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Abstract
Changes in the parameters of an n-dimensional system of equa-

tions induce changes in its solutions. For a class of such systems, we
determine the qualitative change in solutions given certain qualitative
changes in parameters. Our methods and results are elementary yet
useful. They highlight the existence of a common thread, our “own
effect” assumption, in formally diverse areas of economics. We dis-
cuss several applications; among them, we establish the existence of
efficient equilibria in English auctions with interdependent valuations,
and a version of the Stolper-Samuelson Theorem for an n × n trade
model.

Resumen. Los cambios en parámetros de un sistema de n ecuaciones
inducen cambios en sus soluciones. Para una clase de sistemas, deter-
minamos cómo ciertos cambios cualitativos en los parámetros inducen
ciertos cambios cualitativos en sus soluciones. Nuestros métodos y re-
sultados son elementales pero útiles. Muestran la existencia de un hilo
conductor, nuestra condición de “efecto propio”, en áreas formalmente
muy diversas de economı́a. Discutimos varias aplicaciones, entre ellas
establecemos la existencia de un equilibrio eficiente en subastas ingle-
sas con valuaciones interdependientes y una versión del Teorema de
Stolper y Samuelson para un modelo n×n de comercio internacional.
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1 Introduction

Consider a model with n exogenous variables, p = (p1, . . . pn), and n endoge-
nous variables x = (x1, . . . xn) that are determined from the equation

p = v(x). (1)

The function v is a primitive of the model. Say that x(p) is determined
from equation 1. We want to know how x(p) varies with p. This structure
is ubiquitous in economics.

We assume that the function v satisfies a simple condition relating changes
in the coordinates of x to changes in the coordinates of v(x). Roughly, we
assume that changes in xi are more important for changes in vi than changes
in xh, for h 6= i. We call the effect of xi on vi an “own effect;” we call
our property the “own-effect property.” The own-effect property can be in-
terpreted as a single-crossing condition in the context of auctions, and as a
factor-intensity condition in the context of trade models.

We prove various facts about x(p), among them that, provided v is mono-
tone increasing and satisfies the own-effect property, certain changes in p
make certain components of x(p) increase and others decrease. These facts
imply some important results in very different areas of economics.

Our results and their proofs are elementary. They are also powerful.
We use them to simplify and generalize two important theorems in very
different areas of economics: Maskin’s theorem on the existence of an ef-
ficient equilibrium in English auctions with interdependent valuations, and
the Stolper-Samuelson Theorem of trade theory.

In the remainder of the Introduction, we review briefly the usual methods
used to determine how x varies with p, and we discuss applications.

Consider then the question of how x varies with p. If a local answer
suffices, the Implicit Function Theorem—which involves assuming that v is
C1, that the solutions to the equation p = v(x) are interior, and that v’s
Jacobian matrix is non-singular at a solution—provides an answer, and also
establishes that the solution to v(x) = p is locally unique.

If a global answer is desired, the Gale-Nikaido Theorem (Gale and Nikaido
(1965)) is the proper tool. It states that, if v is continuously differentiable,
and the Jacobian of v is everywhere a P -matrix—all the principal minors of
v are positive—then v is globally invertible. The solution to v(x) = p is in
this case unique.
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Our approach does not require differentiability, and does not yield the
uniqueness or even the existence of a solution, issues that must be addressed
separately in applications. But besides making a technical point—we can
generalize certain results—our approach is useful because it shows that the
simple, and economically intuitive, notion of an “own effect” is behind results
that are formally very diverse.

We now discuss applications: we use our results to obtain new results in
auction theory and trade theory. We also derive a simple application to the
comparative statics of factor demands.

We study single-object English auctions with potentially asymmetric bidders—
i.e., bidders need not be ex ante identical—and with interdependent valua-
tions. Each bidder observes a random signal and each bidder’s valuation
depends on the realization of the entire signal-profile. Our own-effect prop-
erty restricts the possible changes in valuations for certain changes in sig-
nals. It generalizes to n bidders the Single Crossing Property first assumed
by Maskin (1992) in a model of 2 bidders. We establish the existence of an
efficient ex post equilibrium with n bidders.

