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1 Introduction

The price of compact digital cameras has dropped down in the last decade,
mostly due to electronic devices decreasing costs. causing their massive mar-
ket penetration. Unfortunately, image quality has not increased as fast as
digital cameras sales have done. Digital iinages present certain characteristi-
cal problems caused by the intrinsic nature of these devices. Blur produced
by light diffraction, geometrical distortions caused by the use of low-cost
lenses and thermal noise due to electronic circuits are examples of this kind
of outcomes.

In this report we describe a mathematical digital camera image formation
model that takes into account the whole process of digital iimage acquisition
and all their associated effects. Timage blur can be a consequence of camera
misusing (c.g. wrongly setting the camera focal distance). but also of phys-
ical camera phenomena as light diffraction or sensor averaging. Our goal is
to accurately estimate a function. called point spread function -rsi. that
models the blur due to intrinsic camera phenomena. This function can be
locally interpreted as the hmpulse response of a linear translation invariant

systen.

The most important application of PSE estimation is iimage super-resolution.
Lhuage super-resolution is the process of enhancing the resolution of an imag-
ing svsten. There are at least two different ways of approaching this prob-
lem: by interpolating a single-frame image or by fusing together several low-
resolution images. If the pPsrF is known at an accurate subpixel resolution,
then we can use this information to apply the inverse de-blurring procedure
(also known as image deconvolution) to a single low resolution image, or we
can fuse all the low resolution images in a more elaborated way. In most
tvpical digital cameras, images are acquired at a sampling rate under the
Nyvquist rate, causing aliasing effects. While at first sight this might be seen
as a drawback. the acquired image has "hidden” information of higher fre-
quencies components. If we do not impose a model over the original image
(c.g. reeular in some sense) the process of recovering the high resolution
image is irreversible. By subpixel estilmating the psr. we learn how the fre-
quencies are mixed, which is very useful information for recovering the high
resolution image. The proposed subpixel PSE estimation algorithin is strictly
connected with the proposed image formation model.

Precise Psi estimation is also of great interest for the Modulation Trans-
fer Function - 2T estimation problem. The MTF is the Fourier transform of
the PsE and is widely used by lens sellers. like Canon or Nikon. to describe
the quality of a lens. They offer the lens MTF as a chart showing the response
of the system to thicker sets of parallel periodic straight lines. The patterns



are presented to the camera at some particular orientations, and the camera
1] for a
description). This information given by optical designers is not exactly the

response is measured at certain locations of the image plane (see |
Fourier transform of the PsF but is closely related to it. MTF charts usage for
image quality evaluation is widely accepted by the photography community
making pSk estimation a relevant topic for the area.

Although there exists a significant amount of work in blind deconvolu-
tion associated to image restoration. very little has been done in accurate
PSF estimation. Existing PSF estimation methods can be classified into two
categories: blind psr estimation and non-blind PSF estimmation. Blind meth-
ods estimate the PsF without knowing the target scene: that is to make the
estimation from a single or a set of "bhurred” images. On the other hand.
non-blind methods do the estimation using a known pattern calibration
image. In the present work we propose a non-parametric PsE estilnation
method using a non-blind approach. For that purpose. we use a specially
designed grid pattern that captures local blur information allowing local
subpixel PSF estimation (see Figure 1). Our work is based in [2. 3] where the
authors proposed an algorithm for both blind and non-blind subpixel psi
estimation.
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Figure 1: Gird pattern for local PSF estimation

The grid pattern presents checkerboard corners that are used to locally
register it. Because of the aliasing problem present on digital images. the
task of detecting the corners at subpixel precision is not trivial. We analvze
different corner detection algorithins and we compare their performance de-
pending on the aliasing and noise power levels.

Using the detected local pattern features we estimnate the geometrical
distortion introduced by the digital camera. We can model this distortion as



a mapping between 2D planes (i.e. the printed grid pattern and the digital
image). There are several sophisticated models for geometrical lens distor-
tion. However. according to the literature [4. 5] lens distortion is generally
completely dominated by the radial components. In this work we explore
two ways of modeling geometrical lens distortion. First. as a composition
of a homography and a radial distortion. and second as a non-parametric
stooth 2D to 2D mapping. modeled by thin-plates splines. We show that
the non-parametric spline model is more accurate.

Finally. as we know the geometrical transformation between the grid
pattern and the captured digital image, we can search for the kernel that
convolved with the grid pattern and distorted by the mapping, gives the
best explanation of the observed image. We formulate this problem as a
variational minimization adding a regularization constraint for stability. As
we do the grid pattern registration locally we can find a local psr. This also
allows us to estimate other non local distortions (e.g. vignetting).

NMost digital cameras have only one ¢Cb photo-sensor-array. so in order
to acquire color information. cach photo-sensor is filtered to capture only
the wavelengths of a particular band for the red. green. and blue channels.
In order to avoid the preprocessing done by the camera built-in software we
use raw image data (i.e. data accessed divectly from the camera sensor) and
compute a PSF for each of the channels. This also gives us an idea of the
camera chromatic aberrations caused by the fact that different wavelengths
focus at different planes.

In order to validate the proposed methodology we performed several
tests with both siimulated and real data. Using simulated data we were able
to assess the correct performance of our psr estimation algorithi. Good re-
sults were obtained even in the presence of noise and aliasing due to under-
sampling. In the case of real data tests the estimation could not be directly
validated as the ground-truth about the real camera psr is not known. In-
stead. we use the super-resolution problem to indirectly evaluate our pPSr
estimation. Our goal is not to develop a state-of-the-art super-resolution al-
oorithm. but to show the advantages of having an accurate pPsr estimation
for this problem. Within a Bayesian framework, we propose a single im-
age deconovolution/super-resolution algorithm that uses the subpixel psr
estimation to find the a posteriori most probable super-resolved iimage. We
based our work in novel results on natural iimage statistics which justify a
sparse model on the image gradient.

This manuscript is organized as follows. In Section 2 we overview relevant
work on PsE estimation and image deconvolution. In Section 3 we describe
a mathematical digital camera model which will rule our pPsE estimation.



In Section 4 we present our work in subpixel PSF estimation using a known
calibration grid pattern and all the associated problems. In Section 5 we
present experimental results generated with both simulated and real camera
data. In Section 6 we introduce a single image superresolution algorithin
that is based on our subpixel PSE estimation while in Section 7 we analyze
its performance through simulations and real digital camera images. Finally.
in Section 8 we close with a discussion of our work and present some ideas
for future work.



2 Review of PSF Estimation Methods

There are several causes of image blur. Some of them, like light diffraction.
are direct consequence of the optical system and of unavoidable physical
phenoniena. Others. like out of focus, are caused by the configuration of the
scene or the photograph expertise. In this section we present an image for-
mation model. which will be the cornerstone of the PSF estimation approach.
First. because we need to know if it is possible to model a digital camera
response witlt a PSE but also because our estimation will be conditioned by
the adopted model. In the second part of this section. we review some of
the existing methods for Psr estimation and how they are associated to the
blind deconvolution problem.

The goal of PSE estimation is to recover the kernel that causes an image
to have blur. Nevertheless. as we have shown in the last section. this is
strictly attached to the image formation model that is considered. Most of
the existing work estimates the best linear shift invariant kernel Psr, known
as point spread function, which convolved with the true image generates the
observation.

gli.j) = Fepsf(i,g) +nli.j) =Y Fli.f)psf(k—i.j—1)+n(i.j) (1)
(k1)
where 7, j € Z and n is a stochastic process modeling the random noise.

From this equation it is clear that if we want to estimate the PsrF from
the observation ¢ we also need to estimate f. There are two big different
approaches for psr estimation: blind estimation and non-blind estimation.
The first one considers that the original true iimage f is unkwnown, so the
pair (f.psrF) is estimated simultaneously in order to give a good interpreta-
tion of ¢g. The second approach assumes that the true iimage f is given and
known so it consists in finding the best kernel psr which convolved with the
true image f results in g. Intermediate approaches, where some information
on the nature of f is known. have also been proposed, but are less common.

Although there exists a lot of work in blind deconvolution associated to
image restoration. there exists little work on accurate PsF estimation. We
refer to [6] for a complete survey on blind deconvolution, and to [7] for a
state of the art blind deconvolution algorithms performance evaluation.

Some researchers have approached the PSIF estimation problem by esti-
mating the modulated transfer function (MTF) of a system. The MTF of an
optical system is an accepted way of describing its optical properties and its
quality [8]. If the convolution model of Eq. 1 is accepted. then by considering
its Discrete Fourier Transform we get.

Gu.v) = Flu.v) - F(pst)(u.v)

—
o
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where F is the Discrete Fourier Transtorm (DET). F and G the pET of f
and ¢ respectively. The MTE is defined as

mtf = F(pst)

.

Hence. the problem of PSF estimation and MTFE estimation are equivalent.

The MTF is widely used in consumer lens sellers like Canon or Nikon
to describe the quality of a lens. However. they offer the lens MTE as a
chart showing the response of the system to thicker sets of parallel periodic
straight lines. The patterns are presented to the camera at some particular
orientations, and the camera response is measured at some particular loca-
tions of the image plane. Hence, the MTF is given as a set of lines (figure
2). This information given by optical designers is not exactly the Fourier
transform of the pPsr but is closely related to. Here we do not pretend to an-
alyze how to read an MTF chart (see [1] for a description). but our intention
is to remark the importance of its estimation as it is well accepted by the
photograph community.

18mm

Figure 2: Sample MTT chart from a Canon EF-S 18-200mm /3.5-5.6 IS lens.

In [8. 9] the authors proposed a novel approach for MTF estimation by
using a random target. The best advantage of this method is that it does not
need to align or even to know the true pattern image. It only needs to know
that it is a realization of a white noise process. Then. based on the fact that
the input image has a flat spectrui. the estimate of the MTF follows directly
from the computation of the power spectral density of the acquired image.
However. as much of the work on MTF estimation. they do not estimate a
bi-dimensional MTFE. Instead they suppose that the pPSF is synunetric. so it
is sufficient to give the MTFE in a particular direction. As this could not al-
ways be a valid hyvpothesis. several authors and lens sellers present the arr
information as a set of curves reflecting the changes in different particular
directions.



Another area which is closely related to PSF estimation is blur estimation
which counsist of estimating the level of blur in an image. Most of the work
in this area assumes a simple PSF parametric model. such as a Gaussian
function in [10]. However in [11] the author proposes a novel way of analyz-
ing the blur formation. It is shown that the convolution model is imprecise
especially when object occlusion occurs. In the best case where the convolu-
tion model is valid, an estimation of the local blur level is given. The work is
based on the analysis of the topographic map by using the mean curvature
motion filtering to find the locations where the blur estimation can be done.

In order to review the existing methods of PSF estimation we separate
them arbitrarily in three arbitrary categories: blind PSF estimation. non-
blind pPSE estimation and parametric PSF estimation. These categories are
not mutually exclusive. in particular the parametric methods belong to ei-
ther the blind or non-blind category.

Parametric PSF Estimation In Section 3 we will describe the physical pro-
cess that governs the image blur. There are some existing approaches that
try to estimate the PSF in particular cases supposing a simple parametric
psk model. For example in [12] the authors propose a model for the out of
focus blur. However more complex blur, like the one generated by general
motion blur or simple, an accurate estimation of the PsrE due to diffraction.
cannot be represented by such a simple model.

Several methods within this category use specific information about the
frue image. such as being formed by perfect point sources or by step-edges,
in order to estimate the parameters of the Psr model. The most popular ones
use the frequency domain zeros of the acquired image to perform the psk
estimation [12]. From the simple model presented in Eq. 2 and supposing
there is no noise. the observed zeros of GG give some information about the
zeros of the MTFE. Then. in order to completely characterize the MTF. one
needs to assume that the PsrF is of a known parametric form and that given
its frequency domain zeros. its associated parameter values can be uniquely
determined.

As out of focus. or simple motion blur estimation is not the goal of our
work we do not dwell further on this. Behind low order parametric psk
models. we do not know any method of parametric Psr estimation. Possibly
due to the complexity of the physical process behind the acquisition. In
particular. according to what we show in Section 3. the camera aperture
shape need to be parametrized in a precise way.



Non-Blind estimation It is important to remark that even in the case we
know exactly the true image, image deconvolution is an ill-posed problem
due to the loss of information during the blurring process and the noise
presented in the observation. Thus., the most important thing is to develop
methods which impose some prior knowledge in order to disambiguate the
inverse problem.

The principal methods for image deconvolution are the Lucy-Richardson’s
algorithim. the Wiener filter deconvolution, least-squares deconvolution and
deconvolution based in image priors derived from natural image statistics
[13].

