
Unifying Multilevel Modelling through Ontologies

Edelweis Rohrer1, Paula Severi2, and Regina Motz1

1 Instituto de Computación, Facultad de Ingenierı́a, UdelaR, Uruguay
2 Department of Computer Science, University of Leicester, England

Abstract. In the last decades, the multilevel problem has received increasing at-
tention in the conceptual modelling and semantic web communities. Recently,
we proposed a solution to this problem in the context of ontological modelling
which consists in extending the Web Ontology Language OWL with a new mul-
tilevel constructor that equates instances to classes. In this work we highlight
the advantages of exploiting the reasoning capabilities of OWL ontologies with
the proposed multilevel constructor by analizing requirements from a real-world
application on the accounting domain.

1 Introduction

Multilevel modelling is the conceptual modelling problem of having classes that could
be instances of other classes (called metaclasses) or form part of metaproperties (prop-
erties between metaclasses). This is a relevant problem for many areas such as model-
driven software development and ontology design [15,8,4]. Several works promote the
use of ontologies for improving the theory and practice of conceptual modelling [7,15].
In general, we can group the ontology-based conceptual modelling works in four major
categories: (i) works that propose the use of ontologies to develop modelling languages
for design patterns and simulators [8,9], (ii) works that define methodologies to trans-
form relational databases to ontologies [10,1,14], (iii) those that apply some formal
theory [3,4,11] and (iv) those that extend the syntax and the reasoners of the web ontol-
ogy language OWL to automatically check modelling consistency, e.g. [13,11]. In this
last direction, we have already proposed a solution to the multilevel modelling prob-
lem which consists in extending OWL with a new constructor that equates instances to
classes [13].

In this work, we show the usefulness of our multilevel constructor through a real-
world application on the accounting domain. This is an interesting application because it
shows the necessity of modelling (at least) two levels of knowledge: one for accounting
domain experts (who are in charge of defining the system requirements) and another
for operators (who are in charge to apply the daily actions according to the defined
requirements). In fact, on one hand, experts visualize the whole organization landscape
and are interested in establishing the business rules for each work procedure. For them,
a procedure is naturally represented as an instance (an atomic object). On the other
hand, a procedure for an operator is better represented as a set of instances (a complex
object), since they execute the same procedure many times.

The main contributions of this work are twofold. First, a key point of our multilevel
modelling approach is that by extending the ontology language and the reasoner, it is

possible to automatically validate the consistency of a multilevel ontology as well as
to automatically infer such level. Second, we unify the two different knowledge lev-
els (experts and operators) by expressing common patterns of business rules using
meta-properties (properties on classes). For this, we also introduce another construc-
tor MetaRule2 that allows the automatic addition of several constraints following a
common pattern. The results of the present work can be applied to other scenarios, in
particular to those in which the flexible management of business rules is an important
requirement.

Related Work. [2] formalizes the concept of multilevel connections and coins the term
clabject to emphasize that there are classes that are also objects. Similarly, [4] combines
the UFO ontology with a first-order logic, called MTL, to model multilevel connections.
These proposals require that each class or individual explicitly specify its level of ab-
straction, for instance, 0 for atomic objects, 1 for classes, 2 for meta-classes, and so on.
On the contrary, by infering the level our solution does not put any burden on the ontol-
ogy designer who may be rather concerned with the business to be modelled than with
the ordinal number of each abstraction level. Related work on description logics (the
logical foundations of OWL) extended with metamodelling capabilities has an extense
literature, due to space restrictions, we refer to [13] for a thorough comparison.

Organization. The remainder of this paper is organized as follows. Section 2 intro-
duces the real-world case study and its main requirements. Section 3 describes two
design alternatives for the case study using ontologies, and analyzes the degree of ac-
complishment of the set of requirements. Finally, Section 4 presents some conclusions
and future work.

