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Mixed Equilibria in Games of Strategic

Complementarities

Abstract

The literature on games of strategic complementarities (GSC) has focused on

pure strategies. I introduce mixed strategies and show that, when strategy spaces

are one-dimensional, the complementarities framework extends to mixed strategies

ordered by �rst-order stochastic dominance. In particular, the mixed extension of

a GSC is a GSC, the full set of equilibria is a complete lattice and the extremal

equilibria (smallest and largest) are in pure strategies. The framework does not

extend when strategy spaces are multi-dimensional. I also update learning results

for GSC using stochastic �ctitious play.

Res�umen

La literatura sobre juegos con complementariedades estrat�egicas se ha concen-

trado en estregias puras. Aqu�� se introducen estrategias mixtas y se demuestra

que, si las estrategias son unidimensionales, las complementariedades se traducen

en complementariedades de la extensi�on mixta del juego. Se encuentra que el con-

junto de equilibrios de Nash forman un reticulado completo y que los equilibrios

extremos (el mas grande y el mas chico, en el sentido de la dominaci�on estoc�astica

de primer �orden) son en estrategias puras. Las complementariedades no se tra-

ducen a la extensi�on mixta de juegos con estrategias multidimensionales. Tambi�en

se extienden resultados sobre el comportamiento asint�otico de procesos de apren-

dizaje.
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1 Introduction

Despite some controversy, many game theorists believe that, in certain circumstances,

mixed-strategy equilibria are good predictions of play. However, analysis of games of

strategic complementarities (GSC) has until now focused on pure-strategy equilibria (see

e.g. Topkis (1979), Vives (1990), Milgrom and Roberts (1990) and Milgrom and Shannon

(1994)). 1 It is natural to ask if the conclusions in the literature on GSC hold when also

mixed-strategy equilibria are considered. In this paper I extend the main results in the

seminal papers on GSC to allow for mixed strategies.

I show that, in GSC with one-dimensional strategy spaces, the structure of pure-

strategy complementarities extends to mixed strategies when these are ordered by �rst-

order stochastic dominance. Thus the mixed extension of a GSC with one-dimensional

strategy spaces is a GSC. It follows that the set of mixed strategy Nash equilibria has

a particular order structure (it is a complete lattice) where the extremal equilibria|the

largest and smallest equilibria in the sense of �rst-order stochastic dominance|are in

pure-strategies. In GSC with multidimensional strategy spaces, the complementarities

structure does not go through to mixed strategies. The reason for this is technical.

Besides equilibrium predictions, the literature on GSC has analyzed learning pro-

cesses. Milgrom and Roberts (1990) show that the empirical distribution of play under

adaptive learning is, in the limit, bounded by the extremal Nash equilibria.

Milgrom and Roberts use a laxer criterion for convergence than the one used in the lit-

erature on learning mixed strategy equilibria. For learning mixed-strategy equilibria Fu-

denberg and Kreps (1993) propose the requirement that intended play converge. Consider

best-response dynamics in \Matching pennies". Start with play being (Heads,Heads),

suppose that player One wants to match play by Two and that Two wants to avoid a

match. Then, if beliefs are that opponents will not change their choices, second period

play will be (Heads, Tails). Then third period play will be (Tails, Tails), then (Tails,

1This is probably because strategic complementarities guarantee that equilibria in pure strategies

exist.
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Figure 1: Battle of the Sexes

Heads), then (Heads, Heads) and the cycle starts again. Play will cycle, with each player

choosing heads half the time and tails half the time. The empirical distribution of play

clearly converges to the mixed strategy equilibrium of matching pennies. The cycle is

very simple, though, and it is likely that a real player would discover it and use it to

improve her payo�. A player that recognizes the cycle could always extract her maximal

payo� in every round of play. In this example the sequence of intended play is (Heads,

Heads), (Heads, Tails), (Tails, Tails), and so on, which clearly does not converge.

I extend Milgrom and Roberts's results to the learning model and convergence cri-

terion that is standard in the results on learning mixed strategies. I show that it is not

possible to re�ne Milgrom and Roberts's bounds. In particular, one does not obtain

convergence to some subset of mixed strategy equilibria.

I shall use the game \Battle of the Sexes" in Figure 1 to illustrate some of the results.