The Stolper-Samuelson Theorem of trade theory says that, if there are
two consumption-goods and two production-factors, and the production of
good 1 is relatively more intense in the use of factor 1, then an exogenous
increase in the price of good 1 will bring about an increase in the price of
factor 1 and a decrease in the price of factor 2.

In the context of a trade model, our own-effect property generalizes the
notion of “relatively more intense” from the Stolper-Samuelson Theorem.
Our results imply that the conclusion of the Stolper-Samuelson Theorem is
true with more than two goods and factors, and under quite general condi-
tions on production functions.

In Section 2 we present our main results. In Section 3 we present our
results on English auctions, and in Section 4 we give a version of the Stolper-
Samuelson Theorem. In Section 5 we present an application to the compar-
ative statics of factor demands.
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2 Some Global Comparative Statics

2.1 Notation

Let n ≥ 2 be a natural number and v : IRn → IRn a function, v =
(v1, v2, . . . , vn). Elements of the domain of v are typically denoted by x =
(x1, x2, . . . , xn), elements of the image of v are typically denoted by p =
(p1, p2, . . . , pn).

For any x, x′ in IRn, we say that x ≤ x′ if xi ≤ x′i for all i, that x < x′

if x ≤ x′ and x 6= x′, and that x � x′ if xi < x′i for all i. A function v is
said to be monotone nondecreasing if x ≤ x′ implies v(x) ≤ v(x′), and it is
monotone increasing if x < x′ implies v(x) � v(x′).

2.2 The own-effect property

If no assumptions are made about the function v, very little can be said
about how the solution to v(x) = p varies with p. We place a restriction
on the relative effect that a change from x to x′ has on the coordinates of
v: coordinates h for which x′h < xh must experience changes in vh that are
dominated by the change in vi for some coordinate i for which x′i ≥ xi. We
make this intuitive description precise with a definition.

Definition 1. The function v satisfies the own-effect property (OEP) if, for
any x and x′ with x′ � x and v(x′) � v(x), there is i such that

vi(x
′)− vi(x) > vh(x

′)− vh(x)

for all h with x′h ≤ xh.

Remark 1. Note that x′i > xi for the i identified by the definition.

For example, consider the case of n = 2, represented in Figure 1. Suppose
v satisfies the OEP, and pick x and x′ such that x′1−x1 > 0 and x′2−x2 < 0,
so x′−x is in orthant 4 in Figure 1. The OEP only has bite if v(x′) � v(x);
so assume that v(x′)− v(x) is not in orthant 3.

The OEP says that the increase in x1 has a larger effect on v1 than on v2,
and that the decrease in x2 has a larger effect on v2 than on v1. For example
the OEP is satisfied if v1(x

′) > v1(x) and v2(x
′) < v2(x), so v(x′) − v(x)

is also in orthant 4. More generally, the OEP requires that v(x′)− v(x) lie
below the x2 = x1 line. In Figure 1, v(x′)−v(x) must lie in the area marked
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Figure 1: The OEP

with dotted lines. Similarly, if x′1 − x1 < 0 and x′2 − x2 > 0, then the OEP
requires that v(x′)− v(x) lie in orthants 1 or 2, above the x2 = x1 line.

Theorem 2, and its corollaries, relate the location of v(x′)− v(x) to the
location of x′ − x. If v(x′)− v(x) lies in orthant 2, and v satisfies the OEP,
then x′ − x cannot lie in orthant 4. Then, either x′ ≤ x or x′2 > x2—so
v2(x

′) > v2(x) implies that x′2 > x2.
If, in addition, we assume that v is monotone increasing we can rule out

that x′ − x lies in orthants 1 or 3 as well. Then it must be that x′ − x lies
in orthant 2, so we get x′1 < x1 in addition to x′2 > x2.

In sum, if p′1 = v1(x
′) > p1 = v1(x) and p′2 = v2(x

′) < p2 = v2(x) then
it must be that x′1 > x1 and x′2 < x2. Thus the OEP determines—at least
qualitatively—how x depends on p.

A similar exercise can be carried out with any n > 2. In IRn, the OEP
implies that v(x′)−v(x) must be in a convex cone that is completely deter-
mined by the orthant containing x′ − x.