2 A real-world case study of an accounting information system

This section explains the main requirements behind the accounting module of an infor-
mation system called “ Integrated Rental Guarantee Management System” (SIGGA) at
the General Accounting Agency of the Ministry of Economy and Finance in Uruguay3

where the first author works. Uruguayan government acts as a guarantor for employees
who want to rent a property. The underlying business of SIGGA consists in home rental
contracts that are signed between landlords and renters who are employees. The appli-
cation helps manage renter payments, as salary discounts or direct cash payment, and
the corresponding payments to landlords. The accounting module is in charge of record-
ing the accounting entries for the business rules of SIGGA, following the ALE-based
classic double entry bookkeeping to represent incremental and decremental events of
assets, libialities and equity as credits and debits [12]. The ALE-based system has sev-
eral requirements such as accounting entries that record business transactions have at
least one debit and one credit detail.

3 Sistema Integrado de Gestión de Garantı́a de Alquileres, Contadurı́a General de la Nación,
www.cgn.gub.uy

The application domain of SIGGA is modelled by a relational scheme and imple-
mented in a relational database. Figure 1 depicts a simplified version of the relational
tables of the application and their structural restrictions.

Fig. 1: Relational Tables for SIGGA accounting example.

From a conceptual point of view, there are two levels of the business: a definitional
level and an operational level (general knowledge and concrete knowledge respectively,
following the terminology in [15]). In the definitional level of the accounting module
of SIGGA we identify different kind of accounting entries, called entry definitions, as
depicted in table EntryDefs which are specified according to the business rules by a
set of valid type of details, called detail definitions, registered in table DetDefs over
accounts (table Accounts). Whereas, in the operational level, tables Entries and Dets
register particular accounting entries and details respectively. For the sake of clarity
we analize the accounting module of the SIGGA application with only three types of
entries: “Monthly calculation of rent”, Renter payment” and “Home damage expenses”.
For instance, the calculation of the monthly rent is performed each month for the renter

Juan Perez. On 01/12/2017 the SIGGA application registered the entry 250 in table
Entries and the three first rows (details) of table Dets showing that Juan Perez must
pay $4,500 of rent and $1,500 of renter fee (debited to the “Renter Debt” and “Renter
fee” accounts), and that $6,000 must be acredited to the landlord account following
the foreign keys (FK) restrictions from table DetDefs. Since Juan Perez paid the rent
by cash on 14/12/2017, SIGGA registered the entry 252 and a set of records in table
Dets with entryDef = 10 and detailDef 1, 3 and 4 that correspond to accounts “Cash”,
“Renter Debt” and “Renter Fee”, according to FK resrictions from table DetDefs.
Nowadays, there are a set of basic requirements of the accounting module of SIGGA
that are essential for its proper operation. The relational schema described in Figure 1
guarantees some of them, whereas others cannot be expressed by structural constraints.
Moreover, there is also a set of desirable requirements that would add value to the
system if they were conceptually modelled because they would contribute to a more
explicit domain conceptualization and facilitate expert definition activities. Below we
describe the list of requirements.

Req. 1. Each accounting entry has at least one debit detail and one credit detail. Given
the structure of tables of the SIGGA application, this requirement is satisfied by non-
structural restrictions, so it is satisfied only transactionally.

Req. 2. Each detail is either a debit or a credit (but not both). This requirement uses
FK of Dets from DetDefs to ensure that the accounting detail has the corresponding
attribute debit or credit.

Req. 3. Each detail has associated a single account. This requirement is directly satis-
fied by the FK of the table DetDefs from Accounts.

Req. 4. Each detail can be associated to a unique entry. This requirement is directly
satisfied by the FK of the table Dets from Entries.

Req. 5. Each detail definition can be associated to a unique entry definition. This
requirement ensures that accounting entry definitions are mutually independent. It is
the reason why the SIGGA application does not link entry definitions to accounts di-
rectly. Using the concept of detail definitions the model is more flexible when defini-
tions change. For instance, if the debit account changes for a given accounting entry
definition, it is possible to keep old detail definitions marked as not current and in-
troduce new detail definitions (to keep the history of definitions). This requirement is
directly satisfied by the FK of the table DetDefs from EntryDefs.

Req. 6. Accounting entries have details for accounts in accordance with the definitional
level. For instance, each time a renter pays a debt in cash the accounting entry must
have details for accounts “Cash”, “Renter Debt” or “Renter Fee” in accordance with the
“Renter payment” entry definition. It is directly satisfied by the FKs of the table Dets
(from Entries that has a FK from EntryDefs and from DetDefs that also has a FK
from EntryDefs).

