. In this example. as it is 

shown in Figure 14. none of the estimated kernels present strange artifacts. 

In both cases. the estimation done at 2x or 4x. seem to capture the shape 

of the kernel (eccentricitv at 45 degrees) while the estimation done at 1x 

does not. 

At the end of this section we present a table sunmnarizing all the PSNR 

values and the observations for every of the followine experiments.



PSNR 5877 

(b) interpolated estimation - local 

PSNR 59 7/8 

  

PSNR 64 81    
(c) original estimation - global (d) interpolated estimation - global 

Figure 1d: Manual A. known real contrast. For all estimations: original kernel (top 

left). 1x estimation (top left). 2x estimation (bottom left). dx estimation (bottom 

right). Local estimations are performed using only one local pattern: global ones 

using 81 local patterns. 
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Manual A, known real contrast, alignment perturbed 0.25 pixel 

This experiment tries to validate the motivation to develop and include an 

accurate subpixel corner detector in the PSF estimation process. We repeated 

the base test but we perturbed the alignment done by the subpixel corner de- 

tector with a random variable uniformly distributed in (-0.25,0.25) pixels. 

Once again we ran the basic algorithin manually setting the the regulariza- 

tion parameter and contrast values. We estimated the 1x, 2x and 4x PSF. 

Results are shown in figure 15. As expected. the performance is lower 

than for the base test. in particular for the local estimations. Besides some 

artifacts appear in the elobal 4x estimation. 

PSNR 58.4 

  

(b) interpolated estimation - local 

PSNR 594    
(c) original estimation - global (d) interpolated estimation - global 

Figure 15: Manual A, known real contrast, alignment perturbed U(—1/41. 1/4) pixel. 

For all estimations: original kernel (top left). Lx estimation (top right). 2x estima- 

tion (bottom left). 4x estimation ( right). Local estimations are performed using 

onlv one local pattern: global ones using S! local patterns.



Manual A, real contrast perturbed 

This experiment shows the sensibilitv of the proposed method to the esti- 

mation of the printed pattern contrast level (black and white pixel values). 

We repeated the base test but we perturbed the real contrast values bv 

a adding a random variable uniformily distributed in (5,5) (image values 

range (0. 255)). We ran the basic algorithin manually setting the regulariza- 

tion parameter. We estimated the 1x. 2x and 4x PSF. 

Results are shown in figure 16. As we expected the performance is lower 

than for the base test, in particular for the 2x and 4x estimations. We can 

also appreciate that the Gaussian shape is not correctly estimated in the 

local/global 4x estimations. 

PSNR 596 

  

PSNR 60 71 

  

(c) original estimation - global (d) interpolated estimation - global 

Fienre 16: Manual A. real contrast perturbed. For all estimations: original kernel 

(top left). 1x estimation (top right). 2x estimation (bottom left). 1x estimation 

(bottom right). Local estimations are performed using only one local pattern: elobal 

ones using 81 local patterns.



Manual A, unknown real contrast 

This experiment shows the stability of the PSF estimation by automatically 

finding the contrast levels (black and white pixel values). We repeat the base 

test without setting the contrast values. Again, we ran the basic algorithm 

manuallv setting the regularization parameter. We estimated the 1x, 2x 

and 4x PSF. 

Results are shown in figure 17. The performance is similar to that of the 

buse test. 

PSNR. 60 22 

    
     

    

PSNR 6201 

  

(b) interpolated estimation - local 

PSNR. 59 53 

(c) original estimation - global (d) interpolated estimation - global 

Figure 17: Manual A, unknown real contrast. For all estimations: original kernel 
(top left). 1x estimation (top right), 2x estimation (bottom left), 4x estimation 

(bottom right). Local estimations are performed using only one local pattern: global 

ones using 81 local patterns.



Manual A, unknown real contrast, very noisy image 

This experiment shows the robustness of the PSF estimation algorithamn to 

additive Gaussian white noise. We repeat the base test without setting the 

contrast values but in this case we added white Gaussian noise of standard 

deviation a = 0.15. We manually set the regularization parameter Á and 

estimate the 1x, 2x and 4x PSF. 

Results are shown in figure 18. As expected the performance is lower 

than for the base test. Besides some artifacts appear in the local/global 4x 

estimation and the local 2x estimation. 

PSNR 58 72 

   

  

- local 

  

(c) original estimation - global (d) interpolated estimation - global 

Figure 18: Manual A. unknown real contrast, very noisy image. For all estimations: 

original kernel (top left), 1x estimation (top right). 2x estimation (bottom left). 

4x estimation (bottom right). Local estimations are performed using onlv one local 

pattern: global ones using 81 local patterns. 
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Performance Comparison Summary 

  
  

  

  

  

  

  

Experiment Resolution Mode  PSNR Observations 

x1 local 58.8 shape not captured 

global 61.1 shape not captured 

| : 2. x9 local 60.9 - 
dnown real contras 2 , 
E : : elobal 64.8 - 

local 61.1 - 
x4 se 

global 67.0 - 

, local. 58.4 shape not captured 
x1 E 

elobal. 59.4 shape not captured 

alienment perturbed 29 local 58.9 - 

known real contrast global 65.5 - 

local 58.7 some artifacts 
x4 o Pe 

global 64.3 some artifacts 

el local 59.6 shape not captured 

elobal 60.7 shape not captured 

local. 59.5 - 
real contrast perturbed x2 E? o 

elobal 57.8 - 

local. 59.7 wrong shape 
x4 do APR , global 56.6 wrong shape 

e local. 60.2 shape not captured 

elobal. 59.5 shape not captured 

! local 61.7 - 
unkwnown real contrast x2 a 

elobal 65.5 - 

xd local. 62.0 - 

elobal 66.9 some artifacts 

x1 local. 58.7 shape not captured 

elobal 59.1 shape not captured 

unkwnown real contrast 29 local. 55.3 some artifacts 

very noisy image elobal 66.4 - 

local 99.7 some artifacts 
x41 pa sh 

global 63.0 some artifacts 
  

Table 1: Performance Comparison Summary 
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Changing the considered number of local grid patterns 

This experiment shows how the PSF estimate varies when considering more 

local erid patterns in the estimation. We repeated the base test, this time 

increasing by one the number of considered local grid patterns when per- 

forming the PSF estimation. We manually set the regularization parameter A. 