2.3 Results

In order to state the theorem, we identify first the coordinates in which v(x′)
dominates v(x). Given v, x and x′, denote by J ⊆ {1, . . . n} the set of
indexes i such that vi(x

′)− vi(x) > 0.
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Theorem 2. Let v satisfy the OEP. If x′ � x, J 6= ∅, and vi(x
′)− vi(x) =

vj(x
′) − vj(x) for all i, j ∈ J , then x′j > xj for all j ∈ J . Further, if v is

monotone increasing, then x′h < xh for some h /∈ J .

Proof. Let j ∈ J . By the OEP there is i such that vi(x
′)− vi(x) > vh(x

′)−
vh(x) for all h with x′h ≤ xh. If i ∈ J then vi(x

′)− vi(x) = vj(x
′)− vj(x); so

x′j > xj. If i /∈ J then vi(x
′)− vi(x) < vj(x

′)− vj(x); so x′j > xj.
Further, if v is increasing, x < x′ implies vh(x

′) < vh(x) for all h. So we
must have x′h < xh for some x /∈ J .

Remark 3. If v is monotone nondecreasing, J 6= ∅ implies x′ � x, which is
useful for interpreting Theorem 2.

Corollaries 4 and 5 are simple consequences of Theorem 2, but they are
useful in the applications we develop below.

Corollary 4. Let v be monotone increasing and satisfy the OEP. Let pi =
vi(x) and p′i = vi(x

′) for all i. If, for some j, p′j > pj and p′h ≤ ph for all
h 6= j, then x′j > xj and x′h < xh for at least one h 6= j.

Proof. First, x′ � x, as v is monotone increasing. Second, J = {j} so
Theorem 2 implies that x′j > xj and that there is h such that x′h < xh

Corollary 5. Let v be monotone increasing and satisfy the OEP. Let x and
x′ be such that p = vi(x) and p′ = vi(x

′) for all i. If p < p′ then xi < x′i for
all i.

Proof. First, x′ � x, as v is monotone nondecreasing. Second, p < p′ implies
that J = {1, . . . n}. By Theorem 2, x′i > xi for all i.

3 English Auction With Interdependent Val-

uations

In symmetric environments, English auctions of a single object have several
desirable properties. When bidders’ valuations are private information—i.e.,
each bidder’s valuation for the object is not affected by the information that
other bidders possess—English auctions, at least in the clock format, imple-
ment sincere bidding in dominant strategies, generate efficient outcomes, and
with adequate reserve prices, maximize the seller’s expected revenue. When
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bidders’ valuations have a common-value component—i.e, a bidder’s valua-
tion for the object is affected by the private information of other bidders—
English auctions have efficient outcomes, and generate higher expected rev-
enue than the sealed-bid second-price or first-price auctions.1

Given the desirable characteristics of the English auction, it seems reason-
able to inquire when these mechanisms have efficient equilibria in asymmet-
ric environments with interdependent valuations. In this we follow Maskin
(1992) and Krishna (2001).

In the model each bidder observes a signal. For each bidder there is
a distinct function that determines the bidder’s valuation given the signal
profile. Maskin (1992) shows in a two-bidder model that a single crossing
property (SCP)—i.e., that bidder i’s own signal has a larger influence on
bidder i’s value than on any other bidder—suffices to prove both that the
English auction has a Nash equilibrium and that this equilibrium is efficient.
Indeed existence and efficiency are joint products of Maskin’s argument.

Our OEP is a generalization of the Maskin’s SCP to n bidders, and allows
to establish the existence of an ex post equilibrium of the English auction.

The generalization is not trivial; Krishna (2001) includes a three-bidder
example satisfying Maskin’s SCP (applied pairwise), but where the English
auction does not have an efficient equilibrium. (Krishna attributes the idea
of the example to Phil Reny.)

Our OEP is not the only generalization of Maskin’s SCP. Krishna (2001)
offers two other alternatives, his average crossing condition and his cyclical
crossing condition. Both conditions are local and once again, existence and
efficiency are obtained as by-products of the same argument.