The first three methods are classical ways of facing image deconvolution
problem. while the last one is a novel significant improvement based in an
sparse image gradient model. This sparse assumption seeis to be reasonable
in natural images. However, in our case in which what we want to estimate
is the PsF a simpler least squares with some reasonable prior should be more
appropriate.

Blind estimation Blind image deconvolution is one of the most challenging
topics in image processing. It is by definition a very ill-posed problem. so
some constraints on the image and also in the pSF should be imposed. For
a formal definition of the problem where the most important aspects arce
considered see [6].

The most classical assumptions for the PSE are:

e PSF values are non negative. In other words blurring in is a purely
additive process.

e PSF preserves image energy. That is [ psf(x)dx = 1.

e sk is symunetric. Central symmetry along its barveenter or radially
which is a stronger hypothesis.

e PSIFis known in a parametric way. We have already conmnented this

case.

Notice that while the first two assmptions are very reasonable (as they
should not eliminate any valid psr). the rest are much more restrictive. as
they suppose particular shapes of psri kernels which in practice eliminate
real camera PSEs.

In order to give an accurate PSE estilmation. it is important to also con-
strain the class of true images to be utilized. As much as we restrict the set



of possible images, we can utilize more prior knowledge on the input set.
and therefore we can stabilize the original ill-posed deconvolution problem.
A typical assumption is that the edges presented in an image are step-edges,
S0 in practice it is possible to recover the true image from the degraded
observation. For example. this is done in [2]. Then a non-blind deconvolu-
tion algorithim is used to estimate the psr. Other assumptions are that the
images are formed by point sources as found in astronomical images.

Nevertheless, as the goal of this work is to give a precise subpixel psr
[=} la)

estimation we opted for a non-blind PSF approach. We do not discard to

explore blind estimation approaches in future work.



3 Digital camera image formation model

The formation of a digital image implies several physical processes that con-
vert the 3D world scene into a bounded digital 2D image. The goal of this
Sectionis to formalize the mathematical model behind this procedure.

Up to our knowledge there is no suitable universal camera model. The
main reason, is the difficulty in giving an accurate model of the whole image
acquisition chain, both because of its variability and its complexity. Never-
theless. a lot of researchers typically assuime a pin-hole camera model. that
is a camera with no lens and a very small (a point) aperture. By assuming
this, the process of image formation consists only in a perspective projec-
tion which maps the 3D world into a 2D plane. The pinhole model is an
ideal model: in practice a camera will have a lens which can introduce some
geometrical distortions. The aperture cannot be so small because it could
produce high diffraction effects and a lens is needed to concentrate light in
the aperture (otherwise the image would be extremely dark). This leads to a
series of effects that are not taken into account by the classic pin-hole model:
diffraction, averaging due to the non infinitesimal aperture size. geometric
and chromatic aberration introduced by the lens. etc.

The model adopted here is a generalization of the ideal pin-hole camera
model. It considers the diffraction effect due to finite camera aperture. the
out of focus due to setting the focus only for a specific depth. and also the
digitization process. We also incorporate a geometrical distortion transfor-
mation in order to contemplate possible lens distortions. As typically lens
systems are constructed from a series of individual lenses centered on a com-
mon axis. it is difficult to precisely define a model for the lens svstem. In the
literature the one which seems to be the most realistic model is presented
in [14]. Figure 3 shows a diagram of the image acquisition process.

Avert Sensor
Perspective Lens PRI Sampling i (o8]
Projection Distortion - diffraction - averaging Yors K0T 19
- out of focus - motion

Figure 3: Iinage formation NModel.

Perspective Projection

A 3D perspective projection is a geometric transform that maps 3D world
points to a 2D plane. The geometry behind this projection involves treating
the 2D projection as being viewed through a camera with a point aperture.
A perspective projection maps 3D straight lines in 2D lines or 2D points.

10



and 3D points in 2D points. Mathematically, if we consider a plane P in 3D
space its perspective projection can be described by an homography. which
is defined by 8 parameters or by the image of 4 poiuts in generic position
[15]. In Section 4.3 we comment on how to determine the parameters of the
homography by taking advantage of the grid pattern.

In practice. geometric distortions occur causing that perfect lines in the
3D world are not exactly projected as 2D lines. Consequently, the lens dis-
tortion has to be considered in the camera model.

Lens Distortion

There are several sophisticated models that try to model lens distortion.

however according to the literature [4, 5

5] in general the lens distortion is
completely dominated by the radial components. The classical model for
lens distortion is to consider a radial distortion governed by a low degree
polyvnomial. This requires to determine the center of the distortion (a point
in the image plane which does not suffer from distortion) and the coefficients
of the polyunomial. In Section 4.3 we discuss this phenomena and we also give
an approach to compute the radial distortion.

Finite Aperture

The finite aperture has two consequences: diffraction and out of focus.

The first and most important is the diffraction due to a non-infinite
aperture. It can be modeled as a convolution. we refer the reader to [15)
Theorem | (Fraunhofer Diffraction). The diffraction kernel is determined
by the aperture’s shape and size. the focal length and by the wavelength
of the considered monochromatic light. Therefore, in theory each of the
three channels RGB will have a different diffraction. If the shape and size of
the aperture is known it can be explicitly computed. In practice, a circular
aperture is assumed. leading to the following diffraction kernel (Proposition
2 [15]):

(20N 1D /a2 + 12 =2
kain(a.y) =C - <&> ol EORE RE e T

The function Jy(r) = }[(; cos(@ — tsinf)df is the Bessel function of first
kind and order 1. f is the focal length. D the aperture diameter, and A\ the

wavelength.
Notice that in this case of circular aperture. the radius of the diffraction

kernel (approximated as the first zero crossing of Jy (1)) is r, = 1.2‘2% . This
is called airy pattern and gives a reasonable estimate of the optical system

11



resolution. Note. that the size of the central spot depends only on the so
called F-number = T/) and the wavelength A. Figure 4 shows a real camera
aperture: the circular aperture hypothesis is doubtfully reasonable.

Figure 4: Real camera aperture. Iimage taken from [13]

The second consequence of a non-punctual aperture is the out of focus.
The out of focus effect appears when the scene presents several objects at
different depths and the picture cannot capture all of them in perfect focus.
If the imaged scene is a plane parallel to the camera plane. we can alwavs
take the photograph in perfect focus. For different wavs of describing the
out of focus see [15] section 1.2.3 where a mathematical deseription in terins
of the aperture shape is presented or [12] where a simple circular disk kernel
is considered.

Since both problems are consequence of the same part of the acquisition
system process. the aperture kernel can be modeled as

1"2\[)01'1111'(- = /"(le * k(l(*l’()(‘ns

However. we point out that the goal of this work is to estimate the PSr only
due to the camera hardware and not to take into account extrinsic effects
such as the out of focus.

The Sampling Process

The digitization process is performed by a rectangular grid of photo-sensors
(ceh or e)0s) located in the focal plane. Each photo-sensor integrates the
light arriving at a particular exposure time. Since all the analysis presented
liere considers monochromatic light we work independently with cach of the
RGB camera channels. Most digital cameras have only one CCD arrav. so in
order to acquire color information. cach photo-sensor is filtered to capture

12



only wavelengths of a particular band for the red. green. or blue channels.
This is done by the Bayver filter mosaic. which covers the sensor plane with
507 of green filters and 25% of blue and red filters respectively (sce Figure
5). The image formed by the data as it comes directly off the sensor array
is called RAW image. Then the camera built-in software interpolates these
patterns to get information of the three colors in cach pixel. This process is
called demosaicking.

Figure 5: Typical Bayer pattern. Image taken from [16].

Sensor light integration can be modeled by a convolution with a kernel
Fensor = 1, the indicator function of the photo-sensor region C'. Also, as
the sensor does not have a linear response for low and high energies, instead
of acquiring the digital image I; we will acquire the image g(Z;) where g(+) is
a unknown non linear increasing function. In Figure 6 we show an example.
For that reason. it should be avoided the work in dark places as well as very
illuminated ones.

If relative motion between the camera and the scene during image ex-
posure time exists, the acquired image will present motion blur. In the case
that the relative camera-scene motion is constant all over the scene. the mo-
tion blur can be modeled as a convolution with a single kernel. In a general
situation. the motion blur is not translation invariant therefore it cannot
he expressed as a convolution. Nevertheless. if the motion is constant by
regions. it can be locally described as a convolution with a particular kernel.

Since the photo-sensors are electronic devices they suffer from random
noise. Also as the recorded intensities are quantized on a finite number of
levels. this will also produce quantization noise. Finally instead of acquir-
ing the digital image I;, the camera captures the image ¢(Iy) + n, where
n models the random noise. Typically the noise variance increases with the

13
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Figure 6: Typical light sensor Response.

intensity level.

In order to avoid the effect of the demosaicking algorithim. we access
directly the RAW image file. which contents the Bayver image. Then we can
compute a PsE for each of the channels. Notice that due the conformation
of the Bayer pattern. we have the double of samples in the green channel.
Consequently. the green channel PSF estimation should be the most accurate
one.

Adopted Model

In this work. the goal is not to make a parametric camera model. however
in order to check if it is possible to estimate a single PsE we need to define
the order in which each of the acquisition system stages occurs.

It scems reasonable to consider: first a projective transformation which
maps the 3D world scene into a 2D image plane. then a geometric distortion
due to the lens system. followed by diffraction phenomena due to finite
aperture. then a perspective transformation which maps the lens iimage plane
into the cCD camera plane and finally the sampling process in the CCb arrav.

This can be formally described by the following model:

(3\—[()) I:l = H,-‘/(H_’<R(H1([)) * /"u[n-x'lln'v” ¥ 'I"('<'L)) =+ 95
where:
- Hy () is the projective transform from 3D to 2D world.

- Hy(+) is the projective transforim from 2D lens image plane to 2D ccp
image plane.

R(-) is the distortion function due to the lens svstem.

14



Faperture 18 a convolution kernel due to the diffraction in the aperture.

- keep 1s a convolution kernel due to the light integration in the sensor
Cen:

- ¢(+) is a monotone increasing function due to the not-linear ccp re-
spounse.

- II-2 is the bi-dimensional ideal sampling operator due to the cCD array.

.

- n models all the noise present during the acquisition process.

This model is too complex to work with. and also it cannot be described
by using only one convolution kernel. So we will consider an approximation
model. in which we will concentrate all the psr like effects into a single pSF.
that is

(My) Ig=Tpg(R(HI))*k)+n

where. H(+) is the projective transform from 3D to 2D world and k is a
convolution kernel due to all Psr like effects.

Another simplified model can be derived if we cousider the elementary
stages in a different order:

(M) Ig=TIlz2g (R(H(I*k)))+n

where we imposed that the first process is the convolution with the psr and
then the rest. The model (M) seems more realistic than (M), as the order
of the stages seems to be more appropriate. In Section 4.5, where we present
our PSF estimation approach, we will comment on the differences between
considering cach of these model.

15



4 Proposed Approach to the PSF estimation

There exist several methods to estilmate the PSF. in Section 2 we mentioned
some of them. As we have previously said, the goal of this work is to do an
accurate subpixel PSF estimation, and with that in mind the most reasonable
is to do a non-blind estimation. More specifically, our work is strongly based
in [2. 3] where the authors proposed a novel method to do a superresolved
PSF estimation in blind and non-blind conditions.

In Section 3 we presented an image formation model that takes into
account all phenomena involved the acquisition of a digital image. The pur-
pose of this Section is to analyze how accurately we can estimate the psr
by following the image formation model. First we introduce our non-blind
approach for psr estimation. then we discuss how to choose a suitable grid
pattern. Next, we analyze all the necessary steps to do a correct estimation
of the psr. always bearing in mind that the observed images are aliased.

The idea behind our approach is to solve an inverse problem in order
to find the psr. By using prior information about the smoothness of the
PSE we can make the inverse problem well posed. This can be formulated
by considering one of the image formation model, for example (1) and
choosing k to minimize the functional:

2

L = |lg(R(I * k) — Ia|1* + Al Vk

where [ is the sharp grid pattern image and I; the blurred degraded obser-
vation. We have included a regularization term which penalizes kernels with
large gradient. The regularization parameter A is related to the noise level
but also to how over/under determined is the system.

As inferred by the above problem. if we want to estimate the pSEF by a
non-blind method. we will have to face (explicitly or implicitly) the following
problems:

e Choosing a good grid pattern.
e Getting rid of the non-linear cCb reponse - ¢(+) function.
e Getting rid of the geometric transformation -R(-) function.

e LEstimation of the sharp grid pattern image 7. We know the pattern as
it is not-blind estimation but we do not know its intensity value and
also we do not know its alignment to the observed image.

e Nuerical algorithims for solving the psr.

16



4.1 Choosing a grid pattern

There are several ways of producing a good grid pattern. Suppose. we could
do a perfect delta-like grid pattern (i.e. an image containing just a single
point of zero measure). then its Fourier transform would be constant, and
finally the observed image would be exactly the PSF. However, in practice it
is lmpossible to do this as we cannot print such an image.