Results for the 4x PSF estimation are shown in figure 19. As we expected 

the performance is better than for the base test as more local erid patterns 

are considered. However, this is a synthetic example and in real situations. 

where the PSF can spatially vary, we will have a trade off between averaging 

due to the spatial variation of the PSF and the accuracy of a local PSE 

estimation caused by considering less observations. 

    
(b) PSF at dx (c) PSNR 

Figure 19: Changing the considered number of local grid patterns. (a) Original 

Kernel. (b) Estimated kernel at resolution x4 and interpolated to the original kernel 

size. From left to right top to bottom. increasing by one the number of considered 

local grid patterns used for the PSF estimation. (c) PSNR between each estimated 

PSF (interpolated by Lanczos) and the original kernel.



A set by Generalized Crossvalidation 

In this experiment we analyze the algorithm performance when fixing the 

regularization parameter A by generalized cross validation (introduced in 

Section 4.5.2). We repeated the base test several times to evaluate the per- 

formance for different noise realizations. Results are shown in Figure 20. Un- 

fortunately the performance is not always good, indicating that this method 

is not appropiate for choosing the regularization parameter. 
' 

  

    
(dl) estimation at 1x (e) PSNR estimation at 1 x 

Figure 20: A set by GCv. (a) Original Kernel. (b) estimated kernels at resolution x2 

(interpolated) for several realizations and their respective PSNR (c). (d) estimated 

kernels at resolution 4x (interpolated) for several realizations and their respective 

PSNR (e).



Minimization without contrast estimation 

In this experiment we analyze the algorithim performance when solving for 

the alternative functional presented in Section 4.5.4. In this case. it is not 

necessaty to do an accurate image contrast (black and white pixel values) es- 

timation. We repeated the base test several times to see the performance for 

different noise realizations. Results are shown in Figure 21. The performance 

seems to be a little lower than for the optimal case. 
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(d) estimation at 4x (e) PSNR estimation at Lx 

Figure 21: Minimization without contrast estimation. (a) Original Kernel. (db) es- 

timated kernels at resolution x2 (interpolated) for several realizations and their 

respective PSNR (c). (d) estimated kernels at resolution 4x (interpolated) for sev- 

eral realizations and their respective PSNR (e). 
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Minimization with noise level estimation 

In this experiment we analvze the algorithm performance when solving for 

the alternative functional presented in Section 4.5.3. The idea is to find the 

most regular PSF that explains the observed noisy image. For that porpouse 

we need to estimate the noise level. As in this case we are considering white 

Gaussian noise. the noise level estimation is performed by estimating the 

erav level standard deviation in a flat region. We repeated the base test 

several times to evaluate the performance for different noise realizations. In 

order to get CVX to converge we had to increase the set of feasible solutions. 

For doing this we added a small value to the estimated noise standard de- 

viation. letting the CVX toolbox solve the problem. This can be justified as 

considering other sources of error not taken into account during previous 

analysis. For example, when we presented the minimization problem (P), 

we approximated the convolution between the PSF and the sharp image as 

a low resolution discrete convolution. This approximation is one of the pos- 

sible not previously considered error sources. In that sense, this procedure 

let us add other sources of error that are not considered in the noise level 

estimation previously done. 

Results are shown in Figure 22. The performance seems to be a little 

lower than for the optimal case. Also, we show that in some cases the al- 

eorithm did not manage to find a feasible solution. The problem is that 

the additional tolerance. needed for the algorithm to converge, is an extra 

parameter that prevents the estimation from being parameterless. 

al
 

¡e
s



  

(c) PSNR estimation at 1x 

   
(d) estimation at 1x (e) PSNR estimation at 2x 

Figure 22: Minimization with noise level estimation. (a) Original Kernel. (b) esti- 

mated kernels at resolution x2 (interpolated) for several realizations (db) and thcir 

respective PSNR (c). (d) estimated kernels at resolution 4x (interpolated) for several 

realizations and their respective PSNR (e). 
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Base test for different noise realizations 

In this experiment we analyze the performance when solving the base test 

automatically estimating the contrast level. We repeated the test several 

times to evaluate the performance for different noise realizations. Results 

are shown in Figure 23. The algorithin seems to be stable to Gaussian noise 

as the performance has not seriously changed between noise realizations. 

  

(a) original 

  

    
(d) estimation at 1x (e) PSNR estimation at 1x 

Figure 23: Experiment base. (a) Original Kernel. (b) estimated kernels at resolution 

x2 (interpolated) for several realizations (b) and their respective PSNR (6), (d) 

estimated kernels at resolution 4x (interpolated) for several realizations and their 

respective PSNR (e). 
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5.2 Real camera images 

In this Section we present several spatiallv varving local PSF estimation ex- 

amples using our basic algorithmm. In all cases we have manuallv set A = 

0.6.20 for 1x, 2x, 4x PSF estimation respectively. 

Figures 24,25,26 show results for our pattern grid captured with a Canon 

EOS 40D camera provided with a Canon EF 50mm f/1.8 IT lens at three 
different apertures: £/5.6, £/2.8, £/20.0 (at the same 50.0 mm focal length). 

Also in Figure 27 we show the results with a Pentax I£-M camera at £/11.0. 