Req. 7. Provide mechanisms to classify accounting entries by relevant criteria. Com-
mon classification criteria are to classify all entries of a given kind (as renter payments)

or with a given account (as “Cash”) at debit or credit. In the schema of Figure 1 these
classifications are not explicitly modeled, they are implemented by SQL views.

Req. 8. Provide mechanisms to classify accounting entry definitions according to rele-
vant criteria. To illustrate this requirement, we consider money availability accounts,
as cash or bank. It is important to ensure that all deposits (debit details) and extractions
(credit details) to/from them are recorded, to visualize the correct availability. So, the
idea is to validate the completeness of definitions for a given account. A useful solution
is to classify all accounting entry definitions that have cash or bank at debit or credit,
to verify if all possible movements are defined. As for the previous requirement, it is
possible to define SQL views.

Req. 9. Express relations between definitions to check their correctness. For instance, if
the renter “Juan Pérez” incurres in a debt for damages in the house, it must be registered
by the entry definition 30 (Figure 1) with a debit on the “Damage Expenses” account
and a credit for the “Landlords” accounts. But there is no row in the table DetDefs
associating the entry definition 10 (Renter payment) to the account “Damage Expenses”
so the “renter payment” entry (to register that “Juan Pérez” payed the damage expenses)
cannot be registered. What happens is that the expert did not include the “Damage
Expenses” account at credit in the entry definition 10. So, we should validate that the
“renter payment” entry definition to have credit details for all accounts that are debits
in some entry definition that generates a renter debt, in the particular case, for are all
asset accounts that are not of avalability. This is a validation that involves set of tuples
from tables, it can be verified as a non-structural constraint (in the application code).
It would be desirable that the relational schema had the capability of expressing such
restrictions.

Req. 10. Minimize the impact of changing accounting entry definitions. Suppose that
at a certain time, experts decide that for the definition of the “Renter payment” entry
instead of the account “Renter Debt”, another account “Rental Debt” must be used. The
change must impact at definition level, because new renter payment entries must be
done in accordance to the new definition. But at the same time, old “renter payment”
entries must continue being identified (and classified) as such, even though they do not
follow the new definition. Indeed it is possible to add an attribute with two allowed val-
ues (current/not current) to the table DetDefs, to differentiate current detail definitions
from not current ones. Hence, accounting entries done according to old definitions can
also be identified as “Renter payment” entries.

Req. 11. Differenciate definitional and operational views as two abstraction levels. The
previous requirement shows the benefits of having definitional and operational levels
in separate structures. Despite this, it is hidden in the application code the fact that
tables EntryDefs and Entries keep semantically equivalent information at different
levels. Besides a greater expressiveness, a model with the capability to represent that
EntryDefs, DetDefs and Accounts are in the definitional level whereas Entries and
Dets are in the operational level, avoids errors of design. For example, at the moment
of reusing SIGGA relational schema, it is useful to distinguish a FK from Entries to
EntryDefs (that links conceptually equivalent knowledge at different levels) from a FK

from DetDefs to Accounts (that links two conceptually different objects at the same
level).

The basic requirements which are Req. 1 to Req. 6 come from the ALE-based account-
ing model. However, only Req. 2 to Req. 6 can be verified by the scheme shown in Fig-
ure 1. The schema also verifies Req. 10. Req. 1 and Req. 7 are verified by non-structural
restrictions (in the code). Req. 8, Req. 9 and Req. 11 are desirable constraints for the
implementation of the SIGGA application that could be verified by non-structural re-
strictions but they are not satisfied at the moment.

3 Ontological modelling

As discussed in the previous section, there are some requirements in the SIGGA ac-
counting module that need to be represented through classification criteria. These cri-
teria varies from the simplest case of Req. 2 where accounting details can be credits or
debits to the most complex classifications from Req. 6 or Req. 9, for example. Tradi-
tionally, ontologies are proved to be a good tool for represent taxonomies, and moreover
to model relations that hold between taxonomy classes. The SIGGA application needs
not only model clasification criteria among accounting details but also model relations
between classes of accounting details as described in Req. 9, 10 and 11. In this sec-
tion we present an ontological model for the SIGGA accounting module and discuss
the capabilities for requirements satisfiability that this model has. First we propose a
model in OWL2 language [6], and then we propose a model in OWL2 extended with
meta-modelling. Finally, we compare pros and cons of both approaches.