Players 1 and 2 choose each simultaneously an element from fO;Bg, the payo�s are

speci�ed in the bimatrix to the left. Player 1's best response to 2 playing B is to play B

and her best response to 2 playing O is to play O. So, a change by 2 from B to O makes

1 change in the same direction. This is also true for player 2: a change by 1 from B to O

makes 2 change in the same direction. Imposing an order on the players' strategies, we

can say that O is \larger" than B. Then the best response of each player is increasing in

the other player's choice of strategy, this is the crucial property of GSC, and it is easily

seen that Battle of the Sexes satis�es the de�nition of a GSC in e.g. Vives (1990). There

are two pure-strategy Nash equilibria of Battle of the Sexes, (O,O) and (B,B); and (O,O)
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is larger than (B,B).

Now, consider the mixed extension of Battle of the Sexes. That is the game obtained

by allowing 1 and 2 to choose probability distributions over fO;Bg and obtaining payo�s

as the expected value of the corresponding pure-strategy payo�s. Let pi be the probability

with which player i selects O. The best responses are shown in Figure 1 on the right.

When 2 plays O with probability smaller than 2=3, 1 sets p1 = 0; when p2 equals 2=3

player 1 is indi�erent between O and B, so any choice of p1 is a best response; when 2

sets p2 larger than 2=3, 1 will optimally respond by choosing p1 = 1. Hence, player 1's

best response is increasing in 2's choice of p2. The same is true for 2's optimal choice

of p2. This implies that also the mixed extension of Battle of the Sexes has the crucial

property of GSC.

There are three Nash equilibria of this game, indicated by the three points where the

best-response functions intersect, they are (0; 0); (1=3; 2=3) and (1; 1). Note that (0; 0) is

smaller than (1=3; 2=3), which is smaller than (1; 1), and that the two extremal equilibria

(the smallest and the largest) are in pure strategies.

Section 2 presents de�nitions and basic results leading. In Section 3 I show that

the mixed extension of a GSC is a GSC, and that the extremal equilibria are in pure

strategies. In Section 4 I present the results on the global stability of stochastic �ctitious

play.

2 Basic Results

2.1 De�nitions

A textbook discussion of the concepts de�ned is in Topkis (1998). A set X with a

transitive, re
exive, antisymmetric binary relation � is a lattice if whenever x; y 2 X,

both x ^ y = inf fx; yg and x _ y = sup fx; yg exist in X. It is complete if for every

nonempty subset A of X, inf A; supA exist in X. A nonempty subset A of X is a

sublattice if for all x; y 2 A, x^X y; x_X y 2 A, where x^X y and x_X y are obtained

taking the in�mum and supremum as elements of X (as opposed to using the relative
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order on A). A nonempty subset A � X is subcomplete if B � A, B 6= ; implies

infX B; supX B 2 A, again taking inf and sup of B as a subset of X.

Let X be a lattice. A � X is increasing if, for all x 2 A, y 2 X and x � y imply

y 2 A. Endow X with a topology, let P(X) denote the set of Borel probability measures

over X. For �; � 2 P(X), � is smaller than � in the �rst-order stochastic dominance

order (denoted � �st �) if, for any increasing set A � X, �(A) � �(A). It is easy to see

that � �st � if and only if
R
X
fd� �

R
X
fd� for every f : X ! R that is increasing and

integrable.

If X is a lattice and T a partially ordered set. f : X ! R is supermodular

if, 8x; y 2 X, f(x) + f(y) � f(x ^ y) + f(x _ y); f : X � T ! R has increasing

di�erences in (x; t) if x � x
0
; t � t

0, then f(x0; t)� f(x; t) � f(x0; t0)� f(x; t0).

2.2 Basic Results

This section presents some simple results that are needed in the rest of the paper.

Lemma 1 If X � R is compact, then P(X) ordered by �rst-order stochastic dominance

is a complete lattice.

Proof: Since X � R I shall identify probability measures with their distribution func-

tions. Let F;G : X ! [0; 1] be two distribution functions on X. We know that F is

smaller than G in �rst order stochastic dominance if and only if G(x) � F (x) for all

x 2 X. It is easy to verify that �st is a partial order on P(X).