40.0 mm. The estimated local PSF are of size 7 x 7 pixels and the super- 

resolved kernels 2x and 4x increase their size in the same proportion. In 

order to compare all estimations we have interpolated (by a Lanczos win- 

dow) the 1x and 2x estimated kernels to be the same size as the 4x kernel. 

In cach figure we show the estimated local kernels for the red, green and 

blue channels taken from the raw image file. 

The recovered PSFs show some interesting properties. First, for the aper- 

tures 5.6-20.0 distortion does not seem to be very significative while for the 

aperture 2.8 the PSFs estimated at the image border appears to be distorted 

with respect to the estimated at the center of the image plane. This could 

be a consequence of the fact that at 2.8 the lens is practically working at 

its aperture limit and thus distortion could be more important. This is the 

onlv case where seems to be chromatic aberration, as the estimated PSEs for 

the red, green and blue channel differ a little from each other. 

We also notice that PSFs at £/5.6 are smaller than PSFs at £/20 with the 

Canon camera. This seems to be a direct result of the already described 

diffraction phenomenon: the radius of the PSF (airy pattern) increases with 

the EÉnumber. The estimated kernels for the Pentax K-M camera at f/1l are 

larger than the Canon f/5.6 or £/20.0 PSFs. This apparently indicates that 

the Pentax KK-M is of lower quality. 

Finally we show what happens when the captured image is out-o£- focus, 

In this case, as it is expected, PSFs are much larger than the in-focus case 

and a kind of donut effect appears. These artifacts are not well explained 

bv the typical out-of-focus model.



   
(a) 1x - Red channel (b) 2x - Red channel (c) 4x - Red channel 

  

(d) 1x - Green Channel (e) 2x - Green Channel (f) 4x - Green Channel 

   
(g) 1x - Blue channel (h) 2x - Blue channel (1) 4x - Blue channel 

Figure 2.4: Real camera example. Canon EOS 40D with a lens Canon EF 50mm 

[/1.8 11. Taken at [/5.6. 1/5 s. 100 150. 501m. 
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(a) 1x - Red channel (b) 2x - Red channel (ce) Ax - Red channel 

   
(d) 1x - Green Channel (e) 2x - Green Channel (1) 4x - Green Channel 

   
') 1x - Blue channel (h) 2x - Blue channel (1) 4x - Blue channel (8 

Figure 25: Real camera example. Canon EOS 40D with a lens Canon EF 50mm 

[/1.8 IL. Taken at £/2.8. 1/20 s. 100 150. 50num.



  

(a) 1x - Red channel (b) 2x - Red channel (c) 4x - Red channel 

  

(d) 1x - Green Channel (e) 2x - Green Channel (£) 4x - Green Channel 

  

(2) 1x - Blue channel (h) 2x - Blue channel (1) 4x - Blue channel 

Figure 26: Real camera example. Canon EOS 40D with a lens Canon EF 50mm 

[/1.8 TI. Taken at f/20.0. 3 s. 100 150, 50mm.



  

(a) 1x - Red channel (b) 2x - Red channel (e) 4x - Red channel 

   
(d) 1x - Green Channel (e) 2x - Green Channel (£) 4x - Green Channel 

    
(e) 1x - Blue channel (h) 2x - Blue channel (1) 4x - Blue channel 

Figure 27: Real camera example. Pentax K-M. Taken at f/11.0, 4 s. 100 180. JOnmm. 
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(e) Canon f/20. 50mm (d) Pentax f/11, 40mm 

  

  

      

(e) local PSF positions 

Figure 28: Real camera example. PSF contour lines at v=0.003 and v=0.013 for red. 

grcen (v1) and blue raw data. Canon EOS 40D with a lens Canon EF 50nm f/1.8 

IT taken at 1/5.6 [/2.8 and f/20 with 1/5 s. 1/20 s. 3 s. 100 180. 50mm (a). (b) 

and (c) respectively. Pentax K-M taken at f/11.0. 4 s, 100 180, J0mm (d). Sample 

acquired image with marks where the local PSE is estimated (e). 
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(a) In focus - local PSFs and one local grid pattern image 

bbdd 4 ddr 

  

RATITO 
(b) Out of focus - local PSFs and one local grid pattern image 

Figure 29: Out of focus real camera example. Images taken with a Pentax ICM 

camera at [/5.6. 1 s. 100 ISO. JOmm. Local 4x PSF s estimated by manually setting 

the focus distance to be in focus (a) and out of focus (b).



6 |PSF Validation through single image superresolu- 

tion 

Having an accurate subpixel PSF estimation is critical to evaluate the prop- 

erties of a digital optical system. It is also important to develop superres- 

olution algorithms for producing better looking images. A more accurate 

estimation should improve results for superresolution algorithms using it 

as input. Based on this idea, we indirectly evaluate our PSF estimation by 

evaluating the quality of deconvolved /superresolved images acquired with a 

camera configured equally as for estimating the PSF. 

Here we do not pretend to develop a state-of-the-art sinele image supet- 

resolution algorithm but to show it as a feasible application for our PSE esti- 

mation. Our PSF estimation algorithm computes a PSF at x2 and x4 the dig- 

ital image resolution. In order to tackle the superresolution/deconvolution 

problem we can first interpolate the blurry observed values to get a superre- 

solved blurry observation and next apply an image deconvolution aleorithm 

to get the latent superresolved /deconvolved image. This is done in [34] where 

the authors proposed a blind superresolution algorithm. 

This approach has an important drawback. If the image is aliased we do 

not know how to exactly interpolate it to get a superresolved blurry image, 

thus we will force the deconvolution aleorithin to adjust data which is not 

the real observation. On the other hand, if the image is not aliased this 

method is optimal as the problem can be correctly decomposed into two 

separated steps: superresolution and deconvolution. 

In order to avoid this situation, we propose a different approach which 

includes an image model based on natural images statistics. Both, superres- 

olution and deconvolution problems, are faced simultaneously. No explicit 

interpolation method is imposed. on the contrary the image model acts as an 

implicit interpolator. This is presented in Section 6.2. Section 6.1 introduces 

the principal deconvolution techniques used for the superresolution problem 

in the case of interpolated blurred images. 