3.1 The SIGGA ontological model (OM)

In this section we introduce the SIGGA ontological model (OM) which captures the
classes (concepts) and properties (roles) that experts need to define. This is depicted in
Figure 2 where ovals represent classes and arrows represents properties. Table 1 shows
some of the Tbox and Rbox axioms of OM. The class Account represents different
classes of accounts, i.e. Assets, Availability, etc. The class DC represents the two pos-
sibilities of “credit” or “debit”. The class Entry represents the grouping of entries by
the definition type, i.e. the set of entries of type “Renter payment”, the set of entries
of type “Monthly calculation of rent”, etc. These are disjoint sets of entries. The prop-
erties detailD and detailC have domain Entry and range Det. They are introduced to
distinguish between details that correspond to “debit” and “credit”, and have a super-
property detail, which is the disjoint union of detailD and detailC, defined conveniently
to express some restrictions common to both properties. For the sake of clarity, the class
D/C is defined with the instances debit and credit. The role hasDC connects details at
debit or credit with the corresponding instances of D/C. The property account connects
entry details to accounts. Note that axioms (6) to (8) show an example for the subclass
RenterPayEnt of Entry and the corresponding subclasses of Det connected by detailD
and detailC. The same axioms must be declared for all subclasses of Entry.
Axioms (6) to (8) represent the definitional level because they define what accounts
must be at debit and credit for each kind of accounting entry.

Fig. 2: Example of SIGGA OM design

Axiom Description

(1) Det v= 1detail−.Entry A detail corresponds to exactly only one accounting entry.

(2) Entry v ∃detailD.> u ∃detailC.> Entries are balanced double entry records.

detailD v detail
detailC v detail

(3) Dis(detailD, detailC) detail is the disjoint union of detailD and detailC
Entry v ∀detail.(∃detailD−.Entryt

∃detailC−.Entry) .

> v ∀detailD.(∃hasDC.{debit}u
(4) ∀hasDC.{debit}) Roles detailD and detailC are associated to debit and credit.
> v ∀detailC.(∃hasDC.{credit}u

∀hasDC.{credit})

(5) Det v= 1account.Account A detail has associated a single account.

RenterPayEnt v ∀detailD.
(6) (PayCashDett Subclasses of Entry are described by the subclasses of Det

PayBankDet) they have associated at debit and credit
RenterPayEnt v ∀detailC.PayDebtDet

PayCashDet v ∀detail−.RenterPayEnt
(7) PayBankDet v ∀detail−.RenterPayEnt Subclasses of Det correspond to only one subclass of Entry.

PayDebtDet v ∀detail−.RenterPayEnt

PayCashDet v ∃account.{cash} Subclasses of Det are described by the accounts they have
(8) PayBankDet v ∃account.{bank} associated at debit and credit.

PayDebtDet v ∃account.{renterDebt}

Table 1: Example of SIGGA OM Tbox and RBox

3.2 The SIGGA Ontological Meta Modelling (OMM)

The SIGGA ontological model (OM) depicted in the previous section does not repre-
sent explicitly the relations that hold between definitional and operational level of the
SIGGA accounting module presented in Section 2. In order to capture these relations
we extend OM with another ontology (the definitional ontology) illustrated on the top
of Figure 3, that captures the definitional level. At this level we have a class EntryDef
that represents the set of accounting entry denitions, a class DetDef that represents how
debit and credit details must be registered for each entry denition, and also classes Ac-
count and D/C (as in OM). The role detailDef has domain EntryDef and range DetDef,
it is a superrole of detailDefD and detailDefC that distinguish debit from credit detail
definitions. At the lower part of the figure it is depicted a subschema of OM which
represents uniquely entries and details at operational level. It is the ontology in the OM
design, without the classes Account and D/C. Table 2 shows some of the Tbox and
Rbox axioms of OMM, where axioms (1) to (3) are the same as in OM, and also Mbox
axioms with a new constructor we describe below.