De�ne H : X ! [0; 1] by H(x) = F (x) ^ G(x), it is easy to check that H is a

distribution function. I will show that H = F _G in the �rst-order stochastic dominance

order. First, H is larger than both F and G. Second, if H 0 is larger than F and G, then

for all x, H 0(x) � F (x)^G(x) = H(x). Thus H 0 is also larger than H. These two claims

imply that H = F _G. The argument that F ^G exists is similar. This proves that the

probability distributions are a lattice under �st.
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To prove that the lattice is complete, �rst I show that the weak topology on P(X) is

�ner than the order-interval topology. 2 For any x 2 X, let Ux = [x; supX]. An order

interval [�; �] in P(X) is then

[�; �] = \ (fp 2 P(X) : �(Ux) � p(Ux)g \ fp 2 P(X) : p(Ux) � �(Ux)g) :
fUx:x2Xg

But for all x, fp 2 P(X) : �(Ux) � p(Ux)g and fp 2 P(X) : p(Ux) � �(Ux)g are weakly

closed sets (Aliprantis and Border (1999) Theorem 14.6, note that � and � are �xed).

Then, order intervals are weakly closed and since the order-interval topology is the coars-

est topology for which order intervals are closed, the weak is �ner than the order-interval

topology.

Now, since X is compact, P(X) is weakly compact. Then, P(X) is also compact

in the order-interval topology because it is coarser than the weak topology. By the

Birkho�-Frink characterization of completeness, then, P(X) is a complete lattice. �

Lemma 1 does not generalize to arbitrary sublattices X � Rn. The following coun-

terexample is taken from Kamae, Krengel, and O'Brien (1977), letX = f(0; 0); (0; 1); (1; 0); (1; 1)g

ordered as a subset of R2. Then 1=2(Æ(0;0) + Æ(1;0)) and 1=2(Æ(0;0) + Æ(0;1)) are maximal

elements of the set of lower bounds on

�
1=2(Æ(0;0) + Æ(1;1)); 1=2(Æ(0;1) + Æ(1;0))

	
:

This shows that, if X is any complete lattice that contains two unordered elements, then

P(X) is not a lattice when ordered by �rst order stochastic dominance.

This would create a problem when we study convergence of learning processes be-

cause we cannot argue that a monotone sequence converges to the supremum of its range

(suprema are not everywhere well de�ned on partially ordered spaces that are not com-

plete lattices). Fortunately, it is not hard to prove that monotone sequences in P(X) are

convergent, as long as X � Rn is compact.

Lemma 2 Let X � Rn be compact. If f�ng is a monotone increasing sequence in P(X),

then it converges weakly to a probability measure �, and �n �st � for all n.

2The order-interval topology on a lattice results from the order intervals as a subbase.
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Proof: By Kamae, Krengel, and O'Brien's (1977) Proposition 4 there is a probability

space (
;F ; p) and a sequence of random variables fZng, taking values in X that is

increasing a.s. and such that, for all n, Zn is distributed as �n. By compactness of X,

there is a random variable Z with Zn " Z a.s. Then, f�ng is weakly convergent to the

distribution � induced by Z on X and, for any increasing integrable function f : X ! R,

f(Zn(!)) � f(Z(!)) a.s for all n, so
R
fd�n =

R
f(Zn)dp �

R
f(Z)dp =

R
fd�. Hence,

�n �st � for all n. �

Lemma 3 Let f : X � R! R be integrable. Then, p 7!
R
X
f(x)dp(x) is supermodular

on P(X).

Lemma 3 is probably known to be true; I include it for completeness, to the best of

my knowledge it has not been published. In any case, it is easy to see why Lemma 3 is

true: If Y is a lattice that is also a vector space, and where y + z = y _ z + y ^ z for

all y; z 2 Y , then any linear function on Y is supermodular. Since integrals are linear in

probability distributions, the result would follow. The set of probability distributions is

not a vector space, though, so the proof is slightly more involved.