Our OEP (as well as Krishna’s conditions) are satisfied in various useful
and widely applied models; such as Wilson’s (1998) log-normal model. The
OEP is a global property and not immediately comparable with Krishna’s
local conditions. Differentiability of the value functions is not necessary in
our setting. The OEP is relatively simple to verify in applications.

We believe—but we are happy to stand corrected—that Krishna’s condi-
tions, although local, would be difficult to verify unless they hold globally.

1This is due to the linkage effect (Milgrom and Weber (1982)). See, for instance,
McAfee and McMillan (1987) and their references for precise statements of results and
assumptions.
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3.1 Model and Theorem

There are n bidders, indexed by i = 1, . . . n. Each bidder i receives a signal
xi about the value of the object being auctioned. The vector of signals
x = (x1, . . . xn) is drawn at random from the set [0, ω]n ⊆ IRn. If a vector
x of signals is realized, i’s valuation for the object is vi(x). We assume that
vi(0) = 0, and that vi is monotone non-decreasing. Denote by v = (vi)

n
i=1

the collection of such functions.
We will prove that provided v satisfies the OEP, the English auction has

an efficient ex-post equilibrium.
The following example identifies one class of valuation functions v that

satisfy the OEP.
Example Let ui : [0, ω] → IR be a monotone increasing function, for all i.
Let w : [0, ω]n → IR be arbitrary. If vi(x) = ui(xi) + w(x), then v satisfies
the OEP.

To see this, let x′i > xi and and x′h ≤ xh. Then,

vi(x
′)− vi(x) = ui(x

′
i)− ui(xi) + w(x′)− w(x)

> uh(x
′
h)− uh(xh) + w(x′)− w(x)

= vh(x
′)− vh(x),

as ui(x
′
i)− ui(xi) > 0 and uh(x

′
h)− ui(xh) ≤ 0.

We now show that with only two bidders Maskin’s single crossing property
implies the OEP.

Definition 2. A v that is C1 satisfies the global Maskin-SCP if, for all i and
h with i 6= h,

∂vi

∂xi

(x) >
∂vh

∂xi

(x).

Proposition 6. Let n = 2. If v is C1 and satisfies the global Maskin-SCP,
then it satisfies the OEP.

Proof. Without loss of generality, let x1 > x2 and x′2 ≤ x2. Then, [v1(x
′) −

v1(x)] −[v2(x
′)− v2(x)] =∫ x′1

x1

[
∂v1

∂x1

(s, x2)−
∂v2

∂x1

(s, x2)]ds +

∫ x′2

x2

[
∂v2

∂x2

(x′1, s)−
∂v1

∂x2

(x′1, s)]ds > 0.
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Maskin’s proof of the existence of an ex post equilibrium with two bidders
could be informally described as follows. Consider the system of equations

v1(x1, x2) = p

(2)

v2(x1, x2) = p.

For a given price p, the indifference curves of both functions intersect on
a unique signal vector (x1, x2), the single crossing property. That signal
vector is a solution to the system of equations. As the price p increases,
the solution (x1, x2) also increases in both coordinates. The implicit maps
xi 7→ p constitute an efficient ex post equilibrium of the English auction.
(See Krishna (2001) for a full discussion.)

Krishna (2001) generalizes Maskin’s argument showing that under his
conditions, the average crossing or the cyclical crossing condition, the corre-
sponding system of equations (2) with n bidders, has a monotone increasing
solution, and that this implies that the English auction has an ex post equi-
librium. To establish existence of a monotone increasing solution, Krishna
differentiates the system (2) to obtain an equivalent system of differential
equations. The Cauchy-Peano Theorem yields existence of a solution for
each price p; Krishna’s conditions imply that the solution is strictly mono-
tone.

In order to establish our main result of the section, that if v satisfies the
OEP then the English auction has an efficient ex-post equilibrium, we will
also solve the system of equations v(x) = p1.