One casy way of implementing the idea behind this is considering a pat-
tern with perfect step-edges. In this case. the observed image will give us
information about the PSF response in the direction orthogonal to the edge.
Then. we need the pattern having edges in all directions. Also. if we want
to do a local PSF estimation we need a pattern having edges in all directions
of every location.

As a previous step to tackle the pPsF estimation. we need to align the
pattern and correct the geometrical transformation due to perspective and
lens distortion. For that purpose, the pattern has to be locally alignable. For
example. it has to contain some local features that are easily detected.

In this work. we used the grid pattern proposed by Joshi et al. [2] which
consists of perfect 120° arcs connected in a way that they produce checker-
board like corners (see Figure 7). We have drawn the grid in vectorial form
(postscript language) to be able to rasterize it at any resolution.

We leave for future research the study of other ways to produce good
pattern grids. In particular. we would like to study the generation of white-
noise-like grid patterns.

4.2 Grid Alignment

The approach adopted here assuies that we know the input to the system.
As we know beforehand the pattern that the camera is acquiring. we only
need to align it to the observation. The main problem is that we do not
know how the acquisition system (i.e. digital camera) degrades the pattern
Image. since this is what we want to measure.

Following either models (M) or (Als), presented in Section 3, in order
to deal with geometric distortions the ideal pattern and its observation have
to be locally aligned. Notice that actually, if the PSF does not exhibit radial
symmetry misalignment due to its influence can occur. For that purpose
we detect the checkerboard like corners, and if we suppose that the PSF is
symmetric then this x-corners will not suffer from shrinkage. Several meth-
ods to detect corners have been reported in the Computer Vision literature,



(a) grid pattern

(b) local grid pattern

4

Figure 7: Gird pattern for local PSF estimation

ranging from differential operators such as Harris detector to more specific
correlation methods.

4.2.1 Harris Corner Detector

Harris and Stephiens [17] analyzed this problem based on the local autocor-
relation function of an image. The local autocorrelation function measures
the local changes withing an image by shifting patches a small distance in
all directions. Given a shift (x.y) is defined as:

Ele.y) = Z w(u.v) (I(u+ax.v+y)— I(u, 1'))2.

u.e

where w(w. v) is a smoothing window (e.g. a Gaussian) centered in (. y)
and I(-.-) denotes the image intensity. Then approximating I(w + 2.+ y)
by its first order Tavlor expansion

Hu+ a0 +y) = I(u.v) + (L (u,v), Lo(u.v)) - [2,y).



and replacing this in E(x,y) we have

E(z,y) = [z, y] M|z, y]°

7 LI
Ll 2

t

where M =5

Do W, v) captures the intensity behaviour of

the local (. y) neighborhood.

Then observing the eigenvalues of A it is possible to construct a rota-
tionally invariant descriptor:

e Both eigenvalues are small meaning the image region has constant
intensity.

e One eigenvalue is high and the other low. then there is an abrupt
change in the image in one direction and little change in the orthogonal
direction. This indicates the presence of an edge.

e Both cigenvalues are high, meaning that shifts in any direction will
result in a significant change in the intensity image. This indicates the
presence of a corner.

Harris-Stephens proposed to measure this by, R = det(Af) — ktrace(A)?
where & € [0.04.0.15].

Then big R values will mean a presence of a corner in the point (2. y).

There exist multi-scale and affine invariant generalizations of the Harris-
Stephens corner approach [18], but none of them were considered in this
work. As we work under a totally controlled situation, we can always know
exactly the scale at which we are working. We concentrated our work in
studying how we can refine the corner detector to get subpixel accuracy.

4.2.2 Sub-pixel Corner Detection

The procedure presented in last Section does not give subpixel precision as
we are computing the R value only in the grid defined by image pixels. In
order to get subpixel accuracy we studied three different variants to refine
the initial position given by the Harris-Stephens algorithm.

Image Interpolation In [19] the authors proposed to first apply a Harris-
Stephens corner detector at pixel level and then interpolate the image in-
tensity in neighbours where corners were detected. Finally we could apply
the corner detector to each of the interpolated neighbours and if the inter-
polation is precise we could get subpixel accuracy. The main drawback is
that if the image is aliased then we do not know how to correctly inter-
polate it. In practice, we used an iterative algorithm where we smooth the
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image (as an antialias preprocessing) before interpolating it. then we run
the Harris-Stephens algorithm. By doing this iteratively, we can refine the
corner position by decreasing the smoothing filter action.

Saddle-points Detector In [20] the authors proposed a method for extracting
X-junctions with subpixel precision. First. a Harris-like method is run to
detect neighbours that contain X-junctions. then a quadratic function is fit
to the intensity profile for each of the detected points. This is done by solving
a linear least squares problem,

7
T2

. < 2 .
arg min ||aa® + by + cy® + do + ey + f — L5 (a3 (2 )
aibieid.e.f '

where Inipy.u0)
the point (g, yo) where the Harris method detected a X-junction. As the
critical point of the quadratic function is a saddle point, it is given by the
intersection of two lines,

represent a neighbourhood of the image (2. y) centered in

2ar +br+d =0
br +2cy+e¢ =0

And finally the subpixel X-junction (. y) is located at:

be — 2cd bd — 2ae
L= Y= .
Gae— 827 = Tae — 2

X-checkerboard Detector In [21] the authors proposed a new method for
detecting X-corners. Once they get an initial position (., y) thev refine the
localization by using a second order Taylor approximation. that is by as-
suming that the real position is (x + s.y +t) then,

| —

I+ sy+t) = I(x,y) + [s. 8L, 1) +

D

Lo Loy | 7o 5
[s.1] { oy } [s.8]"  (3)

ry by

1§

where I, is the second derivate of I respect » and y. and the same for the
others.

Then as an X-corner is just a saddle point of the intensity image. we can
find it by setting the first derivate of Eq.3 to zero. That is solving.

Lyws <+ Loyt =+ I, =10
Loz = Dyt + Ty =10
Finally the subpixel X-corner position is (@ 4+ s,y + t) where:

[.'/[«"!I B [-l'[!/_l/ ].I'[.r// - 1;/[:‘.1'
g = i
[.1'.1‘[;/.4/ - ]-I'.l/l'Z [J'.r[;/.t/ - ['1‘.1/2
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4.2.3 Evaluation

We tried to simulate the same conditions as how the grid would be acquired.
For that purpose we built a checkerboard corner image with perfectly known
position. Then we filter the image with a small Gaussian filter and downsam-
pled it 16x. Adjusting the variance o of the Gaussian filter we can control
the amount of alias in the downsampled image. Finally some Gaussian white
noise was added to get the test image. We ran all tested algorithins in sev-
eralimages varying the alias level and noise level. Figure 8 shows an example
image and its degraded version.

Figure 9 shows the performance of the three evaluated detectors in three
different situations: high alias, middle alias. low alias. We repeated the ex-
periment several times for each variance noise and computed the mean error
and the standard deviation. In solid lines it is shown the mean value and
in dot lines the mean value 4o stripe. Note that if alias is middle-low all
aleoritlnns have an accuracy greater than 0.1 pa for medimmn-low noise. Also,
C'hen and Harris subpixel algorithin have a very similar performance. and
if alias is low Lucchese algorithim works worse. In Figure 10 we show the
accuracy vs. o (small o high alias - large o low alias) for additive Gaussian
noise of power 0.03 (low noise) and 0.1 (medinin noise). In this case. we ob-
served that for o > 0.6 — 0.7 all algorithms have a high accuracy (error less
than 0.1 px). For highly aliased images the Lucchese algorithim has a better
performance while in low alias situations Chen or Harris subpixel algorithim
reach a greater accuracy.

Inages taken from typical digital cameras are normally middle-aliased
(0 = 1 — 1.6). and as we are working in a laboratory we can control the
acquisition process to have low noise level. Also, as we pretend to estimate
the psE superresolved at 16x we need a corner detector with accuracy less
than 0.1 pe. From this evaluation we conclude that in this conditions all
algorithims have similar performances, so for simplicity we adopt to utilize
the Harris subpixel detector algorithm.



(a)

TFigure 8: checkerboard corner image example (a) and Aliased 16x downsampled
noise corner image example (h).
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Figure 9: Aliased checkerboard corner detector evaluation 1. Accuracy (in px. from
the downsampled low resolution image) vs. noise standard deviation, prefiltered by
a Gaussian of: o = 0.3 - high alias (top). o = 1.3 - middle alias (center). o = 2.3 -
low alias (bottom).
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4.3 Geometric Transformation and Distortion Estimation

The method studied in this work assumes that we know a subpixel corre-
spondence between digital blurred image pixels and original image. However,
there exists a geometric transformation between real world scene and the
associated digital image captured in the CCD plane. In practice. from the
model that we assumed in Section 3 the mapping between a point in a 3D
plane P = [X. Y. Z] and its projection p = [x. y] is given by p = R(H(P)).
where H () model the perspective transformation as a 2D homography and
R(-) models the non-projective distortion.

We have studied two different approaches for computing the geometric
mapping. First. the classical one (bhased on the work by Zhang [5]) estimating
a homography and a radial distortion. and a general. non-parametric one
that directly approximates the geometrical transformation by thin plates
splines. Both techniques require to know a set of correspondences: in our
case we used the checkerboard detected features as we know their original
location in the pattern image.

4.3.1 Homography + Radial Distortion

This geometric transformation is divided into a planar perspective projec-
tion of coplanar detected features P; onto the image plane, p; = HP;. and
radial distortion p; = d(p;). In this approach we have not considered tangen-
tial distortion while most authors consider it as usually negligible [22], if our
model/estimation is not accurate enough we can introduce some artifacts in
the estimation of the pSr.

Radial distortion is usually modeled as a polynomial,
o ; . 9 3
p=p+ (p—po)ldir +dar® + dgr® + dyr?) (4)
where pg is the distortion center py € B2, r = l|p— pol| and dy.d».d3.dy € R.
A homography between points lying in a plane (the calibration pattern)
to points lying in another plane (Ccp) is determined by 4 pairs of corre-
spouding points (8 unknowns). If P = [X. Y] and p = [2.y]. and /,; denote

the matrix homography entries:
/I“‘\, 5= /Ilgy' == /’l.‘ﬂ

e /l;l,]_\’ t /1;5-_))' b1
- /131 X + /)-_)4_))' + /I-_)_",
y= /1;1,1}\: -+ /I;g«_))’ + 1

Then. we can rewrite this equation to get a linear system:
hoyy Xoe+hpYoe+o—=hh X —hpY =y =0
st Xy + hgpeYy +y — ho1 X — hag¥V — oy =0

B
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Suppose that we know the corresponding pairs (P, p,).i = L.2....n,.
of 3D world points in the grid pattern and points to iimage plane without
radial distortion. Then a linear system on (2;;) can be conformed and the
problem reduces to solve a linear least square problem:

/}31‘\71.].1 + /I;;-_g)'],l'l Q] = /71].\'1 = /)1‘_)}—1 = /1];; =0
Dt Xayr + hgaYiys + g1 — har Xy — hao¥y — hoy = 0

/1341-\’\'-1'11, =t /13‘2}’11,--1'11, =+ L — /7114\:11, == /113);1, e /Il.'é =0
st XN Yne + D32 Une + Yn, — o1 X, — owY, — hog =0

From the adopted radial model (Eq. 4). distortion near the center is
minimal. so we utilize feature points located at the center of the image to
estimate an initial homography. However. notice that this minimization does
not minimize the euclidean distance between feature points Y | p, — HP2.

Instead of simultaneously estimating both the homography and radial
distortion parameters that minimize the euclidean distance between feature
points. we proceed in an iterative way. Given a homography we estimate
the radial distortion that best explains the difference between the observed
feature points and the points projected through the homography. Then. by
the inverse radial distortion we compute a new set of points and estimate a
new honography. We proceed iteratively till the difference between parani-
eters is less than a small threshold. We do this in order to accelerate the
convergence of the algorithm as estimating at the same time the whole set
of parameters is really slow.

To estimate an initial radial distortion. we compute the projection of
all detected feature points P; through the homography already estimated p,
and solve for the pairs (p;.p;).i = 1...n

N
R = nrg‘minz lBi = R(p)|?
=1

Observe that R is characterized by (g, yo. dy.da.ds.dy). This problem is
non-linear and we solve it using the Levenberg-Narquart algorithin.