6.1 Brief review of main image deconvolution methods 

Lucy-Richardson 

The Luev-Richardson iterative algorithm (35, 36] tries to recover the latent 

image that has been blurred by a known PSF. The basic idea is to calculate 

the most likely latent image given the blurrv noisy observation and the PSF. 

This maximunm-likelihood formulation results in a fixed-point iteration: 

; . bd 
In+1 = ln hook de sed 

mo 
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where 1 is the latent image. b the blurry observation and k the known Psr. 

Lucy-Richardson assumes Poisson multiplicative noise. which is not very 

well suited to the common digital photographic images (for example see [37] 

where a physical model for the charged-coupled device CCD is proposed). 

This often generates unwanted artifacts such as ringine. 

Wiener deconvolution 

Wiener image deconvolution [38] is a direct application of the Wiener filter 

(39] whose goal is to reduce the amount of noise present on a signal. 

Its formulation is obtained in the frequency domain using knowledee of 

the characteristics of the additive noise and the signal to be recovered: 

[K*(u.v) 

| |K(a,0) 12 +78, (u, v)/Si(u, 4) 
  Tu.v) 

where /(u.v) and K(u,v) are the Fourier transforms of the latent image 

and the PSF respectively. S,(u.v) and S¡(u,v) are the power spectral den- 

sity functions of the latent input image and noise. 

It can be interpreted as an inverse filter acting only on those frequencies 

where the signal to noise ratio is significant: 

e) 

o 1 | (u, v) 

—Klu.v) | |K(u.o?+> a 
  

  

Supposing no a-priorí information of the signal. we can reformulate the 

general approach as 

: 1 (a, 0)? 

—Kla.v) | |[K(u.v) E 2 
+ €   

One typical problem of the Wiener approach is how to choose the optimal 

e. which is related to the signal to noise ratio. 

6.1.1 MAP 

The idea of the maximum a posteriori (MAP) framework is to find the optimal 

image that maximizes the posterior probability: 

" = argmax p(i|b) (10) 

Abli)p(i) . o. . 
E As maxima (minima) are unaf- 

fected by monotone transformations, for simplicity we take minus logarithan 

From the Bayes theorem p(1b) = 
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of Eq. 10 and solve for 

i? =argmin< —log(p(b1)  —log(p(i)) (11) 
7 AÁKÑÁÁ ÁS 0> AAA 

data prior 

If we assume additive white Gaussian noise of zero-mean and o? power, then 

lb 

' p(bli) == Ke” 

  

Thus 
a 2 . ETE | 

¡* = argmin == — log(p(i)). 
i 20* 

There is no general image model to choose an appropriate prior image prob- 

ability distribution p(i). One of the simplest models considers a zero-mean 

Gaussian distribution on the image gradient: 

14? 

p(i)=Ke % 
  

Then. the problem can be formulated as a minimisation of, 

E(i) = Ib = ¿+1? +AJva? 

This formulation penalizes image gradient in a (o-norm sense. This problem 

can be easily solved by least mean squares as both terms are (9 norms. 

Novel studies in natural image statistics [7. 13. 40. 41] inspired other 

models for the prior distribution of the latent image. In particular. the work 

of A. Levin et al. (7. 13] is a significant improvement within this method. 

Thev replaced the f3 norm on the image gradient, which tends to enforce 

a Gaussian distribution and thus to equally distribute derivatives over the 

image. Instead. they assume that images are piecewise smooth and thus the 

image egradient distribution is zero-peaked with high kurtosis. To enforce 

this property, authors use a gradient sparse prior assumption which tends 

to enforce the expected edge content of “natural” images. This assumption 

also helps to remove unwanted image artifacts such as ringing. The image 

prior is written in a general form as. 

p(i)=e7" > P(gish) 

where p is the sparse and heavy tailed function p(+) = |x|? with p = 0.8. 

In the simplest approach, gy; are the horizontal and vertical derivative fl- 

ters gy = [1,1] and ga = [1,-1]?. This leads to the minimization of the 
following functional. 

E(i) = 0 —i+k9+ A) p(gi + 1) (12) 
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Notice that the (o-norm on the regularization term has been replaced with 

a (, norm with p = 0.8. There exists no optimization algorithm that guar- 

antees. in general conditions, to reach the elobal minimum of Eq. 12 as E(1) 

is non-convex for p < 1. In [13] the authors proposed to use an iterative 

re-weighted least squares algorithm (IRLS) to solve this problem. Its effec- 

tiveness has been demonstrated in (13, 7, 34] where the authors managed to 

get the algorithm to converge to the apparently right minimum of E(1). 

6.2 Proposed approach 

Our formulation is based on the MAP framework used in [13, 34] already 
presented. The idea is to incorporate a down-sampling operator to the data 

fitting term in order to adjust only to the observed data, as we did in Section 

4.5.1 for computing a superresolved PSF. The down-sampline operator D 

takes a high resolution image [y and generates £[, as [,(m.n) = [y (sm.sn) 

where s =2 (k =0,1...). Then we can rewrite the MAP problem presented 

in Eq. 12 as 

(Ps) i* = argmin [|b — D(ix DÍA y pl gi 1). 

Apart from the horizontal and vertical derivative filters yy = [L.—1] and 

ga = [1.—1]?, second order derivative filters yz = [1,-2.1) qu = [1.-2.1 

and ys = [1 —1:1 — 1] are incorporated. This enforces the resultant image 

to have both first and second order sparse derivatives. 

The main difference between our approach and the work of W. Zhang and 

W. Cham (34], who proposed a blind single image superresolution method. 

is that we do not inpose any explicit interpolation method to get the super- 

resolved blurry observation. We leave the image model act to get the latent 

image. This seems to be more reasonable in the case where the observed 

image b is aliased. and thus no explicit interpolation scheme should be exact. 