Proof of Lemma 3 Let p1; p2 2 P(X) de�ne E1 = fx 2 X : p2([x; supX]) � p1([x; supX])g

and E2 = fx 2 X : p1([x; supX]) < p2([x; supX])g. Note that (E1; E2) is a measurable

partition of X. On subsets of E1, p1 _ p2 coincides with p1 (see the proof of Lemma 1)

while p1 ^ p2 coincides with p2. On subsets of E2, p1 _ p2 coincides with p2 while p1 ^ p2

coincides with p1. Then,
R
X
f(x)dp1(x) +

R
X
f(x)dp2(x) =Z

E1

f(x)dp1(x) +

Z
E2

f(x)dp1(x) +

Z
E1

f(x)dp2(x) +

Z
E2

f(x)dp2(x) =

Z
E1

f(x)dp1 _ p2(x) +

Z
E2

f(x)dp1 ^ p2(x) +

Z
E1

f(x)dp1 ^ p2(x) +

Z
E2

f(x)dp1 _ p2(x)

=
R
X
f(x)dp1 _ p2(x) +

R
X
f(x)dp1 ^ p2(x). �

Lemma 4 Let X1; X2; : : :Xn be a collection of subsets of R and f : X = �n
i=1Xi ! R

be integrable. If f has increasing di�erences in (xi; x�i) for all i, then

(p1; : : : pn) 7!

Z
X

f(x)d(p1 � : : : pn)(x) : �n
i=1P(Xi)! R
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has increasing di�erences in (pi; p�i) for all i.

Proof: First note that repeated application of Fubini's theorem implies that (p1; : : : pn)

is smaller (componentwise) than (p01; : : : p
0
n) if and only if

R
X
g(x)d(p1 � : : : pn)(x) �R

X
g(x)d(p01 � : : : p

0
n)(x) for every increasing integrable g : X ! R. In other words, the

�rst order stochastic dominance order on the set of product measures coincides with the

product order.

Fix i and pi; p
0
i 2 P(Xi) where pi �st p

0
i. For any (componentwise) x�i � x

0
�i,

x̂i 7! f(x̂i; x
0
�i)� f(x̂i; x�i) is increasing. Then,Z

Xi

f(x̂i; x
0
�i)dpi(x̂i)�

Z
Xi

f(x̂i; x�i)dpi(x̂i) �

Z
Xi

f(x̂i; x
0
�i)dp

0
i(x̂i)�

Z
Xi

f(x̂i; x�i)dp
0
i(x̂i);

so that x�i 7!
R
Xi

f(x̂i; x�i)dp
0
i(x̂i) �

R
Xi

f(x̂i; x�i)dpi(x̂i) is increasing. Now, if p�i �st

p
0
�i, then,Z

X
�i

�Z
Xi

f(x̂i; x̂�i)dp
0
i(x̂i)

�
dp�i(x̂�i)�

Z
X
�i

�Z
Xi

f(x̂i; x̂�i)dpi(x̂i)

�
dp�i(x̂�i)

�Z
X
�i

�Z
Xi

f(x̂i; x̂�i)dp
0
i(x̂i)

�
dp

0
�i(x̂�i)�

Z
X
�i

�Z
Xi

f(x̂i; x̂�i)dpi(x̂i)

�
dp

0
�i(x̂�i):

Using Fubini,
R
X
fd(p0i� p�i)�

R
X
fd(pi� p�i) �

R
X
fd(p0i� p

0
�i)�

R
X
fd(pi� p

0
�i): This

is just saying that p�i 7!
R
X
fd(p0i � p�i)�

R
X
fd(pi � p�i) is increasing. �

3 Mixed Strategies in Supermodular Games

A normal-form game is described by a set of players N together with strategy spaces Si

and payo�s ui : S = �i2NSi ! R for all i 2 N . Let � = (N; f(Si; ui) : i 2 Ng) be a

normal-form game. Here I shall assume thatN is �nite. Themixed extension of � is the

normal-form game obtained when players i 2 N are allowed to choose randomizations

�i 2 �i = P(Si) over the strategies in Si. The randomizations are assumed to be

independent, so a strategy pro�le � is a collection (�i)i2N that induces a distribution

over S by independently mixing the marginals �i. Payo�s are U(�) =
R
S
u(s)d�(s).

Thus the mixed extension of � is the normal-form game (N; f(�i; Ui) : i 2 Ng).
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De�nition 1 A normal-form game � = (N; f(Si; ui) : i 2 Ng) is a supermodular

game if, for all i 2 N ,

1. Si is a complete lattice;

2. ui is bounded, si 7! ui(si; s�i) is supermodular and (si; s�i) 7! ui(si; s�i) has in-

creasing di�erences;

3. si 7! ui(si; s�i) is upper semicontinuous and s�i 7! ui(si; s�i) is continuous.