Once we have computed an initial Hy and Ry, we can proceed in an
iterative way. For doing this we need to invert the radial distortion. This can
be done by a Newton fixed-point algorithm. Consider rg the distance of the
distorted pixel to the distortion centre and d(r) = (dyr+dor? = dy? +d o).
Then following the assumed radial model.

ro=(pi—po) = (p;—po)(L+=d(r))=r(1+d))



and then we can invert r (1 + d(r)) = rg by the following iterative process:

dyr2 + 2dyr + 3dgr) + ddyrd — rg
L+ 2dyry, + 3dor? + ddyrd + 5dyr)

Fn+1 =

Once we have estimated the radial distortion parameters we compute p; =
R™Y(p;) and from these points we compute the new homography proceeding
iteratively.

4.3.2 Thin-plate smoothing spline

For our purpose of PSF estimation we do not need to separate the distor-
tion in homography and non-homography distortion. The idea behind using
thin-plate splines is to avoid that computation and to utilize a more gen-
eral model. Since we have previously detected the {p;} checkerboard corners
from the grid and we know exactly their corresponding points { P} we can
use these correspondences to find a smooth mapping from the non-distorted
to the distorted space.

Although thin-plates were originally used as an exact interpolation method
[23] they can be easily extended to the approximation problem [24]. Also. it
is considered that the problem can be subdivided in two problems. one for
cach component of the transformation. One way of weaken the interpolation
condition is by minimizing the functional:

E=Y fB)=mlP+A / / (f2r + 2fey + £3,) dady.

Then. the solution of this functional is of the form

n

flay) = ag+ a1 +asy + Y wiUi(|1 P = (. y)])-

=i

- . 9 oy :
where U(r) = r?log r?, the coefficients ag. ay, as, (w;)} can be found by solv-
ing a linear system (see [24]).

We utilized the Matlab Spline Toolbox ™! for computing the thin-plate
smoothing approximation.

4.3.3 Evaluation: Straight lines rectification

In order to evaluate both approaches. we added a rectangular frame to our
pattern grid. Then we proceeded to correct the digital images by the two
methods. If the transformation was correctly estimated then all sides of the
rectangular frame should be rectified (corrected to be straight lines) and the
rectangle should be parallel to the horizontal and vertical axes respectively.

o
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In this experiment we used the blue channel of a raw image taken from
a Pentax K-M camera using a 40mim focal length at £/5.6. Figures 11 and
12 show that in all cases the best correction is obtained by the thin-plates
method,

Although the distortion does not seem to be large. it is hmportant to
model it as better as possible to be close to the proposed image formation
model. For that and also as we do not need to decompose the distortion. we
decided to use the thin-plate approach.
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4.4 Sharp image reconstruction

Ounce the blurred image is aligned to the grid pattern, only rests to estimate
the black and white pixel values of the sharp pattern image. The estimation
is performed locally, i.e. for every local grid pattern. in order to make it more
robust and deal with non-uniform illumination. This can be formulated as
estimating a and b for corresponding black and white pixel values, according
to:
. I(v.y) = (b—a)l(x,y) +a

where I,.(x.y) is the adjusted contrast sharp local image pattern. and I(x, y)
is the normalized contrast local sharp image pattern with 0 for black pixel
values and 1 for white ones.

It we suppose that the PSE support is not too large (in comparison to
the size of the local grid pattern), which in our estimation of in-focus-no-
movement case is a reasonable hypothesis, we can estimate the black and
white values by taking the mean of pixels in black and white regions respec-
tively. This is a direct consequence of the adopted model. suppose (x..y.)
is the central pixel of the black flat region, and W, , a window centered in
pixel (e, ye) and totally included in the black region. Then the estimation
of a. a can be written:

a=p(Wey)™' > Blawy)

(v y)EW . ye

== (W i )*1 Z / (s, t).(x,y)dsdt
J(s.)esupp(h)

(x)EWae.ye

(W ) Z a / h(s,t)dsdt

(. )EW . ye

= {1 / h(s, t)dsdt.

Il

For the sake of clarity in this analysis we have omitted the noise, sampling
and distortion operators. Also. we have supposed that the size of 117 is small
cnough to keep constant the image value.

Then. if we assume that the psF is normalized, i.e. [h(s.t)dsdt = 1,
assuing random noised of zero mean our estimator is unbiased (i.e. the
expected value is equal the true value). In practice, this will not be strictly

5 we show by simulations how a small error on the

true and in Section
estimation of a and b will affect the PSF estimation by introducing some
artifacts. As we have found that the precise estimation of this values are a
critical step for an accurate PSE estimation, in Section 4.5.4 we propose a
more robust way of estimating the psrF. without a precise knowledge of these
values.
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4.5 Local PSF Estimation

Once we have an estimate of the sharp image. we can solve the PSI estima-
tion by solving an inverse problem. By using prior information about the
smoothuess of the PSF we can make the inverse problem well posed. This
can be formulated by choosing & to minimize the functional

L=|I+k— B|*+\|VEk|? (5)

where I is the estimated sharp image and B the blurred degraded observa-
tion. We have included a regularization term which penalizes kernels with
large gradient. The regularization parameter A is related to the noise level
but also to how over/under determined is the system.

In order to be consistent with the acquisition process that we have
adopted. we reformulate the problem described in Eq. 5 by considering the
already introduced model (1/5) as:

k = argmin |1z (g(R(I * k))) — B||®> + M| V>, (6)
‘["

where we have included: ¢(-) the non-linear increasing function modeling
the non-linearity response of the sensor. R(+) the geometrical transforma-
tion. and IT the sampling operator.

As we have already mentioned we cannot get rid of the non-linearity of
the sensor response. However. if we work in middle range intensities then
its response is almost linear. Due to our freedom to set up the laboratory
experiment, we can choose the illumination conditions and the grid contrast
value to work in the mentioned situation. So. from now on we will omit the
function g(-) always remembering that we have to be careful in how we carry
out the experiment.

We have two different ways of taking into account the geometrical trans-
formation to solve the problem. We could directly correct the observation
B. by applyving the inverse transformation. However. as the observation is
aliased we do not know how to correctly interpolate the image. Instead.
we prefer to solve directly the problem as it is originally formulated. Al-
though. this is possible to do as it is a convex functional. we prefer to write
down a simplified linear version of the problem. By doing this. we can use
fast algorithms to solve the problem. Suppose that we can approximate the
geometrical distortion by an affine transformation by its first order Tavlor
expalsion:

R(x+h) = R(x) + J(x)h + o(||h[?) (

=]



Then.

I(s)h (R (x)—s)ds

~

(R(s")) h (R (x)— R(s")) |.]|ds'
T(R(s))h(T(x)(x—s"))]|]|ds

[[?(S/)/I,,](X — S/)(/S/

1%

= Ip*h;(x)

where we have applied Eq. 7 and a change of variable s’ = R7!(s). Observe,
that by holding this assumption, we can modify the sharp image I by the
geometrical distortion (to get Ir) and then solve for the kernel /i ;. However.
we have to take into account that the solution hy is perturbed by the linecar
transformation .J due to the jacobian of the distortion.

The assumption does not generally hold. due to the non-affine distor-
tion introduced by the lens. Nevertheless. if we solve for local poiut spread
functions. then locally the distortion can be well approximated by an affine
transformation, and everything holds.

Note that if we assume the other image formation model (Afs) the pPsk
estimation can be done in the same way. However, the results follows di-
rectly trom the model where we can write I *h(x) so the kernel will not be
modified by the geometrical distortion. This difference is due to the adopted
model but conceptually in both cases we are estimating a point spread func-
tion that will characterize the digital camera.

Finally we can rewrite Eq. 6 by approximating the samples of the con-
tinuous convolution I * hy(x) by the discrete convolution. Note that this
is true. if the sharp image and the kernel are sampled at frequency higher
than the Nyquist frequency. In the case of the sharp image this cannot be
true. as it has infinite support. Then

k = arg min |[MIk — MB||? + \|VE|?. (8)
L

We have written the convolution as a linear operator by the convolution
matrix I formed from I ;. The M operator is a mask that only evaluates the
functional in those pixels that add information. It is not used to calculate
the difference in every pixel. as the pixels deeply inside the flat regions do
not incorporate any information apart from adding noise. In practice, the
binary mask operator consist of a band of ones around the circular edges
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(see figure 13).

(a) (b)

Figure 13: Masking operator. Unmasked observation (a). masked observation (h).

4.5.1 Superresolved PSF

With the aim of computing a superresolved PSF. we can take advantage of
the a priori analytic knowledge of the grid pattern. As we have studied in
Section 4.2 we can align the grid pattern and the blurred observation with
subpixel accuracy. Then, we can rasterize the grid pattern at the resolution
we want to estimate the PSF. Let us call this rasterized image [Ij. Next.
we introduce a down-sampling operator D, that takes a high resolution
image Iy and generates Iy as Ip(m,n) = Iy(sm,sn) where s = ok (ke =
0.1,..). Observe that we can replace the old data misfit term in Eq. 6 by
IMDI ks — MBJ]? and solve for ky to find a superresolved psr. Finally
the minimization problem can be written as
(P)  k=argmin ||[MDIyky — MB|* + A|Vky|?
ki

This formulation also improves the approximation of the continuous convo-
lution as it is done in a higher resolution domain.

4.5.2 Choosing the regularization parameter A

As we have already mentioned in the previous Section. the parameter \
should be an increasing function of the noise level but also on how much
determined is the liner system due to the data misfit term. In a Bavesian
interpretation, A is the ratio of data and model variance.

In the original work [2] the A parameter was fixed only taking into ac-
count the noise level and the size of the PSF support. In our opinion. the A
parameter should be at least a function of:

e How local we are doing the estimation (i.e. number of local grid pat-
terns). this will have an impact in how well the observed step-edges
response is sampled.
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e How much we are increasing the resolution of the estimated psr (i.e.
s parameter).

e Noise level.

There exist two popular ways to give an estimation of the regularization
paraeter: the L-curve [25] and Generalized Cross Validation (cov) [26].
The L-curve approach consists of selecting as the regularization parameter
the point of largest curvature (called L™ point) in the plot Euclidean norm
data misfit error vs. norm of regularization term.

In this work, we opted for Gev for determining A. In Section 4.5.3. we will
also explore a different way of posing the PSE estimmation in a parameterless
way. We leave for future investigations the performance of other A estimators
like the L-curve approach.

Generalized Cross Validation The argument behind Generalized Cross Vali-
dation is that it A is a good choice. then the A estimated from a part of the
data should be a good estimation for regularizing the problem and doing
a prediction for the other part of the unseen data. We used leave-one-out
cross validation (LOOCV) which means to compute the model by removing
one observation and then calculate the residual between the removed value
and the value predicted by the model.

Consider the general regularized least squares problem, where A is a m
by n matrix (m data values), and b is a m by 1 vector (observations), D is
a n by n regularization matrix,

Az — b||? + M| Da|?

arg min
&

The cross validation residual [26] can be written as.

oy =13 (b i)’

n =
LIz — N2
Htra(-e([ - ;\'()\)]2

where N(A\) = (A’A+nAD!'D) 1A' b; is the i-th observation and f)(/) is the
predicted value by the model estimated with the other (n —1) observations.

Finallv we choose as the regularization parameter the A* minimum of
function V(A).



4.5.3 Parameterless minimization - Noise estimation

In Section 4.5.2 we presented the PSF estimation problem as the minimiza-
tion of a functional composed by a data misfit term plus a regularization
penalty:term. Although we commented a way for choosing the weight of the
penalty term (by a generalized cross validation approach). here we present
a different way to estimate the PsF that only involves the estimation of the
noise level.

Suppose that we know that the image noise follows an additive zero
mean Gaussian white noise model. whose variance o is known. Then we
can recast the problem (F) as:

(Py) k = arg min | RA||?
1‘.

subject to
|MDIk — MBJ|* < [M|o?

Notice. that this problem selects the most regularized of the kernels from all
the feasible solutions. We consider a feasible solution if it can explain the
observation due to the adopted noise model.

For this we need to give an estimation of the noise level. Due to the pat-
tern grid we used, this can be easily done as it has several constant intensity
parts. If we suppose that changes in illunination are smooth. then we can
proceed as follows. Take a small window in the center part of the black re-
gion (analogous for the white region) and compute the intensity variance
inside the window. Then. the estimated variance will be close to the noise
level per black pixel.

In practice, we found that image noise depends on the intensity value.
and higher intensity regions (white regions) have more noise than lower ones.
We solved this by doing an average of the noise level. As for generalizing
this to solve for a non-local kernel by using I{ local grid patterns. we can
rewrite (P,) as:

(Fer) : = arg min ||Rk||?
A,

subject to
M, DIk — M, B |? < |M,|o7
|MyDIsk — MyBsl|? < |Ma|o?

IN

IMgDIghk ~ My Br|? < [My|oh
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Section 5 shows some simulations and real camera results by using this
approach to solve for a local psr kernel.