Finallv to solve (Ps) an IRLS algorithin is used. This approach reduces 

the problem to the solution of a sequence of weighted least squares problen. 

The main idea is to replace the (, objective term by a weighted (, norm. 

where the weights are computed from the previous iteration. 

=P = [Pap ? = Y Je? = Well 

  

where Y = diag(l0,1 2). 

For more information on this algorithin we refer to (42. 13]. 
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7 Experimental Results: Super-resolution 

7.1 Simulations for objective evaluation 

In order to objectively evaluate the super-resolution/deconvolution algo- 

ritimms. independently of our PSF estimation, we set up the following experi- 

ment with simulated data. A high resolution (HR) known image is convolved 

with a kernel (simulating the PSF). The filtered image is downsampled x2 

to get the observed pixels. We then test the ability of each aleorithm to 

recover the high resolution image from the degraded down-samples and the 

hieh resolution kernel. All algorithim parameters are set to get the best re- 

sults. 

As a performance measure we used the PSNR between the restored su- 

perresolved image and the original HR one. Although. as we have already 

indicated. a high PSNR could indicate good performance, it is important to 

notice that the zoomed image could still present artifacts. For that reason 

we also give a qualitative description of the estimation. 

The studied algorithims for deconvolution /superresolution are the follow- 

img: 

LR Lucv-Richardson deconvolution with previous cubic-spline zoom. 

Wiener Wiener Filter deconvolution with previous cubic-spline zoom. 

L2-L2 MAP with L2 norm for data fitting and regularization terms with 

previous cubic-spline zoom. 

L2-LO8 Mar with L) norm and Ly y for data fitting and regularization terns 

respectively, with previous cubic-spline zoom. 

L2-L2-D MAP with La norm for data fittine and regularization term . con- 

sidering the downsampling operator in data fitting term (no explicit 

interpolation). 

L2-L08-D MAP with L2 norm and Lyy for data fitting and regularization 

term respectively, considering the down-sampling operator in data fit- 

ting term (no explicit interpolation). 

Isotropic Gaussian Kernel 

In the first experiment a small isotropic Gaussian kernel is used as PSF. Fig- 

ures 30-38 show the x2 restored images. difference images and modulus of 

spectrum difference for commonly used images: lena, barbara, boat, peppers, 

pattern.



Table 7.1 sunumarizes the PSNR! values for every experiment. 

For this experiment we find in general similar performance indicators for 

all the algorithins given a certain image. If the image has high frequency 

components (as in barbara or boat images) the restored versions will be of 

significant lower quality. For images stronglv following a prior model, supe- 

rior results are obtained with algorithms including this prior information. 

This is the case of peppers and pattern images where as image gradient is 

sparse then L2-L08-D algorithm is more consistent. 

Tf the image has no high frequency components the deconvolution algo- 

rithms that use cubic spline interpolation have good results. This is a direct 

consequence of the precise interpolation (e.g. lena image). 

The norm of the difference image spectrum (original high-resolution - 

restoration) shows that the algorithin that considers the downsampling op- 

erator provides better estimates for the low-frequeney components (Figwres 

37-38). This may indicate that the downsampling operator is acting as a 

de-aliasing process that in most cases seems to be more appropriate than 

the interpolation/deconvolution methods. 

Figures 39-45 show the results for different values of the Gaussian kernel 

variance. For small values of the variance the downsampled image will be 

very aliased and reconstruction will be very difficult. On the other hand. 

if the kernel is very large. accurate deconvolution will be hard as much 

information has been lost during the downsampling process. Finally. the best 

scenario seems to be a medium size kernel, which gives a good compromise 

between aliasing and accurate deconvolution. 

  

Image LR Wiener L2-L2 L2-LO8 L2-L2-D L2-L0O8-D 
  

lena 37.46 36.75 37.12 37.21 37.11 37.76 

barbara 22.74 23.03 22.86 22.94 22.43 22.58 

boat 28.56 28.3 28.42 28.38 28.63 28.64 

peppers 31.76 31.49 31.65 31.94 31.93 32.61 

pattern 22.32 21.52 21.65 22. YE 21.81 23.0 
  

Table 2: Isotropic Gaussian Kernel: Performance Comparison Summary. 

  

LAI PSNAR values were computed in the center region in order to avoid edge effects. 

68



L2-L08 31.91 dB   
Figure 30:  Isotropic Gaussian Kernel: peppers image x2  superresolu- 

tion/deconvolution results. 

69



tn
 

E
 

Pe
 

E 

1.
 

= ||| E 
Po E n= 

= HI Ml ls 

=1!! — 
=11| HI == 

High-resolution 

= 1110005 
IE 
= 11 

00 — 
= 11 11l= 

urred-down=-sampled 

n= 
HI. 
HI A

 
Blurred-down-up-sampled 

= MIME = MBE == 
MM E MA EM 
=1 11 Ú = ll ms = in e 
= 1 me 5H a = 1 a 
= MS =0. 1M= st US 

LR 22.32 dB Wiener 21.52 dB L2-L2 21.65 dB 

0 | O | O | 

== MIME =IM"= 
= Mbs = My. "E EE HI. e 
= Il E = == "3 
== sn La =1!| mu () =11! ia 
= HS =6 Mi= =” 11= 

L2-L08 21.77 dB L2-L2-D 2L81 dB L2-LOS8—D 230 dB 

Figure 31: Isotropic Gaussian Kernel: mira image x2 superresolution /deconvolution 

results. 
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L2-L08 37.21 dB L2-L2-—D 37.71 :dB L2-LO8-D 37.66 dB 

Figure 32: Isotropic Gaussian [Cernel: lena image x2 superresolution /deconvolution 

results.
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L2-L08 28.38 dB L2-L2-—D 28.63 dB L2-LO8-D 28.61 dB 

Figure 33: Isotropic Gaussian Kernel: boat image x2 superresolution /deconvohution 

results. 
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L2-L08 22.87 dB L2-L2-D 22.43 dB L2-L08-D 22.58 dB 

Figure 34d: Isotropic  Gaussian Kernel: barbara image x2  superresolu- 

tion/deconvolution results. 
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L2-L08 31.94 dB L2-L2-D 31.93 dB L2-L08-D 32.61 dB 

Figure 35:  Isotropic  Gaussian  ICernel: peppers image x2 superresolu- 
tion/deconvolution difference image. 