Fig. 3: Example of SIGGA OMM design

In the definitional ontology, each kind of accounting entry is represented as an instance
of EntryDef whereas in the operational ontology each kind of entry is represented
as a class which is a subclass of Entry, and agrees with a single entry definition in
EntryDef. For instance, renter payments are represented at definitional level with the
individual renterPay but at operational level with the class RenterPayEnt. Instances
of RenterPayEnt are all different, such as the “Juan Pérez payment for $5,000” and
the “Pedro Vidal payment for $8,000”, but all of them have debit and credit details

which agree with detail definitions associated (by roles detailDefD and detailDefC) to
the individual renterPay. The fact that the individual renterPay is semantically equiv-
alent to the class RenterPayEnt is represented in Figure 3 by a dotted line that con-
nects them. This means that the interpretation of the individual renterPay must be
equal to the interpretation of the class RenterPayEnt. For this, we introduce the ax-
iom renterPay =m RenterPayEnt to equate the individual renterPay with the class
RenterPayEnt [13]. Similar equality axioms are added for monthRent and EntryMon-
thRent, payCashDet and PayCashDet, and so on. In that way, each ontology conceptu-
alizes the same business objects at different knowledge level.

Axiom Description

(1) Det v= 1detail−.Entry A detail corresponds to exactly only one accounting entry.

(2) Entry v ∃detailD.> u ∃detailC.> Entries are balanced double entry records.

detailD v detail
detailC v detail

(3) Dis(detailD, detailC) detail is the disjoint union of detailD and detailC
Entry v ∀detail.(∃detailD−.Entryt

∃detailC−.Entry)

(4) DetDef v= 1detailDef−.EntryDef A detail definition corresponds to exactly only one accounting
entry definition.

detailDefD v detailDef
detailDefC v detailDef

(5) Dis(detailDefD, detailDefC) detailDef is the disjoint union of detailDefD and detailDefC
EntryDef v ∀detailDef.

(∃detailDefD−.EntryDeft
∃detailDefC−.EntryDef)

> v ∀detailDefD.(∃hasDC.{debit}u
(6) ∀hasDC.{debit}) Roles detailDefD and detailDefC are associated to debit
> v ∀detailDefC.(∃hasDC.{credit}u and credit.

∀hasDC.{credit})

(7) EntryDef v ∃detailDefD.>u Accounting entry definitions are balanced double entry records.
∃detailDefC.>

(8) DetDef v= 1account.Account A detail definition has associated a single account.

(9) MetaRule2(detailDefD, detailD) Mbox axioms introducing sets of Tbox axioms that follow
MetaRule2(detailDefC, detailC) certain pattern.

Table 2: SIGGA OMM Tbox, Rbox and Mbox.

From [13] we recall that an ontology O with meta-modelling is a tuple (T ,R,A,M)
where T ,R andA are a Tbox, Rbox and Abox respectively, andM is an Mbox, which
is a set of meta-modelling axioms (such as renterPay =m RenterPayEnt). We now
extend the Mbox by adding MetaRule and MetaRule2 axioms toM. We also recall that
an interpretation I of and ontology O = (T ,R,A,M) has a domain of interpretation
∆ that can contain sets, sets of sets, and so on, since with meta-modelling an individual

(equated to a class) can be interpreted as a set.
Moreover, in order to explicitly declare correspondences established between defini-
tional level roles and operational level roles, in the following, we introduce introduce the
new constructor MetaRule(R,S) for roles R and S. The intuition behind the new con-
structor is that pairs (a, b) in R in the higher level are translated as TBox axioms with
S in the lower level. For convenience, we also introduce the constuctor MetaRule2. We
say that I |= MetaRule(R,S) if AI ⊆ (∀S.(tX))I where X = {B | (aI , bI) ∈ RI
and aI = AI and bI = BI} (note that t∅ = >). We say that I |= MetaRule2(R,S)
iff I |= MetaRule(R,S) and I |= MetaRule(R−, S−).
Note that OMM contains the axioms (9) expressed using MetaRule2 which is equiva-
lent to adding a whole set of axioms following a certain pattern such as (6) and (7) of
OM.

From [13] we recall that the tableau algorithm for checking consistency of an ontol-
ogy with meta-modelling extends the tableau algorithm for an ontology without meta-
modelling by adding three expansion rules (to transfer equalities and inequalities be-
tween individuals with meta-modelling to corresponding concepts) and a condition to
avoid the domain to be a non well-founded set. To deal with the MetaRule2 constructor,
we have to add the new expansion rules to the algorithm, which exceeds the scope of
the present work.