If, in addition, for all i 2 N Si � R then it is called a simple supermodular game.

Theorem 1 If (N; f(Si; ui) : i 2 Ng) is a simple supermodular game then its mixed ex-

tension (N; f(�i; Ui) : i 2 Ng) is a supermodular game.

Proof: Lemmas 1, 3 and 4 almost complete the proof. We just need to note that,

for all i 2 N, (weak) upper semicontinuity and continuity of Ui(�i; ��i) in �i and ��i,

respectively, follow from standard results (see Aliprantis and Border (1999) Theorem

14.5). �

Corollary 1 If � = (N; f(Si; ui) : i 2 Ng) is a simple supermodular game then the set of

mixed equilibria of � is a non-empty complete lattice and the extremal equilibria (largest

and smallest) are in pure strategies.

Proof: That the set of equilibria is a non-empty complete lattice follows from Zhou's

(1994) �xed point theorem. Let � = (�1; : : : �n) be the largest equilibrium and assume

that it is not in pure strategies. Fix i 2 N . Let �i(��i) = argmax�2�i

U(�; ��i) be i's

best response correspondence.

The support of �i is contained in Li = argmaxs2Si
R
S
�i

ui(s; s�i)d��i(s�i), the set of

i's pure best responses to ��i. By Topkis's (1978) results, Li is a subcomplete sublattice.

Then, letting ÆsupLi
be a point mass on supLi, ÆsupLi

= sup �i(��i) since by subcom-

pleteness of Li it is a best response to ��i and it is an upper bound on all mixed-strategy

best responses.
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Now, construct a sequence fxkg in � = �i2N�i by x0 = (�1; : : : �n), x1 = �i2NÆsupLi

and xk = �i2N sup �i(xk�1) for all k � 2. Since x0 is smaller than x1 and each �i is

increasing (by Topkis's (1978) Theorem), fxkg is a componentwise monotone increasing

sequence. By Lemma 2, for all i, fxkig converges weakly to, say, x�i . Note that x1 is

smaller than x
� = (x�1; : : : x

�
n). But at least one player was assumed to have a properly

mixed strategy under � so � <st x1. Then � <st x
�.

Finally, the claim is that x� is an equilibrium. To see this, note that the aggregate

best response correspondence �(x) = �i2N�i(x�i) is upper hemicontinuous and therefore

has a closed graph. The sequence f(xk; xk�1)g is in the graph of � and xk ! x
�. Then,

x
� 2 �(x�) so x� is an equilibrium. But, x� is larger than �, contradicting the assumption

that � is the supremum of the set of equilibria. The proof that the smallest equilibrium

is pure follows analogously. �

When strategy spaces are multidimensional, the set of mixed strategies is not a lattice

(see the counterexample in Section 2). This implies that we lack the mathematical struc-

ture needed for the current theory of complementarities. We need the lattice property of

strategies to make sense of increasing best responses when they are not singleton valued.

Multiple best responses are always present when dealing with mixed equilibria and there

does not seem to be a simple solution to the requirement that strategy spaces be lattices.

4 Learning Mixed Strategies

The model of learning presented here is similar to the one in Fudenberg and Kreps (1993).

Learning takes place through repeated play of a stage game; the stage game is one of

incomplete information. Player i's type is !i 2 
i, the type space 
i is assumed to be

a compact topological space. The set of all type pro�les is 
 = �i2N
i. In each stage

of the repeated game, a type pro�le ! 2 
 is drawn at random, player i is informed of

!i and chooses a stage game strategy si 2 Si. When a strategy pro�le s 2 S is chosen,

the payo� to i in the stage game is ui(!i)(s). I will assume that the game that results

from �xing ! is a supermodular game, i.e. for each ! 2 
, (N; f(Si; ui(!i)) : i 2 Ng) is a

9



supermodular game. Also, let !i 7! ui(!i)(s) be a continuous function for all i 2 N and

s 2 S.

Let p be a probability measure over 
1 = 
N, the space of all sequences of draws

(
1 is endowed with the canonical �-algebra obtained from the Borel subsets of 
). I

will assume that sequences of type pro�les !1 2 
1 are drawn according to p.