4.5.4 Minimization without contrast estimation

In Scection 4.4 we presented an approach for sharp image reconstruction.
We mentioned that in order to estimate the PSF it was hmportant to esti-
mate the black and white intensity values of the sharp image pattern. Also,
in Section 4.5.1 we discussed how from the sharp image and the observed
blwrred image, we can find a superresolved PsrF that satisfies the adopted
image formation model.

Here we present a different approach, in which the black and white sharp
hmage values do not need to be estimated. Therefore, this novel method
should be more robust than the previous one.

Consider the original problem presented in Eq. 5 (we have left out the
reeularization term for readability but it does not change anything). remem-
bering 1. = (b — a)l + a. where I is the binary sharp image,

o D . . 24
min || L. * & — B = minmin |[|[((b — a) + a) * k — B||
I3 ko ab

. . | 2
= minmin ||b'] * k —a' — B||?
L. /

a’b

= 111}‘1111111111 |I*k—a — B|?
v [

Observe that we have included the scale term (b — «) inside the kernel, so
we can get the best kernel & upto a scale factor. This is not important, as
we know that the kernel should be normalized. Next, we can apply

min||[Ixk—a' - B|*>=|Ixk—B-Txk—-B|

which is a direct consequence that the best estimator for a vector in a least
s(uares sense is its mean value. Finally we have

win || e k — B|? = min |1k —T+k - (B - B)|1?,

where we have substracted to cach term its respective mean value. Then. we
can rewrite the minimization problem (P) as:

(Pe) k= argmin |[MCDI ki — MB.|]* + A|Rky|?

kn
where C is the centering operator defined as C =1 — ——E. E is a matrix

mxn
of ones of size m x n by m x n. Iis the identity matrix of same size, and

B, = B — B are the centered observed values. Also. we can reformulate the
«
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non local kernel estimation problem in the same way.

In Section 5 we show some results obtained by solving this approach
instead of the original one.



4.6 Numerical methods to estimate the PSF

In Section 3 we gave a list of hypotheses that the psi should satisfy. One of
them mentions that the kernel must be positive as negative light does not
exist. This implies that our solution must be non negative, so we can impose
this to shrink the set of possible solutions.

Suppose that the local grid pattern observation B is of size m x n and
we want to estimate a PSF at sx. Also suppose that the estimated support
of the psr is inside a p x ¢ image. Then. the problem to be solved can be
formally written as

o 9 “
(PU) k= arg My HMDIH/\'H = I\/IBH' -1 /\HRA‘//H')
kn

subject to kg, >0

where MDIyy is a m xn by p x ¢ matrix, which in practice can be too large.
R is the matrix associated to the gradient operator.

If we want to estimate a PSEF but taking into account 4" local grid pat-
terns. then we would have to concatenate the associated MDIy, matrices
and B3; observations for i = 1..... \'. This would require a huge amount of
memory. Let us call P; = MDIy;, and Q; = M B; for each local grid patter.
Then we can re-write the problem (Fy) as

2

(P) k= argmin Z /),‘Pi-P; +R'R | kyy - Z/)’Pi(‘}‘

ku ; i

subject to kg, =0

Notice. that in this case all matrices are of the size pxq by pxq¢ which is con-
siderably smaller than the case before. We have substituted the parameter A
by a parameter p; which performs the same (opposite) role but in a local way.

4.6.1 Studied Methods

With the aim of solving the problem (P;) subject to the non-negativity
constraint. we studied several different methods:

e A Gradient descent with projection method [27]
o Two-Point Step size gradient method with projection (based on [28])
e An Uzawa’s Method [29]

e A Newton interior point method [30]
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e Disciplined convex programming - Semidefinite-quadratic-linear pro-
gramming implemented in ¢vx [31]

For a general survey of the development of algorithims for nonnegativity
constraints see [32] and for more general convex optimization [33].

Although a simple gradient descent with projection manages to get the
correct solution. its convergence time is really slow. We also studied the
two-point step size gradient algorithm described in [28]. This algorithm was
modified by projecting the actual point. at the end of each iteration. in order
to satisfy the non-negativity constraint. However. we could not manage to
get it to converge.

We also implemented an Uzawa's based method. Although this method
achieved good results for finely tuned parameters, we found that the results
were very sensitive to the step-size chosen.

The general framework CcvX [31] in which all problems are rewritten in
an standard way, also succeeded in getting a solution of the problem. This
disciplined convex programming toolbox. uses solvers based on predictor-
corrector variants of interior-point methods [33].

As the interior-point method described in [30] gets similar results to
CVX, besides of being simpler and direct to implement we decided to use it
to solve our problem (P;).

A Newton interior point method described in [30] The goal is to recover a
non-tiegative vector @ which explains the observation b as well as possible
in a least squares sense.

Ax — b|?

(P) argmin
x
subject to >0
This problem. can be rewritten as a quadratic progranning (QP),
(QP) argmin At Ar — 24
T

subject to 2 >0

According to the Karush-IKKuhn-Tucker optimality conditions. if the vector
2 1s a minimizer for (P). there exists a vector y such that

(LCP) y=A'Ax — A", y>0,2>02'y=0
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This problem is called the linear complementarity problem (LCP) associated
to the (P) problem.

The algorithm we used is based in a Newton approach to solve the LCP.
Consider the following non-linear equation,

XYe

Fle.y)=| staAxe—Ve— Alh

where XY € R"™ are square diagonal matrix whose diagonal elements are
the components of 2 and y respectively. and e € RV is a vector of ones. The
idea is to solve for function F'(x.y) = 0in theset S = {(a.y) : 2 > 0.y > 0}.

For that purpose, consider a sequence of points (%) by,
(AR = (@ yh) + O (ut )

where 0 is a positive stepsize and (uy, v;) is the Newton descent direction
oiven by the solution of.

)'A' ‘\r/,- “A- B _‘YA-},'}\.(! n lie (9)
AlA -1 oF ] T | —ATAX e + YRe + AlD
The value of ji must be positive to assure all the variables to be positive.

Let 6; be the largest value of 6) such that (¥ ¥ 1) £ 8. In fact, we
need ¥ + gpuf > 0 and y* + 050F > 0. s0 0; = min{6}.. 67} where,

k
.=y ‘
gL = 111111{»—/’ ti=1....n and u} < O}

Ty,

A.
: ; = ’ 3 .
g7 = 111111{ =4 =1,...,m and vk < ()}.
Yn

Also. we want that g(x.y) = 'y decreases in each iteration. Then.

gla* T2kt — gla®,a®) = (% + f};.uk)[(ljk + Op0%) — (¥ )yt

(@*) )67 + (@) ok + () )6
= ((W*)'*)02 + (= (@) y* + npg)Oi

where we want this expression to be negative. Two cases can be differenti-
ated,

it (uh)ek <0then 0<6p <6;. 0<pg<jix
it (u¥)'ek >0 then 0 <6 <min{f;.0,}.  0<pyp < fig
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where.

B (%) yh = np
(“k)lll.
' _ (‘I./\ )['1//\'
/1]“ =
n

In [30] the authors give some ideas. base on their computational expe-
rience on how to set the parameters 6), and j. Finally the Newton based
algorithm can be sununarized in the following steps:

1. Initialization

e Choose: toll and tol2 two tolerances for zero. and (wg.yg) > 0
initial point.

o Set k= 0.
2. Main Loop

Step 1 Compute u* and ¢* given by Eq. 9.

Step 2 Choose an appropriate ¢, by respecting all the conditions given

and update (21 g+,

Step 3 If (M 1)ty*+! < toll and [|AF AzF+1 — Atp — g+

‘->
.I./.'+]

< < tol2 stop
as the solution of the given problem. Otherwise

update & = k + 1 and return to step 1.

and set a2 =

We do not investigate different nuimerical methods to solve the problem
(P,). Instead we use the already introduced convex optimization toolbox
CVvX which can manage to solve this kind of quadratic constraint probleins.



5 Experimental Results: psf estimation
5.1 Simulations for objective evaluation

Counsidering that we do not know the PSF camera ground truth (i.e. the
real camera PSEF) we propose an evaluation method that includes different
simulations trying to recreate the camera acquisition process. This way.
the proposed subpixel PSF estimation methodology is evaluated using data
siimulated under different conditions and representing different outcomes of
the ‘;1(-quisition process. We pay particular attention to the aliasing effect
caused by sampling under the Nyquist frequency.

Manual )\, known real contrast

This experiment is probably the most important one. It validates the possi-
bility of performing a subpixel PSF estimation with the proposed approach.
For that purpose we rasterize the grid pattern at a high resolution. we con-
volve it with a pPsk like kernel (not necessary anisotropic) and we down
saiple it to get the observed digital image. The image is down sampled at
a rate 16x (i.e. one pixel from a 16 x 16 block) and the kernel is chosen so
that the low resolution image presents aliasing artifacts. We also add white
Gaussian noise of s.d. o = 0.05. We call this experiment the base test. We
ran the basic algorithim manually setting the regularization parameter A and
the contrast values: a and b. The alignment was done automatically. We es-
timated 1x. 2x and 4x PSF.

The estimation results, performed with one local grid pattern and a
elobal estimation using 81 local patterns. are presented in Figure 14. We
interpolated (using a Lanczos window) the estimated kernels in order to
compare them with the original one. As a performance measure we decided
to use the PSNR between the interpolated kernel and the original one. Al-
though a high PSNR could indicate a good estimation, it is important to
notice that the kernel could still present artifacts. For that reason we also
eive a qualitative description of the estimation. In this example, as it is
shown in Figure 14. none of the estimated kernels present strange artifacts.
In both cases. the estimation done at 2x or 4x. seem to capture the shape
of the kernel (eccentricity at 45 degrees) while the estimation done at 1x

does not.

At the end of this section we present a table sunnnarizing all the PSNR
values and the observations for every of the following experiments.



PSNR 58 77

PSNR 6105

(a) original estimation - local (b) interpolated estimation - local
g

PSNR 59 78

PSNR 64 81

(¢) original estimation - global (d) interpolated estimation - global

Figure 11: Manual A, known real contrast. For all estimations: original kernel (top
left). 1x estimation (top left). 2x estimation (bottom left). 4 x estimation (bottom
right). Local estimations are performed using only one local pattern: global ones
using 81 local patterns.
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Manual A, known real contrast, alignment perturbed 0.25 pixel

This experiment tries to validate the motivation to develop and include an
accurate subpixel corner detector in the PSEF estimation process. We repeated
the base test but we perturbed the aligniment done by the subpixel corner de-
tector with a random variable uniformly distributed in (—0.25,0.25) pixels.
Once again we ran the basic algorithm manually setting the the regulariza-
tion parameter and contrast values. We estimated the 1x., 2x and 4x PSF.

Results are shown in figure 15. As expected. the performance is lower
than for the base test. in particular for the local estimations. Besides some
artifacts appear in the global 4% estimation.

PSNR 584

PSNR 58 66

(b) interpolated estimation - local

PSNR 64 28

(¢) original estimation - global (d) interpolated estimation - global

Figure 15: Manual A, known real contrast. aligniment perturbed U(—1/1.1/41) pixel.
For all estimations: original kernel (top left). 1x estimation (top right). 2x estima-
tion (bottom left). 4x estimation ( right). Local estimations are performed using
only one local pattern: global ones using 81 local patterns.



Manual )\, real contrast perturbed

This experiment shows the sensibility of the proposed method to the esti-
mation of the printed pattern contrast level (black and white pixel values).
We repeated the base test but we perturbed the real contrast values by
a adding a random variable uniformily distributed in (5,5) (image values
range [0.255]). We ran the basic algorithm manually setting the regulariza-
tion parameter. We estimated the 1x. 2x and 4x PSF.

Results are shown in figure 16. As we expected the performance is lower
than for the base test, in particular for the 2x and 4x estimations. We can
also appreciate that the Gaussian shape is not correctly estimated in the
local/global 4x estimations.

PSNR 596

(¢) original estimation - global () interpolated estimation - global

Figure 16: Manual A, real contrast perturbed. For all estimations: original kernel
(top left). Ix estimation (top right). 2x estimation (bottom left). -Ix estimation
(hottom right ). Local estimations are performed using only one local pattern: global
ones using 81 local patterns.



Manual A\, unknown real contrast

This experiment shows the stability of the PSF estimation by automatically
finding the contrast levels (black and white pixel values). We repeat the base
test without setting the contrast values. Again. we ran the basic algorithm
manually setting the regularization parameter. We estimated the 1x. 2x
and 4x PSF.

Results are shown in figure 17. The performance is similar to that of the
base test.

PSNR. 60 22

10 15

PSNR 6166

6201

(b) interpolated estimation - local

PSNR 59 53

(¢) original estimation - global (d) interpolated estimation - global

Figure 17: Manual A, unknown real contrast. For all estimations: original kernel
(top left). 1x estimation (top right), 2x estimation (bottom left), 4x estimation
(hottom right). Local estimations are performed using only one local pattern: global
ones using 81 local patterns.