3.3 Comparing the two ontological models

In this section we analyze how OMM design accomplishes the set of requirements
presented in Section 2 highlighting the pros and cons of this approach. We compare the
OM and the OMM designs presented in previous section.
Req. 1 is solved in OM and OMM the axiom (2) in both tables 1 and 2.
Req. 2 is solved in OM and OMM by the axiom (3) in both tables 1 and 2..
Req. 3 is solved in OM by the axiom (5) of Table 1 whereas for OMM by the axioms
(8) and (9) of Table 2.
Req. 4 is solved in OM and OMM by the axiom (1) in both tables 1 and 2.
Req. 5 is solved for OM by axioms such as Eq. (7) in Table 1 that must be declared for
each subclass of Det. However, OMM solves it by the axiom (4) in Table 2.
Req. 6 is solved for OM by axioms (6) and (7) in Table 1 but OM has several drawbacks:
i) there is no definitional level to verify the correspondence, and ii) the axioms must be
declared for each kind of accounting entry. This is a relevant aspect because the real
system has defined around 80 different kinds of accounting entries, and this amount
is still growing. For OMM it is not needed to express it for each entry definition. The
requirement is ensured by combining meta-modelling axioms (that equate instances of
EntryDef to subclasses of Entry and instances of DetDef to subclasses of Det) with the
MetaRule2 constructor (axioms (9) in Table 2). Whereas for OM entry definitions are
expressed in the TBox, for OMM they are registered in the ABox as “data”, so OMM
is more flexible for dynamic business rules.
Regarding Req. 7, both OM and OMM have the capability of classifying entries by a
kind of accounting entry, since this is given by the subclasses of Entry. If we consider
another relevant criteria such as “all entries with the account Cash at debit”, for the first

design we just introduce the class ∃detailD.(∃account.{cash}). For OMM it is not
so direct, because we have accounts at definitional level. We could solve it if we could
express higher order queries:

q(y) = ∃X ∃x ∃z.account(x, bank) ∧ x =m X ∧X(z) ∧ detailD(y, z) (1)

Req. 8 is about classifying entry definitions according to a given criteria, for instance
“all entry definitions with the account Bank at debit”. For OM, we cannot classify en-
try definitions since they are not represented as instances, they are classes. Hence, it
would be necessary to explore the TBox axioms of the form of (8) in Table 1 looking
for classes with the text “bank” in their definition, and then to obtain classes of the form
of (6) in Table 1. Besides being a mechanism a bit cumbersome, the classification is not
expressed in the model at all. However, for the OMM design the requirement is solved
by introducing the class ∃detailDefD.(∃account.{bank}).
To analize Req. 9 we consider the example presented in Section 2, in which a given
renter cannot pay his damage expenses because the debt account was not included in
the “renter payment” entry definition. Again, for OM, to validate that all asset accounts
that generate debts are in the ”renter payment” entry definition as credits, we would
have to explore all axioms of the form (8) in Table 1. The problem is that the require-
ment is about validating definitions, not “data”. By contrast, with OMM we solve the
requirement just adding the following axiom:

Asset u ¬Availability u ∃account−.(∃detailDefD−.>) v

∃account.−.(∃detailDefC−.{renterPay})
(2)

Another benefit of validating definitions, is that for certain kind of requirements we can
check for a condition only once over an accounting entry definition instead of checking
the same condition over all concrete accounting entries of that definition. For instance,
for all entries that move availability accounts (cash, bank), it must hold that, if an avail-
ability account is at debit, no non availability account can be at debit (and the same at
credit). This condition can be easily checked for the OM and OMM designs by intro-
ducing respectively the following axioms:

Entry u ∃detailD.(∃account.Availability) v
Entry u ∀detailD.(∃account.Availability)

(3)

EntryDef u ∃detailDefD.(∃account.Availability) v
EntryDef u ∀detailDefD.(∃account.Availability)

(4)