The present setup embeds two important special cases: literally mixed strategies and

\puri�ed" mixed strategies.

1. (Mixed Strategies) Let ui(!i) be independent of !i. The type spaces represent only

randomization devices. In this case, strategies are simply the mixed or correlated

strategies that extend the stage game.

2. (Puri�cation) Let 
i � RSi and u
Æ
i (!i) = gi + Æ!i for Æ > 0 and an integrable

gi 2 RS. This is the setup of Harsanyi's Puri�cation Theorem. Let �Æ be the

resulting game of incomplete information. Harsanyi's Theorem says that, in generic

�nite games, for any mixed equilibrium � of �0 there is a collection (�Æ) in �, where

�Æ is a (pure) equilibrium of �Æ, such that � = limÆ!0 �Æ.

The motivation for studying learning mixed strategies in the puri�cation setup is

that intended play is typically single-valued. Recall the matching pennies example in

the Introduction, in each round players are not indi�erent between di�erent choices,

they strictly prefer to play either Heads or Tails. The puri�cation setup captures the

intuition that players who are close to indi�erent between di�erent choices will base

their play on small individual di�erences in payo�s. Fudenberg and Kreps (1993) and

Ellison and Fudenberg (1999) study learning of mixed equilibria in the puri�cation setup.

For example, Fudenberg and Kreps (1993) prove that the mixed strategy equilibrium in

Matching Pennies is globally stable.

At each stage a pure strategy pro�le s 2 S results from the players' choices. Histories

of play (s1; : : : st) are denoted ht. The set of all histories of length t is Ht = S
t and

H = [1t=0Ht is the set of all histories of �nite length, including H0 = ;, the \null
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history".

Each player i chooses a strategy �i : 
i � H ! Si and is endowed with beliefs �i :

H ! P(S�i). The interpretation is that, at each time t and history ht, �i(ht) 2 P(S�i)

represents i's assessment of her opponents' play in the t+ 1 stage of the game.

If � = (�i)i2N is a collection of strategies for all players and � = (�i)i2N is a collection

of beliefs, then the pair (�; �) is a system of behavior and beliefs. Note that I

allow player i to believe that her opponents' play is correlated (for a discussion of the

importance of this, see Fudenberg and Kreps (1993)).

De�nition 2 A system of behavior and beliefs (�; �) is myopic if for all i 2 N , ht 2 H

and !i 2 
i, �i(!i; ht) 2 argmaxsi2Si

R
ui(!i)(si; ~s�i)�i(ht)(d~s�i)

The assumption of myopic behavior is very common in the literature on learning. It

is restrictive because it implies that players do not attempt to manipulate the future

behavior of their opponents. It is usually justi�ed by assuming that, in each period of

time, players are selected at random from a large population to play the stage game,

so the likelihood that two particular players will meet more than once to play the stage

game is negligible (see chapter 1 of Fudenberg and Levine (1998) for a discussion).

I need two assumptions on beliefs. The �rst, called asymptotic empiricism, requires

that beliefs, in the limit, resemble actual play (i.e. that in the limit they behave like

beliefs in �ctitious play). The second, called monotonicity, requires that players increase

their beliefs|in the sense of �rst-order stochastic dominance|after observing larger play.

Hopenhayn and Prescott (1992) use this assumption (in Markovian models) basically

with the same purpose as here: to guarantee that a sequence of play that is monotone

increasing after a �nite number of rounds does not cease to be increasing. A simple

justi�cation for monotone beliefs is that they are \self enforcing", in the sense that if

beliefs are monotone then behavior will be monotone.

De�nition 3 Beliefs are weakly asymptotically empirical if, for all i 2 N and !1 2


1, whenever a sequence of play fstg is convergent, say s = lim st, and the resulting
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sequence of beliefs f�i(!
1
; ht)g is convergent then �i(!

1
; ht) = �i(!

1
; (s1; : : : st)) !

Æs
�i
. Beliefs � are monotone if, for all i 2 N and !

1 2 
1, st�1 � st implies that

�i(!
1
; ht�1) �st �i(!

1
; ht�1st) and if ht � h

0
t implies �i(!

1
; ht) �st �i(!