The set v−1(p1) = {x|v(x) = p1} represents the intersection of the
indifference curves with value p, one for each agent. The intersection need
not be a singleton and it may even be empty. Corollary 5 states that, if
the intersection is non-empty, any selection from {v−1(p1) is monotone; this
fact will later be used to show that indeed such a selection is an equilibrium.
That such a selection is non-empty, however, needs to be demonstrated.
Lemma 8 states that under an additional boundary condition on v a solution
to v(x) = p1 exists. The proof of Lemma 8 uses Brower’s Fixed Point
Theorem. Finally Lemma 10 shows that when using the strategies obtained
from Lemmas 5 and 8, the outcome is efficient.

Definition 3. v is boundary constant if, for any i, and any x−i ∈ [0, ω]n−1,
vi(ω,x−i) = vi(ω1), and vi(0,x−i) = vi(0).
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Before proceeding to state and prove Lemma 8, we argue with the follow-
ing Proposition that the boundary condition is easily satisfied.

Proposition 7. For any δ > 0, there is a continuous, monotone non-
decreasing, and boundary constant ṽ : [0, ω]n → IRn such that ṽ(0) = 0,
ṽ(ω1) = v(ω1), and ṽ coincides with v on [δ, ω − δ]n.

Proof. Let ṽi(x) equal vi(x) if xi ∈ (δ, ω − δ); let ṽi(x) equal vi(δ,x−i)(xi/δ)
if xi ≤ δ; let

ṽi(x) = [vi(ω1)− vi(ω − δ,x−i)] (xi − ω + δ) /δ + vi(ω − δ,x−i)

if xi ≥ ω − δ. Note that ṽi is continuous and monotone increasing.

We are now ready to state our existence lemma.

Lemma 8. If v is boundary constant, and p ∈ (0, min{vi(ω1) : i = 1, . . . n}),
then there is x ∈ [0, ω]n such that p1 = v(x).

Proof. Let g : IR → (−1, 1) be a continuous, strictly monotonically decreas-
ing function such that g(0) = 0 (e.g. g = 1/2 − Φ, where Φ is the Gaussian
distribution function).

Let v̂i(x) = vi(x)− p. Let h : [0, ω]n → [0, ω]n be

hi(x) =


xi + g (v̂i(x)) xi if v̂i(x) > 0
0 if v̂i(x) = 0
xi + g (v̂i(x)) (ω − xi) if v̂i(x) < 0

We shall verify that h satisfies the hypothesis of Brower’s Fixed-Point
Theorem. We begin by showing that hi(x) ∈ [0, ω]. If x is such that v̂i(x) >
0, then −1 < g (v̂i(x)) < 0. So 0 < hi(x) < xi ≤ ω. If x is such that
v̂i(x) ≤ 0, then 1 ≥ (v̂i(x)) ≥ 0. So 0 ≤ hi(x) ≤ xi + (ω − xi) = ω.

It is easy, but tedious, to verify that h is continuous. Note that the only
problematic point is x′ such that g (v̂i(x

′)) = 0; but limx→x′ hi(x) = x′i, and
hi(x

′) = x′i.
By Brower’s Fixed-Point Theorem, there is x∗ ∈ [0, ω]n such that x∗ =

h(x∗). First we shall prove that x∗ ∈ (0, ω)n. Suppose, by way of con-
tradiction, that x∗i ∈ {0, ω} for some i. If x∗i = ω, then vi(ω1) = vi(x

∗)
because v is boundary constant. Then vi(x

∗) > p, so v̂i(x
∗) > 0 and

hi(x
∗) = [1 − |g (v̂i(x)) |]ω and thus hi(x

∗) < ω. This is impossible since
hi(x

∗) = ω. If x∗i = 0, then 0 = vi(0) = vi(x
∗) because v is boundary
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constant. Then vi(x
∗) < p, so v̂i(x

∗) < 0 and hi(x
∗) = g (v̂i(x)). This is

impossible since 0 = x∗i = hi(x
∗).

Second, we prove that v(x∗) = p1. Fix an i. The equation hi(x
∗) = x∗i

implies that either g (v̂i(x∗)) xi = 0 = g (v̂i(x)) (ω − xi) or that v̂i(x
∗) = 0.

Since x∗i ∈ (0, ω) and g ∈ (−1, 1), we conclude that v̂i(x
∗) = 0, and thus

vi(x
∗) = p.