But for OM, all daily transactions such as those of renter payment (that moves cash
or bank) must be validated, and the same happens for other conditions. However, with
OMM it is enough to check these conditions at the moment of introducing each def-
inition because the MetaRule2 ensures that concrete entries agree with corresponding
definitions. This requirement is relevant since it shows the role played by the defini-
tional ontology in the OMM design. The fact that there is an ontology that “describes
definitions” turns out natural defining relations and imposing restrictions between them.
Thus, experts can check for inconsistencies or inferences in their definitions before the
application is running. In the example of Eq. (2), if some instance of Asset at debit in
some entry definition (left part of the axiom) is not associated to the ”renter payment”
entry definition at credit (right part of the axiom), then the reasoner will create the as-
sociation.

We now discuss Req. 10. Consider the example of Section 2 and suppose an expert
change the definition of the “Renter Payment” entry. Instead of the account “Renter
Debt”, a new account “Rental Debt” must be at credit, but old entries must be kept un-
changed and classified as “Renter Payment” entries. For the OM design, axioms (6) in
Table 1 should be modified as follows:

RenterPayEnt v∀detailD.(PayCashDet t PayBankDet)

RenterPayEnt v∀detailC.(PayDebtDet t PayRentDet)
(5)

Moreover, in (7) and (8) in Table 1 the axioms below should be added:

PayRentDet v∀detail−.RenterPayEnt

PayRentDet v∃account.{rentalDebt}
(6)

The problem with this new “Renter Payment” entry definition is that it is not clear what
is the current definition. A solution to differenciate accounting entries that agree with
the current definition from those that do not, could be to define a new class State with
two instances current and nonCurrent, and associate instances of Det to one of these
states. But as all entries with the “Renter Debt” account associated are deprecated, we
have a redundance since we represent definitional aspects at operational level. Another
solution is to define a subclass CurrentRenterPayEnt of RenterPayEnt, but we have to
define these subclasses for all subclasses of Entry. For OMM we can associate current
or nonCurrent to instances of DetDef at definitional level. So, we can explicit what de-
tail definitions are current and what are not.
Finally, we analize Req. 11. Regarding the OM design, the expert’s view is represented
by TBox axioms (6), (7) and (8) in Table 1 that describe different subclasses of En-
try, and the operator’s view by ABox axioms which assert to what kind of accounting
entry (a subclass of Entry) concrete entries belong. However, TBox axioms (6), (7)
and (8) in Table 1 indeed describe business “data” but not business rules (definitions).
So, in practice OM properly conceptualize relations and restrictions at the operational
level whereas provide a weak conceptualization at definitional level. By contrast, for
the OMM design there is a definitional ontology (upper part of Figure 3) that describes
business rules, allows to introduce relations between definitions and is conceptually un-
coupled from the ontology (lower part of Figure 3) that describes relations over business
“data” (operational level). Hence, the OMM design fully fulfills the requirement.

4 Conclusions and future work

In this work we present how an ontological meta-modeling approach can be applied to
a real case on the accounting domain based on the ALE system. The ontoREA ontology
[5] conceptualizes business transactions of the ALE system. However, ontoREA mod-
els the ALE system from a unique point of view. Our approach subsumes ontoREA, we
use it at definitional level as vocabulary to model the accounting concepts from the ALE
system. In this work we show practical reasons that the ontological meta-modelling here
presented provides a better expressivity level than both the relational model and the on-
tology model without meta-modelling. Table 3 summarizes advantages and drawbacks

for each design alternative, illustrating how the set of requirements of the case study is
expressed in the relational model, and in the two ontology-based designs.

Table 3: Expressivity achieved in the SIGGA accounting module with Relational
Scheme, Ontological design (OM) and Ontological Meta-Modelling design (OMM)

For the OMM approach, the model itself provide elements to fully represent the set
of requirements. Among them, the most relevant are the capabililty for checking the
correctness of expert definitions as well as dealing with the impact of changing them,
what is achieved since definitions are for experts “data” that they can manage and even
modify if changes in the business require it.
Our meta-modelling approach is also useful for other application domains. The example
of page 28 in [4] can easily be represented with OMM, with the axioms below:

ProcModel(A6) MobileModel(IPhone5) compatible(A6, IPhone5)