    

   
Figure 36:  Isotropic Gaussian [Kernel barbara image x2  superresolu- 
tion/deconvolution difference image. 
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Wiener 31.19      

L2-L08 31.94 dB L2-L2-D' 31.93 dB L2-L08-D 32.61 dB 

Figure 37: Isotropic Gaussian  ICernel: peppers image x2  superresolu- 

tion/deconvolution norm of the difference image spectrum. 
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Wiener 23.0: L2-L2 22.86 dB 
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Figure 38:  Isotropic Gaussian Kernel: barbara ¡image x2  superresolu- 

tion/deconvolution norm of the difference image spectrum.



  

Original Image 

  

Small kernel: S Medium kernel: M Large kernel: L 

       
   

L-blurred     S-blurred 
meo 

  

        
S-blhwred-downsampled M-blurred-downsampled L-blurred-downsampled 

Figure 39: Isotropic Gaussian Kernels: small-medium-large. peppers image x2 su- 

perresolution/deconvolution image. First



   
    
  

L2-L08 31.39 dB L2-L2-D 31.37 dB L2-L08-D 31.67 dB 

Figure 10: Isotropic Gaussian small ICernel: peppers image x2 superresolu- 

tion/deconvolution image. 

  

L2-L08 31.39 dB L2=L2=D 31.37 dB L2-L08-D 31.67 dB 

Figure 41: Isotropic Gaussian small Kernel: peppers image x2 superresolu- 

tion/deconvolution difference image spectrum.



  

        

    
    

  

L2-L08 31.38 dB L2-L2-D 31.99 dB L2-L08-D 32.84 dB 

Figure 42: Isotropic Gaussian medium size Kernel: peppers image x2 superresoln- 

tion/deconvolution image. 

Wiener dB 

  

L2-L08 31.38 dB L2-L2-D 31.99 dB L2-L08-D 32.81 dB 

Figure 43: Isotropic Gaussian medium size Kernel: peppers image x2 superresolu- 

tion/deconvolution difference image spectrum.



  

L2-L08 31.16 dB 

Figure +Hk Isotropic Gaussian large IKernel: peppers image x2 superresolu- 

tion/deconvolution image. 

L2-L2 29,92 dB 

  

Figure 15: Isotropic Gaussian large Kernel: peppers image x2 superresolu- 

tion/deconvolution difference image spectrum. 
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Anisotropic Kernel 

In this experiment we analyze the importance of having a good estimation 

of the kernel shape. For that purpose we generate an anisotropic smooth 

kernel (true) and compute the separable Gaussian kernel (9, and 0y) that 

best approximates the true kernel in a least squares sense. Figures 46,48 

show the x2 restored images, difference images and norm of difference im- 

ages spectrum using the true kernel and the Gaussian kernel. 

In general, similar performance indicators are found for all algoritluns 

given a certain image. The importance of having a good estimation of the 

PSF shape to get proper results is verified. Besides leading to lower PSNXR. 

using the Gaussian kernel approximation produces several artifacts along the 

direction where the kernel estimation mostly differs. A blur effect. similar 

to camera shake, appears in the resultant superresolved images with the 

Gaussian approximation. 

Super/Sub-Gaussian Kernel 

This experiment shows the critical importance of having a good estimation 

of the kernel decay. We generated a smooth super/sub Gaussian kernel (true) 

and we computed the separable Gaussian kernel (0, and 0y) that best ap- 

proximates the true kernel in the least squares sense. Super/sub Gaussian 

kernels were generated by 

> —(arlalP+a2lyl? gle.y) = Ke (ar Jal? +a2 yl”) 

Tf p = 2 then y is a Gaussian kernel, if p < 2 is sub-Gaussian aud p > 2 

super-Gaussian. For our experiments we used a sub-Gaussian kernel with 

p=1(Laplacian) and a super-Gaussian kernel with p = 4. 

Figures 49-52 show the considered kernels and their best Gaussian ap- 

proximations, the x2 restored images, difference images and norm of the 

difference images spectrum. All algorithms have similar performance for a 

given image and it is extremely necessary to have a good estimation of the 

PSF decay to get proper results. 

Considering the kernel as Gaussian when is super-Gaussian produces sev- 

eral artifacts. For example, the mast of the ship in the figure 49 is widened 

sienificantly. In the case were the true kernel is sub-Gaussian. wronglv con- 

sidering it as Gaussian produces severe ringine artifacts during deconvolu- 

tion. In this case. the sparse gradient L2-LO08-D algorithm seems to be less 

sensitive to the misestimation of the PsF. This can be shown in Figwre 51. 
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True Kernel 

      
Cubie spline 30.35 dB True kernel (up) 

Gaussian (down) 

L2-L08-D (gaussian) 33.18 dB L2-LO08-D (true) 35.02 dB 

Fiewre 16: Anisotropic Kernel: lena image x2 superresolution/deconvolution. o O



True Kernel 

   
High Resolution True kernel (up) 

Gaussian (down) 

L2-L2—D (gaussian) 33.57 dB L2-L2—D (true) 35.67 dB 

L2-LO8—D (gaussianm) 33.18 dB L2-LO8-D (true) 35.02 dí 

Figure 47: Isotropic Kernel: lena image x2 superresolution/deconvolution difference 

image. 
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True Kernel 

  