Because of Lemma 8, the functions σi below are well defined; they map
each price p to a signal profile in the intersection of the indifference curves,
i.e. a solution to the system of equations corresponding to (2). The inverse
of these functions are the basis of the equilibrium bidding strategies.

Definition 4. For each p ∈ (0, min{vi(ω1) : i = 1, . . . n}), let σ(p) =
(σi(p))n

i=1 such that p = vi(σ(p)) for all i. Extend σ to [0, min{vi(ω1) :
i = 1, . . . n}] by σi(0) = limp→0 σi(p), and similarly for σi(ω).

Remark 9. The function σ is continuous.

Lemma 10 states that provided bidders use the strategies implicit in
Lemma 8 and Definition 4, the outcome is efficient.

Lemma 10. Let v satisfy the OEP. If p is such that pj > pn for all j 6= n,
and x = σ(p), then there is i such that vi(x) > vn(x).

Proof. Let j 6= n. Since σj is strictly increasing, xj = σj(pj) > σj(pn). Then
xj > σj(pn))∀j 6= n and xn > σn(pn)). By the OEP, there is i such that

vi(x)− vi(σ(pn)) > vn(x)− vn(σ(pn)).

But vi(σ(pn)) = pn and vn(σ(pn)) = pn, so vi(x) > vn(x).

We now state the main result of the section.

Theorem 11. If v satisfies the OEP and is boundary constant, then there
is an efficient (ex-post) Nash equilibrium of the English auction.

Proof. Corollary 5, Lemma 8, and Lemma 1 in Krishna (2001) imply that
there is an ex-post Nash equilibrium of the auction. The strategy of bid-
der i in the sub-auction where there are A bidders active is βi = σ−1

i . By
Lemma 10, the equilibrium is efficient.
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Remark 12. Like Krishna’s, our results are compatible with situations where
bidders do not drop out “in order.” Krishna’s Example 2, where a high-value
bidder drops out before a low-value bidders is an example where v satisfies
the OEP. Of course, the highest-value bidders are the last ones to drop out
in equilibrium, as the OEP guarantees that the equilibrium is efficient.

4 A Weak Stolper-Samuelson Theorem

4.1 The Trade Model and the OEP

Consider an n×n trade-model: There are n production factors, n consump-
tion goods, and constant returns to scale. Consumers supply their factor
endowments inelastically—they do not consume production factors.

Let x = (x1, . . . xn) denote a vector of factor prices; xi is the price of
factor i. Let vi(x) be the unit (average) cost of good i. Constant returns to
scale implies that the cost of producing yi units of good i is vi(x)yi. Let pi

denote the price of good i. There are zero profits in the production of good
i if pi = vi(x).

In the context of the trade model, we interpret the OEP as a relative-
factor-intensity assumption: the OEP says that the production of good i is
relatively more intense in the use of factor i. Consider first the case of 2
factors. The OEP says that, if the price of factor 1 increases and the price
of factor 2 decreases, then the cost of good 1 must increase more than the
cost of good 2 (or the cost of good 2 must decrease more than the cost of
good 1). The OEP is an economic version of the technological assumption
that the production of good 1 is relatively more intense in factor 1.

With more than 2 factors, all the OEP says is that one of the goods whose
factor-price has increased must have a cost-increase that is larger than the
cost-increase of any of the goods whose factor-price decreased.

4.2 The Result

An equilibrium in this model—where technology has constant returns to
scale—is characterized by the zero-profit conditions. Say that a price-wage
pair (x,p) is an equilibrium if pi = vi(x) for all i. Assume that v is monotone
increasing and satisfies the OEP.
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Theorem 13. Let (x,p) and (x′,p′) be equilibria. If pi < p′i for some good
i, and ph ≥ p′h for all h 6= i, then xi < x′i, and x′h < xh for at least one h 6= i.

Proof. The statement of Theorem 13 is the statement of Corollary 4, adapted
to the context of the n× n trade model.