A6 v Processor IPhone5 v Mobile

∃compatible.> v ProcModel > v ∀compatible.MobileModel

∃installedIn.> v Processor > v ∀installedIn.Mobile

(7)

We see that A6 and IPhone5 have an implicit meta-modelling since they are indi-
viduals and also classes. Moreover, installedIn is a role between superclasses of A6
and IPhone5 whereas compatible is a role between metaclasses ProcModel and
MobileModel. By introducing the axiom:

MetaRule2(compatible, installedIn) (8)

we ensure that instances of A6 will be linked to instances of IPhone5 through the role
installedIn.
As a general conclusion, the ontological meta-modeling approach (OMM) for mod-
elling a business application provides benefits from the perspective of different user

profiles. From the designer/developer’s perspective, the approach results profitable both
in the design and in the maintenance of the application. In the application design, it pro-
vides an intuitive and flexible way for introducing business rules at different abstraction
levels. In the application maintenance, having business rules expressed as axioms helps
prevent mistakes, which can happen when changing code. From the expert user’s per-
spective, it is a useful mechanism to validate the correctness of their definitions since it
allows to relate definitions as well as declare restrictions over them. From the operator’s
perspective, as the correctness of the definitions can be validated, a lot of problems are
avoided at “application operation time” during customer service.
In the near future, we plan to investigate algorithms for checking consistency of on-
tologies with the new constructor MetaRule2 and for answering higher order queries
such as Eq. (1). Moreover, we also plan to enhance a prototype of the accounting case
study implemented over a relational database, by adding the implemented ontologies
with meta-modelling as detailed in the present work.

References

1. A. Abbasi and N. Kulathuramaiyer. A systematic mapping study of database resources to
ontology via reverse engineering. Asian J. Inform. Technol., 15, 2016.

2. C. Atkinson and T. Kühne. In defence of deep modelling. Information & Software Technol-
ogy, 64, 2015.

3. C. Atkinson, T. Kühne, and J. de Lara. Editorial to the theme issue on multi-level modeling.
Software and System Modeling, 17, 2018.

4. V. A. de Carvalho and J. P. A. Almeida. Toward a well-founded theory for multi-level con-
ceptual modeling. Software and System Modeling, 17, 2018.

5. C. Fischer-Pauzenberger and W. S. A. Schwaiger. The OntoREA Accounting Model:
Ontology-based modeling of the accounting domain. CSIMQ, 11, 2017.

6. B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, and U. Sattler. OWL 2:
The next step for OWL. J. Web Sem., 6, 2008.

7. N. Guarino. Some ontological principles for designing upper level lexical resources. CoRR,
cmp-lg/9809002, 1998.

8. G. Guizzardi. Ontological foundations for conceptual modeling with applications. In Ad-
vanced Information Systems Engineering. CAiSE 2012, 2012.

9. G. Guizzardi and G. Wagner. A unified foundational ontology and some applications of
it in business modeling. In CAiSE’04 Workshops in connection with The 16th Conference
on Advanced Information Systems Engineering, Knowledge and Model Driven Information
Systems Engineering for Networked Organisations, 2004.

10. M. Hazber, R. Li, X. Gu, and G. Xu. Integration mapping rules: Transforming relational
database to semantic web ontology. 10, 2016.

11. M. Lenzerini, L. Lepore, and A. Poggi. Metaquerying made practical for OWL 2 QL ontolo-
gies. Information Systems, 2018.

12. W. B. Meigs and R. F. Meigs. Financial accounting. McGraw-Hill, 4th ed. edition, 1983.
13. R. Motz, E. Rohrer, and P. Severi. The description logic SHIQ with a flexible meta-modelling

hierarchy. J. Web Sem., 35(4).
14. K. Munir and M. S. Anjum. The use of ontologies for effective knowledge modelling and

information retrieval. Applied Computing and Informatics, 2017.
15. A. Olivé. The universal ontology: A vision for conceptual modeling and the semantic web

(invited paper). In Conceptual Modeling - 36th International Conference, 2017.

	Unifying Multilevel Modelling through Ontologies
	Introduction
	A real-world case study of an accounting information system
	Ontological modelling
	The SIGGA ontological model (OM)
	The SIGGA Ontological Meta Modelling (OMM)
	Comparing the two ontological models

	Conclusions and future work