1
; h

0
t).

Theorems 2 and 3 are the main results on \global convergence" of intended play.

Theorem 2 says that myopic rules that respond to monotone beliefs about opponents'

play are in the limit bounded by the largest and smallest pure strategy equilibria of the

game. The result is an extension to randomized play of Milgrom and Roberts's (1990)

results. Theorem 3 says that along any \purifying sequence" limit behavior is bounded

by a sequence that converges to pure strategy equilibria of the original game. In this

setting, Fudenberg and Kreps (1993) present results on global convergence of intended

play for a class of 2X2 games. Theorems 2 and 3 contain a weaker conclusion than global

convergence, they only bound the limiting behavior of learning processes; but when

equilibrium is unique|like in Fudenberg and Kreps|global convergence is obtained.

Theorem 2 (Mixed Setup) Let � be a supermodular game. Let (�; �) be a myopic system

of behavior and beliefs with monotone, weakly asymptotically empirical beliefs. The small-

est and largest pure equilibria of the stage game �, e and e, satisfy a.s. that e � ~� � e

and Æe �st ~� �st Æe for all subsequential limits ~� of f�(ht)g and ~� of f�(ht)g.

Theorem 3 (Puri�cation Setup) Let � be a supermodular game. Let fÆkg be a sequence

in R+ with Æk ! 0. For each k let (�k; �k) be a myopic system of behavior and beliefs with

monotone, weakly asymptotically empirical beliefs. Then there is a subsequence fÆlg and

a sequence of bounds (el) and (el) such that: a) For all l, el �
~�l � el and Æe

l

�st ~�l �st Æel

a.s. for all subsequential limits ~�l of f�l(ht)g and ~�l of f�l(ht)g. b) The limits e = lim el,

e = lim el exist and are pure equilibria of the game �0.

Lemma 5 is instrumental in proving the results on \global convergence" in the paper.

In the lemma, E(!) denotes the set of pure strategy Nash equilibria of the one shot game

obtained by �xing ! 2 
 and letting ! be common knowledge.

12



Lemma 5 Let � be a supermodular game. Let (�; �) be a myopic system of behavior and

beliefs with monotone weakly asymptotically empirical beliefs. There are !0; !00 2 
 and

e 2 E(!0); e 2 E(!00) such that p-a.s.: e � ~� � e and Æe �st ~� �st Æe for all subsequential

limits ~� of f�(ht)g and ~� of f�(ht)g.

Proof: For any ! 2 
 and p 2 �i2NP(S�i), by Lemma 4, (si; pi) 7!
R
ui(!i)(si; ~s�i)dpi(~s�i)

has increasing di�erences. By Topkis's Theorem, the set of pure-strategy best responses

�
s(!; p) = �i2Nargmaxsi2Si

R
ui(!i)(si; ~s�i)dpi(~s�i) is increasing in the strong set order.

First, consider beliefs and behavior as follows. Let initial assessments be �
0
0 =

(Æinf S
�i
)i2N so that for any h1 2 S the corresponding beliefs �01 = �(h1) satisfy �0 =

(Æinf S
�i
)i2N �st �

0
1. Then, for any ! 2 
, �s(!; �00) is smaller than �s(!; �01) in the strong

set order. In particular, inf f�s(!; �00) : ! 2 
g � inf f�s(!; �01) : ! 2 
g. Also, these

in�ma are achieved for some ! 2 
 since ! 7! ui(!) is continuous and Si is a com-

pact subset of R. Now, construct a sequence of play fxtg and probability assessments

over opponents' play f�0tg recursively by xt = inf
�
�
s(!; �0t�1) : ! 2 


	
and �

0
t = �(ht).

Since x0 � x1, �
0
0 �st �

0
1 and the maps xt 7! �(ht�1xt) and �

0
t 7! inf f�s(!; �0t) : ! 2 
g

are monotone increasing it is clear by induction that the sequences fxtg and f�0tg are

monotone increasing.

The sequence fxtg is convergent because it is monotone increasing sequence on a

bounded set S � Rn. Say that e = limxt. Each component of the sequence f�0tg

is monotone increasing. By Lemma 2, f�0tg is convergent. Since beliefs are weakly

asymptotically empirical, Æe = lim�
0
t. For each t, there is !