Theorem 13 is a weak, but global, version of the Stolper-Samuelson The-
orem (Stolper and Samuelson, 1941). To see this, suppose first that there are
two goods and two factors. In this case, Theorem 13 states that if a country
opens up to trade and experiences, as a consequence, an increase in p1, and
that p2 either decreases or stays the same, then the price of factor 1 will
increase and the price of factor 2 will decrease. Thus the owners of factor 1
will gain, and the owners of factor 2 will lose, from opening up to trade.

Suppose now that there are more than two goods and factors. In this
case Theorem 13 states that, if p1 increases, and ph either decreases or stays
the same, for all other goods h, then the owners of factor 1 will gain, and the
owners of at least one of the other factors will lose. We say that Theorem 13
is a weak version of the Stolper-Samuelson Theorem because it does not say
that x′h < xh for all h 6= i.2

4.3 Comparison with Stolper and Samuelson’s version.

Theorem 13 delivers the message of the Stolper-Samuelson Theorem in con-
siderable generality. We shall enumerate the differences between Theorem 13
and Stolper and Samuelson’s statement:

1. Stolper and Samuelson’s relative factor-intensity condition is stronger
than the OEP. We elaborate on this below.

2. Stolper and Samuelson’s conclusion is local; the conclusion of Theo-
rem 13 is global.

3. Stolper and Samuelson require the cost function v to be differentiable,
and that the Implicit Function Theorem be applicable.

4. Stolper and Samuelson’s statement of the theorem is only true when
n = 2 (see, for example, Chipman (1969)).

2We follow Chipman (1969) in using the “weak” modifier for this statement.
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Let n = 2.
Stolper and Samuelson’s statement requires that v satisfies the following

condition:

Definition 5. v satisfies the relative factor-intensity condition if v is C1 in
the interior of IR2

+, and

∂v1(x)/∂x1

∂v1(x)/∂x2

>
∂v2(x)/∂x1

∂v2(x)/∂x2

,

for all x in the interior of IR2
+.

But the OEP is weaker than the relative factor-intensity condition. Let
v : A → IR2, where A is compact.

Proposition 14. If v satisfies the relative factor-intensity condition, then it
satisfies the OEP in the interior of IR2

+..

Proof. Let ∆(x) be the determinant of the Jacobian matrix of v at x. The
relative factor-intensity condition implies that ∆ > 0. The implicit function
theorem implies that there is a C1 map x(p) such that p = v(x(p)) for all
p in the range of v (by compactness of A).

x′1 − x1 =
{∫ p′1

p1

∂v1

∂x2
(x(s, p2))∆(x(s, p2))

−1ds

−
∫ p′2

p2

∂v1

∂x1
(x(p′1, s))∆(x(p′1, s))

−1ds
}

x′2 − x2 =
{∫ p′2

p2

∂v2

∂x1
(x(p1, s))∆

−1(x(p1, s))ds

−
∫ p′1

p1

∂v2

∂x2
(x(s, p′2))∆

−1(x(s, p′2))ds
}

Let x′1 > x1, x′2 ≤ x2. Then p′1 ≤ p1 and p′2 ≥ p2 is impossible, as ∂vi/∂xj > 0
for all i and j.

4.4 Comparison with other versions.

There is a large literature on generalizations of the Stolper-Samuelson Theo-
rem. We shall not discuss the literature here; see Ethier (1984) for a survey.

The closest result to Theorem 13 is an application of the weak axiom
of cost minimization (Ethier (1984)); but this application barely retains the
economic content of the Stolper-Samuelson Theorem because, in trade theory,
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predicting who will win (and thus favor) an opening to trade, is crucial.
Contrary to Theorem 13, the application of the weak axiom does not say
which factor-prices change as a result of specific changes in goods prices.3 The
application of the weak axiom only gives the standard “average correlation”
result between goods and factor prices: on-average-higher goods prices yields
on-average-lower factor prices. On the other hand, the application of the
weak axiom does not require assumptions on v.

When n = 2, Samuelson (1953) also proved the Factor-Price Equalization
Theorem: he proved that, if v satisfies the relative factor-intensity condition,
v(x) has a global inverse, so factor prices are uniquely determined by p. In
the context of trade, this implies that all countries that share the same tech-
nology must have the same factor prices. This is, arguably, an empirically less
relevant proposition than the Stolper-Samuelson Theorem, or the statement
of Theorem 13.