Manual A\, unknown real contrast, very noisy image

This experiment shows the robustness of the PSE estimation algorithm to
additive Gaussian white noise. We repeat the base test without setting the
contrast values but in this case we added white Gaussian noise of standard
deviation o = 0.15. We manually set the regularization parameter A and
estimate the 1x, 2x and 4x PSF.

Results are shown in figure 18. As expected the performance is lower
than for the base test. Besides some artifacts appear in the local/global -
estimation and the local 2x estimation.

PSNR 58 72

10 15 5 10 15

PSNR 55 26

PSNR 66 41

(¢) original estimation - global (d) interpolated estimation - global

Figure 18: Manual A, unknown real contrast, very noisy image. For all estimations:
original kernel (top left), 1x estimation (top right). 2x estimation (bottom left).
1x estimation (bottom right). Local estimations are performed using only one local
pattern: global ones using 81 local patterns.



Performance Comparison Summary

Experiment Resolution  Mode  PSNR Observations
«1 local ~ 58.8  shape not captured
global  Gl.1  shape not captured
| | e «2 local ~ 60.9 -
cnowi real contras 2 i
] ) ‘ global  64.8 -
local ~ 61.1 -
x4 -
global  67.0 -
. local 584  shape not captured
x1 &
global  59.4  shape not captured
alignment perturbed %9 local ~ 58.9 -
known real contrast global  65.5 -
local ~ 58.7 some artifacts
x4 . -
global (4.3 some artifacts
1 local 59.6  shape not captured
global  60.7  shape not captured
l — trbed 5 local 59.5 -
real contrast perturbec 2 -
‘ ast] global  57.8 -
local ~ 59.7 wrong shape
x4 = . .
global  56.6 wrong shape
T local ~ 60.2  shape not captured
global ~ 59.5  shape not captured
) local  61.7 -
unkwnown real contrast X2 7 e
global  65.5 -
4 local  62.0 -
>< Al .o
global (6.9 some artifacts
<1 local ~ 58.7  shape not captured
global  59.1  shape not captured
unkwnown real contrast “9 local  55.3 some artifacts
very noisy image global  66.4 -
local 55.7 some artifacts
x4 - -
global  63.0 some artifacts

Table I: Performance Comparison Sunmmary
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Changing the considered number of local grid patterns

This experiment shows how the PSF estimate varies when considering more
local grid patterns in the estimation. We repeated the base test, this time
increasing by one the number of counsidered local grid patterns when per-
forming the PSF estimation. We manually set the regularization parameter \.

Results for the 4x pSF estimation are shown in figure 19. As we expected
the performance is better than for the base test as more local grid patterns
are considered. However, this is a synthetic example and in real situations.
where the PSF can spatially vary. we will have a trade off between averaging
due to the spatial variation of the PSF and the accuracy of a local psr
estimation caused by considering less observations.

(a) original

!

(b) PSF at dx (c) PSNR

Figure 19: Changing the considered number of local grid patterns. (a) Original
Kernel. (b) Estimated kernel at resolution x and interpolated to the original kernel
size. From left to right top to bottom. increasing by one the number of considered
local grid patterns used for the pSE estimation. (¢) PSNR between each estimated
PsE (interpolated by Lanczos) and the original kernel.



A set by Generalized Crossvalidation

In this experiment we analyze the algorithm performance when fixing the
regularization parameter A by generalized cross validation (introduced in
Section 4.5.2). We repeated the base test several times to evaluate the per-
formance for different noise realizations. Results are shown in Figure 20. Un-
fortunately the performance is not always good, indicating that this method
is not appropiate for choosing the regularization parameter.

.

& 3

(c) PSNR estimation at 2x

() estimation at -1x (e) PSNR estimation at -x

Figure 20: A set by Gev. (a) Original Kernel. (b) estimated kernels at resolution x2
(interpolated) for several realizations and their respective PSNR (¢). (d) estimated
kernels at resolution -x (interpolated) for several realizations and their respective
PSNR (e).



Minimization without contrast estimation

In this experiment we analyze the algorithm performance when solving for
the alternative functional presented in Section 4.5.4. In this case. it is not
necessaty to do an accurate image contrast (black and white pixel values) es-
timation. We repeated the base test several times to see the performance for
different noise realizations. Results are shown in Figure 21. The performance
seems to be a little lower than for the optimal case.

(a) original

(d) estimation at 4x (e) PSNR estimation at Ix

Figure 21: Minimization without contrast estimation. (a) Original IKernel. (1) es-
timated kernels at resolution x2 (interpolated) for several realizations and their
respective PSNR (¢). (d) estimated kernels at resolution -Ix (interpolated) for sev-
eral realizations and their respective PSNR (e).
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Minimization with noise level estimation

In this experinment we analyze the algorithm performance when solving for
the alternative functional presented in Section 4.5.3. The idea is to find the
most regular Psr that explains the observed noisy image. For that porpouse
we need to estimate the noise level. As in this case we are considering white
Gaussian noise. the noise level estimation is performed by estimating the
orayv level standard deviation in a flat region. We repeated the base test
several times to evaluate the performance for different noise realizations. In
order to get CVX to converge we had to increase the set of feasible solutions.
For doing this we added a small value to the estimated noise standard de-
viation. letting the CvX toolbox solve the problem. This can be justified as
considering other sources of error not taken into account during previous
analysis. For example, when we presented the minimization problem (),
we approximated the convolution between the PSF and the sharp image as
a low resolution discrete convolution. This approximation is one of the pos-
sible not previously considered error sources. In that sense, this procedure
let us add other sources of errvor that are not considered in the noise level
estimation previously done.

Results are shown in Figure 22. The performance seems to be a little
lower than for the optimal case. Also, we show that in some cases the al-
corithm did not manage to find a feasible solution. The problem is that
the additional tolerance. needed for the algorithm to converge, is an extra
parameter that prevents the estimation from being parameterless.

(2]
()



(a) original

LA LI
# 4 a0p

Ty

(b) estimation at 2x (¢) PSNR estimation at -Ix

(d) estimation at 4x (e) PSNR estimation at 2x

Figure 22: Minimization with noise level estimation. (a) Original Kernel. (b) esti-
mated kernels at resolution x2 (interpolated) for several realizations (1) and their
respective PSNR (c¢). (d) estimated kernels at resolution 4x (interpolated) for several
realizations and their respective PSNR (e).

H4



Base test for different noise realizations

In this experiment we analyze the performance when solving the base test
automatically estimating the contrast level. We repeated the test several
times to evaluate the performance for different noise realizations. Results
are shown in Figure 23. The algorithim seems to be stable to Gaussian noise
as the performance has not seriously changed between noise realizations.

(a) original

—r——e—

(h) estimation at 2x (¢) PSNR estimation at 2x

() estimation at 1x (¢) PSNR estimation at 1x

Figure 23: Experiment base. (a) Original Kernel. () estimated kernels at resolution
%2 (interpolated) for several realizations (b) and their respective PSNR (c¢), (d)
estimated kernels at resolution 4x (interpolated) for several realizations and their
respective PSNR (e).
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5.2 Real camera images

In this Section we present several spatially varving local PSF estimation ex-
amples using our basic algorithm. In all cases we have manually set A\ =
0.6.20 for 1x. 2x, 4x pPsr estimation respectively.

Figures 24.25.26 show results for our pattern grid captured with a Canon
EOS 40D camera provided with a Canon EF 50mm /1.8 IT lens at three
different apertures: £/5.6, £/2.8, £/20.0 (at the same 50.0 mm focal length).
Also in Figure 27 we show the results with a Pentax IC-N camera at £/11.0.
40.0 mm. The estimated local PSrF are of size 7 x 7 pixels and the super-
resolved kernels 2x and 4x increase their size in the same proportion. In
order to compare all estimations we have interpolated (by a Lanczos win-
dow) the 1x and 2x estimated kernels to be the same size as the 4x kernel.
In cach figure we show the estimated local kernels for the red, green and
blue channels taken from the raw image file.

The recovered PSFs show some interesting properties. First, for the aper-
tures 5.6-20.0 distortion does not seem to be very significative while for the
aperture 2.8 the PsFs estimated at the iimage border appears to be distorted
with respect to the estimated at the center of the image plane. This could
be a consequence of the fact that at 2.8 the lens is practically working at
its aperture limit and thus distortion could be more important. This is the
only case where seems to be chromatic aberration. as the estimated pPsis for
the red. green and blue channel differ a little from each other.

We also notice that PSFs at /5.6 are smaller than pSFs at £/20 with the
Canon camera. This seems to be a direct result of the already described
diffraction phenomenon: the radius of the PSF (airy pattern) increases with
the f-munber. The estimated kernels for the Pentax K-N camera at £/11 are
larger than the Canon /5.6 or £/20.0 psrs. This apparently indicates that
the Pentax IK-M is of lower quality.

Finally we show what happens when the captured image is out-of-focus.
In this case, as it is expected, PSFs are much larger than the in-focus case
and a kind of donut effect appears. These artifacts are not well explained
by the typical out-of-focus model.



(a) 1x - Red channel (b) 2% - Red channel (¢) 4x - Red channel

(d) Ix - Green Channel (e) 2x - Green Channel (f) 4% - Green Channel

(g) Ix - Blue channel (h) 2% - Blue channel (i) 4% - Blue channel

Figure 24: Real camera example. Canon EOS 10D with a lens Canon EF 50mm
[/1.8 11. Taken at [/5.6. 1/5 s, 100 150, 50mm.
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(b) 2x - Red channel (¢) 4% - Red channel

(d) 1x - Green Channel (e) 2x - Green Channel (f) 4x - Green Channel

) 1% - Blue channel (h) 2x - Blue channel (i) 4x - Blue channel

(8

Figure 25: Real camera example. Canon EOS 10D with a lens Canon EIF 50mim
[/1.8 11. Taken at {/2.8. 1/20 s. 100 150. 50mm.



(a) 1x - Red channel (b) 2x - Red channel (¢) 4x - Red channel

(d) 1x - Green Channel (e) 2x - Green Channel (f) 4% - Green Channel

(g) 1x - Blue channel (h) 2x - Blue channel (i) 4x - Blue channel

Figure 26: Real camera example. Canon EOS 40D with a lens Canon EF 50mm
[/1.8 TI. Taken at [/20.0. 3 s. 100 150, 50mm.



(a) 1x - Red channel (b) 2x - Red channel (¢) 4x - Red channel

(d) 1x - Green Channel (e) 2x - Green Channel (f) 4% - Green Channel

(g) 1x - Blue channel (h) 2x - Blue channel (i) 4x - Blue channel

Figure 27: Real camera example. Pentax K-N. Taken at f/11.0. - s. 100 180, 10mm.
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(e) local PSF positions

Figure 28: Real camera example. PSE contour lines at v=0.003 and v=0.013 for red.
green (vI) and blue raw data. Canon FOS 10D with a lens Canon EF 50mm /1.8
IT taken at [/5.6 /2.8 and {/20 with 1/5 s. 1/20 5. 3 s. 100 150. 50mm (a). (b)
and (¢) respectively. Pentax IK-M taken at f/11.0. 4 s, 100 150, 40mm (d). Sample
acquired image with marks where the local psrE is estimated (e).
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Figure 29: Out of focus real camera example. Images taken with a Pentax K-\
camera at /5.6, 1 5. 100 1s0. 10mm. Local 4% PSF s estimated by manually setting
the focus distance to be in focus (a) and out of focus ().



6 PSF Validation through single image superresolu-
tion

Having an accurate subpixel PSF estimation is critical to evaluate the prop-
erties of a digital optical system. It is also important to develop superres-
olution algorithms for producing better looking images. A more accurate
estimation should improve results for superresolution algorithims using it
as input. Based on this idea, we indirectly evaluate our psrF estimation by
evaltiating the quality of deconvolved /superresolved images acquired with a
camera confieured equally as for estimating the psr.

Here we do not pretend to develop a state-of-the-art single iinage super-
resolution algorithm but to show it as a feasible application for our psr esti-
mation. Our PSE estimation algorithm computes a PSE at x2 and x4 the dig-
ital lmage resolution. In order to tackle the superresolution/deconvolution
problem we can first interpolate the blurry observed values to get a superre-
solved blurry observation and next apply an image deconvolution algorithin
to get the latent superresolved /deconvolved image. This is done in [34] where
the authors proposed a blind superresolution algorithm.

This approach has an important drawback. If the iimage is aliased we do
not know how to exactly interpolate it to get a superresolved blurry image.
thus we will force the deconvolution algorithm to adjust data which is not
the real observation. On the other hand, if the image is not aliased this
nmethod is optimal as the problem can be correctly decomposed into two
separated steps: superresolution and deconvolution.