Bes! Gaussian 

  

s ES PA z 

Cubic spline 30.35 dB True kernel (up) 

Gaussian (down) 

0    

  L2-L08-D (gaussian) 33.48 dB 

Figure 48: Isotropic Kernel: lena image x2 superresolution/deconvolution difference 

image spectrum. 
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True Kernel 

  

High Resolution True kernel (up) 

Gaussian (down) 

  
L2-L08-—D (gaussian) 24.99 dB L2-L08-D (true) 27.27.02 dB 

Figure 19: Super-Gaussian Kernel: boat image x2 superresolution/deconvolntion. 
Notice the difference between the images in the mast of the ship. 
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True Kernel 

  

High Resolution Cubie spline 23.65 dB True kernel (up) 

Gaussian (down) 

  
L2-L08-D (gaussian) 24.99 dB L2-L08-D (true) 27.27 «IB 

Figure 50: Super-Gaussian Kernel: boat image x2 superresolution/deconvolution 

difference image spectrum.



       
       

True Kernel 

  

2.46 81012 

Bes! Gaussian 

  

2.456 .81012 

True kernel (up) 

Gaussian (down) 

    
L2-L08-D (gaussian) 29.4 dB L2-L08-D (true) 32.0 dB 

  

Figure 51: Sub-Gaussian Kernel: peppers image x2 superresolution/deconvolution.



True Kernel 

    
2456581012 

Bes! Gaussian 

    
246 81012 

  

High Resolution Cubic spline 25.92 dB “True kernel (up) 

Gaussian (down) 

  
L2-L08-D (gaussian) 29.1 dB L2-L08-D (true) 32.0 dB 

Pigwre 52: Sub-Gaussian Kernel: lena image x2 superresolution/deconvolution dif 

lerence image spectrum. 
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7.2 Real camera images 

In this Section we present several examples of PSF usage to zoom images. 

We used a Canon EOS 400D camera provided with a Tamron SP AF 17-50 

mm f/28 XR Di IT lens at aperture: £/4.5, focal length 40.0 nm and shut- 

ter speed 1/50 seconds. The camera was calibrated using the studied PSF 

estimation algorithm to get x4 local PSF at different image regions. as it is 

shown in Figure 53. 

A necessary step to compute the PSF is the estimation of the geometri- 

cal transformation /distortion introduced by the camera. This can be used to 

compensate for image distortion (except for a homography). In this particu- 

lar case, due to the adopted camera configuration, geometrical distortion is 

minimal so there is hardly no difference between the original and corrected 

images. 

We have computed the separable Gaussian kernel (0, and 0, values) 

that best fits our subpixel PSF estimation in a least squares sense. This wav 

we intend to show the dependence of the superresolution algorithm to the 

kernel estimation. We remark that as the Gaussian parameters are estimated 

from our non-blind PSF estimation this seems to be a best case scenario for 

Gaussian fitting. 

Figures 54-64 show results of super-resolution with the L2-L2-D and 

L2-LO8-—D and the estimated PSF in different regions of the original image in 

Figure 53. We used the camera green raw channel (as we only intended to 

validate the proposed approach we discarded half of the green pixels to get 

a rectangular grid). 

Superresolved images are better looking than cubic spline interpolations 

which tend to over smooth edges. In most images L2-L08-D algorithmn gives 

more natural results than L2-L2-D. However, this stronely depends on how 

well the given image fits the assumed sparse gradient model. 

We also remark that if the estimated PSF is not very anisotropic. Gaus- 

sian approximation gives basicallv the same results as ours. This can be 

confirmed in Figures 66-69 where a plot of several particular image lines are 

shown. 

In Figure 64 we show what happens when the kernel is not well ap- 

proximated by a Gaussian kernel. The difference image in Figure 65 shows 

differences between the corresponding superresolved images in the direction 

where the estimated and gaussian approximation kernels mostly differ. How- 

ever. this difference in the superresolved images seems imperceptible to the 
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naked eve. 

Finally we set up a scene to specifically show the effects of using a Gaus- 

sian kernel in the case it is not a good approximation (Figure 70). Figure 

71 shows the obtained results. For the image restored using the Gaussian 

kernel. we can see ringing artifacts along the direction where the approx- 

imation is less accurate. This can be confirmed in the difference image in 

Figure 72 and in the peaks that appear in image profiles in Figure 73. 
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Figure 53: x-1 local PSF estimation for the Canon/Tamron camara/lens at aperture 

1/4.5. focal length 10.0 mm and shutter speed 1/50 seconds. 
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90



VU nerve V nube 
Original Image Cubic spline x4 True kernel (up) 

Gaussian (down) 

UNONR A MUNRO 

ex alert 
Vinervt Vanrvt 

L2-L2-D (estimated psf) L2-L2-D (gaussian psf) 

UVUONA MUONRA 

ex alle 
UVnrt  Varnt 

L2-L08-D (estimated psf) L2-L08-—D (gaussian psi) 

  

     
5 10 15 20 25 

  

Figure 55: Real image: papelógrafo CL x4 superresolution/deconvolution. 
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Figure 56: Real image: papelógrafo x1 superresolution/deconvolution.
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Figure 58: Real image: planta baja BC x4 superresolution /deconvolution. 
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Figure 59: Real image: planta baja BL x4 superresolution/deconvolution.
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Figure 60: Real image: planta baja MM x4 superresolution /deconvolution.
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Figure 64: Real image: laptop BR xA superresolution/deconvolution. 
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Figure 68: Real image: laptop BL x4 superresolution/deconvolution profile image. 
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Figure 71: Real image: círculos BR x4 superresolution/deconvolution. 
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8 Discussion 

We have analyzed a spatially varying sub-pixel PSF estimation algorithin 

that captures blur due to intrinsic camera phenomena. The studied algo- 

rithin is based on a mathematical digital camera model that takes into ac- 

count several factors like geometrical distortions due to lens imperfections. 

diffraction. sensor averaging and out-of-focus. 