0
t 2 
 such that xt 2 �

s(!0t; �
0
t).

Since 
 is compact we can say, after dropping to a subsequence, that f!tg is convergent

and set !0 = lim!
0
t. Now, f(xt; �

0
t; !

0
t)g is a convergent sequence in the graph of �s. By

upper-hemicontinuity of �s, e 2 �
s(!0; Æe). This means that e is a Nash equilibrium for

the stage game obtained when !
0 2 
 is drawn, i.e. e 2 E(!0).

Similarly, it is possible to construct a sequence of play fytg and probability as-

sessments over opponents' play f�00t g by setting �
00
0 = (Æsup S

�i
)i2N , �

00
t = �(ht) and

yt = sup
�
�
s(!; �00t�1) : ! 2 


	
. Repeating the argument above we obtain a conver-
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gent sequence f(yt; �
00
t ; !

00
t )g, say (e; �00; !00) = limt(yt; �

00
t ; !

00
t ) and e 2 �

s(!00; Æe) so that

e 2 E(!00).

Fix !1 2 
1. I will show by induction that the sequence of play and probability as-

sessments over opponents' play f�(ht); �(!t; �(ht))g satis�es �
0
t �st �(ht) �st �

00
t and xt �

�(!t; �(ht�1)) � yt. First, �
0
0 �st �(h0) �st �

00
0 by the de�nitions of �00 and �

00
0. By mono-

tonicity of p 7! �
s(~!; p), x1 = inf f�s(~!; �00) : ~! 2 
g � z � sup f�s(~!; �00) : ~! 2 
g = y1

for all z 2 �
s(~!; �00). In particular, since myopic behavior implies that �(!1; �(h0)) 2

�
s(!1; �(h0)), x1 � �(!1; �(h0)) � y1. Second, suppose that �0t�1 �st �(ht�1) �st �

00
t�1

and xl � �(!l; �(hl�1)) � yl for 1 � l � t � 1. Using monotonicity of p 7! �
s(!; p)

again, �0t�1 �st �(ht�1) �st �
00
t�1 implies that xt � �(!t; �(ht�1)) � yt. By monotonicity

of beliefs,

�(x1; : : : xt) �st � [�(!1; �(h0); : : : �(!t; �(ht�1))] �st �(y1; : : : yt):

Then, �0t = �(x1; : : : xt) and �
00
t = �(y1; : : : yt) imply that �0t �st �(ht) �st �

00
t . This proves

that �0t �st �(ht�1) �st �
00
t and xt � �(!t; �(ht�1)) � yt for all t.

Now, xt ! e, yt ! e, since !1 2 
1 was arbitrary the �rst conclusion follows. Also

�
0
t ! Æe and �

00
t ! Æe weakly and for every increasing subset A of S�i, �

0
t(A) � �(ht)(A) �

�
00
t (A). Then, �

0
t(A)! Æe(A) and �

00
t (A)! Æe(A) implies that if �(ht

k
) is a subsequence

converging to ~� 2 P(S�i) then Æe(A) � ~�(A) � Æe(A). Hence, Æe �st ~� �st Æe a.s. �

Proof of Theorem 2 Immediate from Lemma 5. �

Proof of Theorem 3 Let � 0 : S � 
 �R+ ! S be the best response correspondence

�
0(s; !; Æ) = �i2Nargmaxsi2Siu

Æ
i (!i)(si; s�i). For each k, Lemma 5 provides !0k; !

00
k 2 
,

ek 2 E(!0k) and ek 2 E(!00k) such that ek; ek satisfy the conditions of part a). The

sets S and W are compact so there are convergent subsequences f(el; el; !
0
l; !

00
l )g. Say

(e; e; !0; !00) = lim(el; el; !
0
l; !

00
l ). By the Maximum Theorem, the correspondence �

0 is

upper hemicontinuous and has thus a closed graph. The sequences f(el; el; !
0
l; Æl)g and

f(el; el; !
00
l ; Æl)g are convergent sequences in the graph of of � 0. Then, the limits e and

e are �xed points of s 7! �
0(s; ~!; 0) for ~! = !

0
; !

00, respectively. The correspondence
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s 7! �
0(s; ~!; 0) is the pure strategy aggregate best response correspondence of game

�0. �
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