In order to avoid this situation. we propose a different approach which
includes an image model based on natural images statistics. Both, superres-
olution and deconvolution problems. are faced simultancously. No explicit
interpolation method is imposed. on the contrary the image model acts as an
implicit interpolator. This is presented in Section 6.2. Section 6.1 introduces
the principal deconvolution techniques used for the superresolution problem
in the case of interpolated blurred images.

6.1 Brief review of main image deconvolution methods

Lucy-Richardson

The Lucy-Richardson iterative algorithm [35, 36] tries to recover the latent
image that has been blurred by a known psi. The basic idea is to calculate
the most likely latent image given the blurry noisy observation and the psr.
This maximum-likelihood formulation results in a fixed-point iteration:

. . b
gl = by | K o* iy % k
i
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where 7 is the latent image. b the blurry observation and A the known psr.

Lucy-Richardson assuimes Poisson multiplicative noise. which is not very
well suited to the common digital photographic images (for example see [37]
where a physical model for the charged-coupled device CCD is proposed).
This often generates unwanted artifacts such as ringing.

Wiener deconvolution
Wiener image deconvolution [38] is a direct application of the Wiener filter
[39] whose goal is to reduce the amount of noise present on a signal.

Its formulation is obtained in the frequency domain using knowledge of
the characteristics of the additive noise and the signal to be recovered:

N (u.v)

B y) = [N (o) 2 + 5, (. v)/Si(u.v)

where [(u.v) and K (u.v) are the Fourier transforms of the latent image
and the PSF respectively, S, (u.v) and S;(u,v) are the power spectral den-
sity functions of the latent input image and noise.

It can be interpreted as an inverse filter acting only on those frequencies
where the signal to noise ratio is significant:
[

i} |\ (. v)
COK(uwv) ||K(ue)]? + l

Supposing no a-priori information of the signal. we can reformulate the
general approach as
- - 9,
1 | (u, 0)]”
N{u.v) || (u,v)

2 2
gy

One typical problem of the Wiener approach is how to choose the optimal
e. which is related to the signal to noise ratio.

6.1.1 MAP

The idea of the maximumn a posteriori (MAP) framework is to find the optimal
image that maximizes the posterior probability:

i = arg max p(ilb) (10)

W(bli)pli) . - .
%. As maxima (minima) are unaf-

fected by monotone transformations. for simplicity we take minus logarithm

From the Bayes theorem p(ilb) =
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of Eq. 10 and solve for

i" = argmin < — log(p(bli) —log(p(i)) (11)
/ data prior

If we assume additive white Gaussian noise of zero-mean and o= power, then

Thus

i* = arg min
i

There is no general image model to choose an appropriate prior image prob-
ability distribution p(i). One of the simplest models considers a zero-mean
Gaussian distribution on the image gradient:

p(i) = Ke e
Then. the problem can be formulated as a minimisation of,
E(i) = ||b—i*k||® + A|Vi?

This formulation penalizes image gradient in a {o-norm sense. This problem
can be easily solved by least mean squares as both terms are {5 norms.

Novel studies in natural image statistics [7. 13. 40. 41] inspired other
models for the prior distribution of the latent image. In particular. the work
of A. Levin et al. [7. 13] is a significant improvement within this method.
They replaced the {5 norm on the image gradient. which tends to enforce
a Gaussian distribution and thus to equally distribute derivatives over the
image. Instead. they assume that images are piecewise smooth and thus the
image gradient distribution is zero-peaked with high kurtosis. To enforce
this property. authors use a gradient sparse prior assumption which tends

to enforce the expected edge content of "natural” images. This assumption
also helps to remove unwanted image artifacts such as ringing. The image

prior is written in a general form as.

[)(I) — g >, plgixh)
where p is the sparse and heavy tailed function p(x) = |2|P with p = 0.8.
In the simplest approach, g; are the horizontal and vertical derivative fil-

ters g; = [1,—1] and go = [1,—1]7. This leads to the minimization of the
following functional.

B(i)=|b—ixk[?+ XD plg;*i) (12)
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Notice that the ¢y>-norm on the regularization term has been replaced with
a {, norm with p = 0.8. There exists no optimization algorithm that guar-
antees. in general conditions. to reach the global minimum of Eq. 12 as £(i)
is non-convex for p < 1. In [13] the authors proposed to use an iterative
1‘(4-\\'(‘igf1r(‘<l least squares algorithin (IRLS) to solve this problem. Its effec-
tiveness has been demonstrated in [13. 7. 34] where the authors managed to
get the algorithm to converge to the apparently right minimum of E(i).

6.2 Proposed approach

Owr formulation is based on the MAP framework used in [13. 34] already
presented. The idea is to incorporate a down-sampling operator to the data
fitting term in order to adjust only to the observed data. as we did in Section
4.5.1 for computing a superresolved psr. The down-sampling operator D
takes a high resolution image Iy and generates I; as Iy (m.n) = Iy (sm.sn)
where s = 2% (k' =0.1...). Then we can rewrite the MAP problem presented
in Eq. 12 as
(Ps) i* = argmin ||b — D(i % k)||* + A Z ply; = 1).
i ;
i
Apart from the horizontal and vertical derivative filters ¢g; = [1.—1] and
g2 = [1. =1]7, second order derivative filters g3 = [1, —=2.1] gy = [1. =2. 1]T
and g5 = [1 — 1:1 — 1] are incorporated. This enforces the resultant image
to have both first and second order sparse derivatives.

The main difference between our approach and the work of W. Zhang and
W. Cham [34]. who proposed a blind single image superresolution method.
is that we do not impose any explicit interpolation method to get the super-
resolved blurry observation. We leave the image model act to get the latent
image. This seems to be more reasonable in the case where the observed
image b is aliased. and thus no explicit interpolation scheme should be exact.

Finally to solve (Ps) an IRLS algorithm is used. This approach reduces
the problem to the solution of a sequence of weighted least squares problenn.
The main idea is to replace the ¢, objective term by a weighted ¢, norm.
where the weights are computed from the previous iteration.

ellp = D leal? = 3 Pl = 3 P} = 123
i i /

where 11" = diag(|a;]’

For more information on this algorithm we refer to [42. 13].
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7 Experimental Results: Super-resolution
7.1 Simulations for objective evaluation

In order to objectively evaluate the super-resolution/deconvolution algo-
rithms. independently of our PSF estimation. we set up the following experi-
ment with simulated data. A high resolution (HR) known image is convolved
with a kernel (simulating the psr). The filtered image is downsampled x2
to get the observed pixels. We then test the ability of each algorithm to
recover the high resolution image from the degraded down-samples and the
high resolution kernel. All algorithm parameters are set to get the best re-
sults.

As a performance measure we used the PSNR between the restored su-
perresolved image and the original HR one. Although. as we have already
indicated. a high PSNR could indicate good performance, it is important to
notice that the zoomed image could still present artifacts. For that reason
we also give a qualitative description of the estimation.

The studied algorithims for deconvolution /superresolution are the follow-
ing:
LR Lucy-Richardson deconvolution with previous cubic-spline zoom.
Wiener Wicner Filter deconvolution with previous cubic-spline zoom.

L2-L2 MAP with Lo norm for data fitting and regularization terms with
previous cubic-spline zoom.

L2-L08 MAP with L, norm and Ly s for data fitting and regularization terms
respectively, with previous cubic-spline zoon.

L2-L2-D MAP with Lo norm for data fitting and regularization term . con-
sidering the downsampling operator in data fitting term (no explicit
interpolation).

L2-L08-D MAP with Lo norm and Ly for data fitting and regularization

term respectively, considering the down-sampling operator in data fit-
ting term (no explicit interpolation).

Isotropic Gaussian Kernel

In the first experiment a small isotropic Gaussian kernel is used as psr. Fig-
ures 30-38 show the x2 restored images. difference images and modulus of
spectrum difference for commonly used images: lena, barbara, boat. peppers.
pattern.
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Table 7.1 summarizes the psNR! values for every experiment.

For this experiment we find in general similar performance indicators for
all the algorithims given a certain image. If the image has high frequency
components (as in barbara or boat images) the restored versions will be of
significant lower quality. For images strongly following a prior model. supe-
rior results are obtained with algorithins including this prior information.
This is the case of peppers and pattern images where as image gradient is
sparse then L2-L08-D algorithm is more consistent.

If the image has no high frequency components the deconvolution algo-
rithms that use cubic spline interpolation have good results. This is a direct
consequence of the precise interpolation (e.g. lena image).

The norm of the difference image spectrum (original high-resolution -
restoration) shows that the algorithm that considers the downsampling op-
erator provides better estimates for the low-frequency components (Figures
37-38). This may indicate that the downsampling operator is acting as a
de-aliasing process that in most cases seems to be more appropriate thau
the interpolation/deconvolution methods.

Figures 39-45 show the results for different values of the Gaussian kernel
variance. For small values of the variance the downsampled image will be
very aliased and reconstruction will be very difficult. On the other hand.
if the kernel is very large. accurate deconvolution will be hard as much
information has been lost during the downsampling process. Finally. the hest
scenario seems to be a medium size kernel. which gives a good compromise
between aliasing and accurate deconvolution.

Image LR Wiener L2-L2 L2-L08 L2-L2-D L2-L08-D

lena 3746  36.75 37.12 3721 3701 37.76
barbara 22.74 23.03 22.86 22.87 22.43 22.58
boat 28.56 28.3 2842 28.38 28.63 28.64
peppers 31.76  31.49 31.65 31.94 31.93 32.61
pattern  22.32  21.52 21..65 99771 21.81 23.0

Table 2: Isotropic Gaussian Kernel: Performance Comparison Summary-.

YAl PSR values were computed in the center region in order to avoid edge elfects.
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Figure 30: Isotropic  Gaussian  IKernel:  peppers image x2  superresolu-
tion/deconvolution results.
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Figure 32: Isotropic Gaussian [{ernel: lena image x2 superresolution/deconvolution
results.
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Figure 33: Isotropic Gaussian IKernel: boat image x2 superresolution/deconvolution
results.

=]
(8]



i LIRS +
T

Ao A ) o

L2-1L08 22.37 dB L2-L2-D 22.43 B L2-L08-D 22.58 dB3

Figure  31:  Isotropic  Gaussian  Kernel:  harbara  image x2  superresolu-
tion/deconvolution results.
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Wiener 31.19 dB

L2-L08 31.94 dB

L2-L2-D 31.93 dB L2-L08-D 32.61 dI3

Figure 35 Isotropic  Gaussian  Kernel:  peppers  image x2  superresolu-
tion/deconvolution difference image.

L2-L08 22.87 dB

Figure [sotropic  Gaussian  Kernel:  barbara  image X2  superresolu-
tion/deconvolution difference image.
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L2-L08 31.94 dB L2-L2-D 31.93 dB L2-L08-D 32.61 dB

Figure 37: Isotropic Gaussian Kernel: peppers image x2 superresolu-
tion/deconvolution norm of the difference image spectrum.

L2-L08 22.87 dB L2-L2-D 22.43 dB L2-L08-D 22.58 dB

Figure 38: Isotropic  Gaussian  Kernel:  barbara image x2  superresolu-
tion/deconvolution norm of the difference image spectrum.
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Wiener 31.34 dB
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L2-108 31.39 dB L2-1L2-D 31.37 dB

Figure -10: Isotropic Gaussian small Kernel: peppers image x2 superresolu-
tion/deconvolution image.
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Figure 41: Isotropic Gaussian small Kernel: peppers image x2 superresolu-
tion/deconvolution difference image spectrum.
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Figure 42: Isotropic Gaussian medium size IKernel: peppers image x2 superresolu-
tion/deconvolution image.

L2-L2 .31.52 dB

L2-L08 31.38 dB L2-L2-D 31.99 dB L2-L08-D 32.8:1 dI3

Figure 13: Isotropic Gaussian medium size Kernel: peppers image x:
tion/deconvolution difference image spectrum.

superresoli-



92 dB

b e
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Figure J41: Isotropic Gaussian large Kernel: peppers image x2 superresolu-
tion/deconvolution image.

L2-L2 29.92 dB

L2-L08 31.16 dB L2-1L2-D 31.12 dB L2-L08-D 32.61 dB

Figure 15: Isotropic Gaussian large Kernel: peppers image x2 superresolu-
tion/deconvolution difference image spectrum.
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Anisotropic Kernel

In this experiment we analyze the importance of having a good estimation
of the kernel shape. For that purpose we generate an anisotropic smooth
kernel (true) and compute the separable Gaussian kernel (o, and o) that
best approximates the true kernel in a least squares sense. Figures 46.48
show the x2 restored images, difference images and norm of difference -
ages spectrum using the true kernel and the Gaussian kernel.