When n > 2, the relative factor-intensity condition is not sufficient for
the existence of a global inverse. Gale and Nikaido (1965) proved that, if v is
C1, and the Jacobian of v is everywhere a P -matrix—all the principal minors
of v are positive—then v is globally invertible. But even if the Jacobian
is everywhere a P -matrix, the Stolper-Samuelson Theorem need not hold
(Chipman, 1969). Theorem 13 shows that our generalization of the factor-
intensity condition suffices to give the Stolper-Samuelson result with n > 2.
We do not address the problem of the existence of a global inverse.

5 Monotonicity of factor demands

Consider a price-taking firm that chooses a vector of production factors,
z = (z1, . . . , zn), to maximize profits, qf(z1, . . . zn)−

∑n
i=1 pizi, where q is the

price of the firm’s output, f is the firm’s production function, and pi is the
price of factor i. Suppose f is monotone increasing and C1.

For a vector of prices p, let z(p) be a vector of factor demands.
Suppose the prices of, say, two factors, increase by the same amount.

In general, the firm might find it profitable to employ more of one of these
factors because they are substitutes, and/or because one of them has become
relatively cheaper.

3The comparison with Jones and Scheinkman’s (1977) “every factor has some natural
enemy” result is similar.
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Suppose, however, that v satisfies the OEP. Theorem 2 implies then that
the firm will use less of both factors.

Proposition 15. Let p and p′ be price vectors such that z(p) and z(p′) are
both interior. If p′j − pj = p′h − ph > 0, for j, h ≤ k, and p′j = pj for j ≥ k,
then zj(p

′) ≤ zj(p), for all j ≤ k.

Proof. Define v by

vi(−z) = q
∂f(z)

∂zi

.

Then profit maximization implies, in an interior solution, that

p = v(−z).

z(p) and z(p′) are both interior, so p = v(−z(p)) and p′ = v(−z(p′)).
So v(−z(p′)) � v(−z(p)). By revealed preference, p < p′ implies that
z(p) � z(p′), so −z(p′) � −z(p)

The result now follows from Theorem 2.

The textbook revealed-preference approach to factor demands implies
that, when prices increase, the demand for some factors must decrease.
Proposition 15 says more; it says which factor-demands will decrease. Of
course, Proposition 15 requires stronger assumptions than the revealed-preference
approach.

Proposition 15 requires that solutions be interior, and that the vector
of marginal productivities ∂f(z)/∂z satisfy the OEP. For instance, if f is
Cobb-Douglas, the resulting v will satisfy the OEP. One can ensure that
solutions are interior by imposing conditions about the behavior of f close
to the boundaries of IRn

+.
One can also use monotone comparative statics methods (Milgrom and

Shannon, 1994) to prove that factor demands are monotone. But monotone
comparative statics requires that the inputs be complementary—concretely,
that f be supermodular.

We present an example of a production function f that is not supermod-
ular, and that satisfies the hypothesis of Proposition 15. The example shows
that Proposition 15 indeed provides new results on the monotonicity of factor
demands.
Example Let h : IR+ → IR be C1 and monotone increasing, and let α > 0.
Let

v(x1, x2) =

(
h(x1)− αx2

h(x2)− αx1

)
.
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Then v satisfies the OEP: the OEP only has bite if x′ � x and x � x′. Say
that x′1 > x1 and x′2 ≤ x2. Then v1(x

′) − v1(x) > 0 and v2(x
′) − v2(x) < 0.

Similarly if x′1 ≥ x1 and x′2 < x2. So the OEP is satisfied.
Let A ⊆ IR2

+ be a bounded open interval. By Thomas’s Theorem (Thomas
(1934), see also Hurwicz and Uzawa (1971)),

∂v1(x)

∂x2

=
∂v2(x)

∂x1

implies that there is a C1 function f : A → IR such that ∂f(x)/∂x = v(x).
Note that f is not supermodular, as ∂f(x)/∂x1 = h(x1)− αx2 is decreasing
in x2. Further, if limx→0 h(x) = ∞, then factor demands will be interior
because the resulting f satisfies the Inada condition.
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