As part of the analysis of the non-blind PSF approach we studied dif- 

ferent methods for aligening the pattern image at sub-pixel precision. This 

seems to be a key point to reallv get sub-pixel accuracy. One of the desired 

characteristics of a good pattern erid is its capability to be easily aligned. 

Although the chosen pattern presents checkerboard-like corners to facilitate 

this task. due to aliasing during the acquisition process its detection is not 

very precise. In this work, we got a precision of about 1/10 pixel in localiz- 

ing the checkerboard corners at similar digital single-lens reflex camera blur 

and noise conditions. However. if we are able to reduce the alias. then our 

checkerboard detector algorithin will get a much higher accuracy. With this 

aim, we propose to modify the original grid pattern proposed by Joshi et 

al. and to filter it. only at the checkerboard corners, with a small anti-alias 

Gaussian kernel. By this, the checkerboard like corners will be easily de- 

tectable. Then, we can avoid using the checkerboard region to compute the 

local PSF by taking advantage of the introduced mask operator. We have 

a compromise between reducing the number of observations (reducing the 

mask) and increasing the performance of the alignment stage. We have not 

tested this yet. but this will be investigated in the future as well as studving 

other possible grid patterns. 

We studied two different ways of modelling the geometrical distortion 

between the printed grid pattern and the acquired digital image. The non- 

parametric thin-plate spline seems to outperform the classical polvnomial 

radial distortion approximation considered by most researchers. By this. 

and the proposed camera model, we can separate the effects of the blur 

from the distortion. The real camera examples presented in this work. show 

that the model of a geometrical distortion plus a translation-invariant PSE 

is consistent in not extreme camera configurations. In particular we show 

that if the aperture is very wide (small Enumber, in our case f/2.8) then a 

space-variant PSF (local) should be needed to correctly model the camera as 

the estimation significantly varies from the image center to image borders. It 

is interesting to study more deeply how the lens focal distance and aperture 

affect the PSF, in particular for low-price point-and-shoot cameras. 

We validated the proposed approach by simulations in which we paid 

special attention to image alias, trving to simulate real camera acquisitions. 
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We would like to find a suitable way of choosing the regularization term. For 

this purpose, we would investigate other ways of stating the mathematical 

problem of PSF estimation. Instead of directly finding the PSF pixel values, 

we would like to decompose the PSF in a different base/dictionary and find 

the best representation over it. By doing this, we can impose other kind of 

regularizations depending on the base/dictionary chosen. 

Precise PSF estimation is of great interest for the evaluation of the cam- 

era/lens system. We showed the PSF estimation for different digital single- 

lens reflex cameras at different apertures, focal distances and shutter time 

values. By the inspection of the estimated local PSF it is possible to give 

qualitative/quantitative quality measures of the blur and distortion intro- 

duced by the camera. 

We also used the super-resolution problem to indirectly evaluate our 

PSF estimation. Within a Bavesian framework, we proposed a single image 

deconovolution/super-resolution algorithm that uses the subpixel PSF esti- 

mation to find the a posteriori most probable super-resolved image. Our 

work was based in novel results on natural image statistics which justify a 

sparse model on the image gradient. Good results are obtained when using 

our subpixel PSF estimation. In most cases, using a separable Gaussian ker- 

nel approximation also gives good results. It is important to notice that the 

Gaussian kernel parameters (variances in both axes) were fitted using our 

non-blind subpixel PSF estimation. This seems to be a best case scenario 

for using a Gaussian kernel parametrization. In regions where the estimated 

PSEF cannot be well approximated by a Gaussian kernel, the superresolved 

images present some differences and the Gaussian kernel can produce ring- 

ing artifacts. 

The single image blind super-resolution algorithm proposed in [34] is 

based in [43] where a justification to choose a Gaussian kernel as a PSF ap- 

proximation is given. The empirical justification consists in taking a picture 

of a step edge image in a particular direction and adjust the ideal response 

to a Gaussian kernel. Their experiments show that for a particular direction 

the Gaussian approximation fits well. However, this does not mean that the 

Gaussian kernel is isotropic as used in [34] or even a multivariate kernel. The 

main advantage of having an accurate low dimensional parametrization of 

the PSFE is that it facilitates the PSF estimation. This is imperative for doing 

blind PSF estimation and blind image super-resolution. 

For that purpose, we would like to find better ways of parameterizing the 

PSE for the in-focus case studied in this work. One possible way is to take a 

local three-parameter Gaussian parametrization (i.e. vertical variance, hot- 

izontal variance and correlation factor). The camera-objective pair can be 
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calibrated at different apertures, focal distances and shutter time discrete 

values. Then the estimated Gaussian parameters can be interpolated to get 

a value for each possible configuration. One problem of taking the Gaussian 

kernel as approximation is that it does not control the decay speed of the PSE. 

Super-resolution real camera experimental results show great dependence 

on the selected a priori image model. For this reason we propose as fu- 

ture work to research on other kind of super-resolution teclmiques using 

more than one image per scene in order to reduce dependence on the image 

model. It is also of interest to study single image approaches that use non- 

local multi-scale self examples and need an estimation of the real Psr [44]. 

A precise knowledge of the subpixel PSF may not be the key element in 

the natural images superresolution applications. However, if the goal is to 

get high precision for later use in other applications, e.g. stereo subpixel. 

the situation might be different. As future work we pretend to evaluate our 

PSF estimation in such kind of high precision demanding applications. 

Lastly. it would be really useful if we could find the highest resolution 

at which we can give an accurate PSF estimation with a given grid pattern 

observation. This appears to be associated to the problem of PSF validation.
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