In general, similar performance indicators are found for all algorithins
given a certain image. The importance of having a good estimation of the
PSF shape to get proper results is verified. Besides leading to lower PSNR.
using the Gaussian kernel approximation produces several artifacts along the
direction where the kernel estimation mostly differs. A blur effect. similar
to camera shake, appears in the resultant superresolved images with the
Gaussian approximation.

Super/Sub-Gaussian Kernel

This experiment shows the critical importance of having a good estimation
of the kernel decay. We generated a smooth super/sub Gaussian kernel (true)
and we computed the separable Gaussian kernel (o, and o) that best ap-
proximates the true kernel in the least squares sense. Super/sub Gaussian
kernels were generated by
- —(ay|a|P+as|yl?
gla.y) = Ke (ar|e|P+azlyl”)

If p = 2 then ¢ is a Gaussian kernel, if p < 2 is sub-Gaussian and p > 2
super-Gaussian. For our experiments we used a sub-Gaussian kernel with
p = 1 (Laplacian) and a super-Gaussian kernel with p = 4.

Figures 49-52 show the considered kernels and their best Gaussian ap-
proximations, the x2 restored images, difference images and norm of the
difference images spectrum. All algorithms have similar performance for a
given image and it is extremely necessary to have a good estimation of the
PSE decay to get proper results.

Considering the kernel as Gaussian when is super-Gaussian produces sev-
eral artifacts. For example, the mast of the ship in the figure 49 is widened
significantly. In the case were the true kernel is sub-Gaussian. wrongly con-
sidering it as Gaussian produces severe ringing artifacts during deconvolu-
tion. In this case. the sparse gradient L2-L08-D algorithm scems to be less
sensitive to the misestimation of the psr. This can be shown in Figure 51.
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Figure 46: Anisotropic Kernel: lena image x2 superresolution/deconvolution.



True Kernel

High Resolution Cubic spline 30.35 dB True kernel (up)
Gaunssian (down)

L2-L2-D (gaussian) 33.57 dB L2-L2-D (true) 35.67 dB

L2-L08-D (gaussian) 33.18 dB3 L2-L08-D (truc) 35.02 dI3

Figure 17: Isotropic Kernel: lena image x2 superresolution/deconvolution difference

image.
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True Kernel

High Resolution Cubic spline 30.35 dB True kernel (up)
Gaussian (down)

L2-L2-D (gaussian) 33.57 dB L2-L2-D (true) 35.67 dB

L2-L08-D (gaussian) 33.48 dB L2-L08-D (true) 35.02 dB

Figure -8: Isotropic Kernel: lena image x2 superresolution/deconvolution difference
image spectruin.
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True Kernel

High Resolution Cubic spline 23.65 dB True kernel (up)
Gaussian (down)

L2-L08-D (gaussian) 24.99 dB L2-L08-D (true) 27.27.02 dB

Figure -19: Super-Gaussian Kernel: hoat image x2 superresolution/deconvolution.
Notice the difference between the images in the mast of the ship.
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Figure 50: Super-Gaussian Kernel: hoat image x2 superresolution/deconvolution
difference image spectrum.
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Figure 51: Sub-Gaussian Kernel: peppers image x2 superresolution/deconvolution.
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[High Resolution Cubic spline 25.92 dB True kernel (up)
Gaussian (down)

L2-L08-D (gaussian) 29.1 dB L2-L08-D (true) 32.0 dB

Figure 52: Sub-Gaussian Kernel: lena image x2 superresolution/deconvolution dif-
ference image spectrun.
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7.2 Real camera images

In this Section we present several examples of PSF usage to zoom images.
We used a Canon EOS 400D camera provided with a Tamron SP AF 17-50
mm /2.8 XR Di II lens at aperture: £/4.5, focal length 40.0 mm and shut-
ter speed 1/50 seconds. The camera was calibrated using the studied psr
estimation algorithm to get x4 local psF at different image regions. as it is
shown in Figure 53.

A necessary step to compute the PSE is the estimation of the geometri-
cal transformation /distortion introduced by the camera. This can be used to
compensate for image distortion (except for a homography). In this particu-
lar case. due to the adopted camera configuration, geometrical distortion is
minimal so there is hardly no difference between the original and corrected
inmages.

We have computed the separable Gaussian kernel (o, and o, values)
that best fits our subpixel PSF estimation in a least squares sense. This wayv
we intend to show the dependence of the superresolution algorithm to the
kernel estimation. We remark that as the Gaussian parameters are estimated
from our non-blind PSF estimation this seems to be a best case scenario for
Gaussian fitting.

Figures 54-64 show results of super-resolution with the L2-L2-D and
L2-L08-D and the estimated PSF in different regions of the original image in
Figure 53. We used the camera green raw channel (as we only intended to
validate the proposed approach we discarded half of the green pixels to get
a rectangular grid).

Superresolved images are better looking than cubic spline interpolations
which tend to over smooth edges. In most images L2-L08-D algorithm gives
more natural results than L2-L2-D. However, this strongly depends on how
well the given image fits the assuimned sparse gradient model.

We also remark that if the estimated PSF is not very anisotropic. Gaus-
sian approximation gives basically the same results as ours. This can be
confirmed in Figures 66-69 where a plot of several particular image lines are
show.

In Figure 64 we show what happens when the kernel is not well ap-
proximated by a Gaussian kernel. The difference image in Figure 65 shows
differences between the corresponding superresolved images in the direction
where the estimated and gaussian approximation kernels mostly differ. How-
ever. this difference in the superresolved images seems imperceptible to the
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naked eve.

Finally we set up a scene to specifically show the effects of using a Gaus-
sian kernel in the case it is not a good approximation (Figure 70). Figure
71 shows the obtained results. For the image restored using the Gaussian
kernel. we can see ringing artifacts along the direction where the approx-
imation is less accurate. This can be confirmed in the difference image in
Figure 72 and in the peaks that appear in image profiles in Figure 73.
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Figure 53: x-1 local psk estimation for the Canon/Tamron camara/lens at aperture
[/4.5. focal length 10.0 mm and shutter speed 1/50 seconds.
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Figure 54: Real image: papeldgrafo. Boxes indicate where x4 zoom is computed
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Figure 55: Real image: papelografo CL x4 superresolution/deconvolution.
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Figure 57: Real image: planta baja. Boxes indicate where x-1 zoom is computed.
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Figure 58: Real image: planta bajo BC x- superresolution/deconvolution.
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Figure 59: Real image: planta baja BL x4 superresolution/deconvolution.
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Figure 60: Real image: planta baja MM x1 superresolution/deconvolution.
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Figure 61: Real image: planta baja TR x:1 superresolution/deconvolution.



Figure 62: Real image: laptop. Boxes indicate where x4 zoom is computed.
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Figure 63: Real image: laptop BL x4 superresolution/deconvolution.
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Figure 64: Real image: laptop BR x: superresolution/deconvolution.
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Figure 65: Real image: laptop BR x- superresolution/deconvolution difference im-

age.
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Figure 66: Real image: planta baja MM x1 superresolution/deconvolution profile

image.
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Figure 67: Real image: planta baja BL x1 superresolution/deconvolution profile
image.
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Figure 68: Real image: laptop BL x1 superresolution/deconvolution profile image.
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image.
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Figure 70: Real image: circulos. Boxes indicate where x4 zoom is computed.
t=) f=)
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Figure 71: Real image: circulos BR x superresolution/deconvolution.
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8 Discussion

We have analyzed a spatially varying sub-pixel PSP estimation algorithin
that captures blur due to intrinsic camera phenomena. The studied algo-
rithim is based on a mathematical digital camera model that takes into ac-
count several factors like geometrical distortions due to lens imperfections.
diffraction. sensor averaging and out-of-focus.

As part of the analysis of the non-blind psr approach we studied dit-
ferent methods for aligning the pattern image at sub-pixel precision. This
seems to be a key point to really get sub-pixel accuracy. One of the desired
characteristics of a good pattern grid is its capability to be easily aligned.
Although the chosen pattern presents checkerboard-like corners to facilitate
this task. due to aliasing during the acquisition process its detection is not
very precise. In this work, we got a precision of about 1/10 pixel in localiz-
ing the checkerboard corners at similar digital single-lens reflex camera blur
and noise conditions. However, if we are able to reduce the alias. then our
checkerboard detector algorithm will get a much higher accuracy. With this
alm. we propose to modify the original grid pattern proposed by Joshi ct
al. and to filter it. only at the checkerboard corners, with a small anti-alias
Gaussian kernel. By this, the checkerboard like corners will be easily de-
tectable. Then, we can avoid using the checkerboard region to compute the
local pPSF by taking advantage of the introduced mask operator. We have
a comproiuise between reducing the number of observations (reducing the
mask) and increasing the performance of the alignment stage. We have not
tested this yet. but this will be investigated in the future as well as studying
other possible grid patterns.

We studied two different ways of modelling the geometrical distortion
between the printed grid pattern and the acquired digital image. The non-
paraetric thin-plate spline seems to outperform the classical polvnomial
radial distortion approximation considered by most researchers. By this.
and the proposed camera model, we can separate the effects of the blur
from the distortion. The real camera examples presented in this work. show
that the model of a geometrical distortion plus a translation-invariant psr
is consistent in not extreme camera configurations. In particular we show
that if the aperture is very wide (siall f-number, in our case £/2.8) then a
space-variant PsE (local) should be needed to correctly model the camera as
the estimation significantly varies from the image center to image borders. It
is interesting to study more deeply how the lens focal distance and aperture
affect the psr. in particular for low-price point-and-shoot cameras.

We validated the proposed approach by simulations in which we paid
special attention to image alias. tryving to simulate real camera acquisitions.
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We would like to find a suitable way of choosing the regularization term. For
this purpose, we would investigate other ways of stating the mathematical
problem of PsE estimation. Instead of directly finding the PSF pixel values,
we would like to decompose the psE in a different base/dictionary and find
the best representation over it. By doing this, we can impose other kind of
regularizations depending on the base/dictionary chosen.

Precise PSF estimation is of great interest for the evaluation of the cam-
(\1‘;1/1(‘115 svstem. We showed the PSE estimation for different digital single-
lens reflex cameras at different apertures, focal distances and shutter time
values. By the inspection of the estimated local PSF it is possible to give
qualitative/quantitative quality measures of the blur and distortion intro-
duced by the camera.

We also used the super-resolution problem to indirectly evaluate our
Psi estimation. Within a Bayesian framework. we proposed a single image
deconovolution /super-resolution algorithm that uses the subpixel PSF esti-
mation to find the a posteriori most probable super-resolved image. Our
work was based in novel results on natural image statistics which justify a
sparse model on the image gradient. Good results are obtained when using
our subpixel PSF estimation. In most cases, using a separable Gaussian ker-
nel approximation also gives good results. It is important to notice that the
Gaussian kernel parameters (variances in both axes) were fitted using our
non-blind subpixel PSE estimation. This seems to be a best case scenario
for using a Gaussian kernel parametrization. In regions where the estimated
psi cannot be well approximated by a Gaussian kernel, the superrvesolved
images present some differences and the Gaussian kernel can produce ring-
ing artifacts.

The single image blind super-resolution algorithm proposed in [34] is
hased in [43] where a justification to choose a Gaussian kernel as a PSE ap-
proximation is given. The empirical justification consists in taking a picture
of a step edge lmage in a particular direction and adjust the ideal response
to a Gaussian kernel. Their experiments show that for a particular direction
the Gaussian approximation fits well. However, this does not mean that the
Caussian kernel is isotropic as used in [34] or even a multivariate kernel. The
main advantage of having an accurate low dimensional parametrization of
the psk is that it facilitates the PSF estimation. This is imperative for doing
blind psr estimation and blind image super-resolution.

For that purpose. we would like to find better ways of parameterizing the
psr for the in-focus case studied in this work. One possible way is to take a
local three-parameter Gaussian parametrization (i.e. vertical variance, hor-
izontal variance and correlation factor). The camera-objective pair can be
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calibrated at different apertures, focal distances and shutter time discrete
values. Then the estimated Gaussian parameters can be interpolated to get

h possible configuration. One problem of taking the Gaussian
kernel as approximation is that it does not control the decay speed of the pst.

a value for eac

Super-resolution real camera experimental results show great dependence
on the selected a priori image model. For this reason we propose as fu-
ture work to research on other kind of super-resolution techniques using
more than one image per scene in order to reduce dependence on the image
model. Tt is also of interest to study single image approaches that use nou-
local multi-scale self examples and need an estimation of the real psr [44].

A precise knowledge of the subpixel PSF may not be the key element in
the natural images superresolution applications. However, if the goal is to
get high precision for later use in other applications, e.g. stereo subpixel.
the situation might be different. As future work we pretend to evaluate our
PSF estimation in such kind of high precision demanding applications.

Lastly. it would be really useful if we could find the highest resolution
at which we can give an accurate PSEF estimation with a given grid pattern
observation. This appears to be associated to the problem of Psk validation.
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