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Abstract

This paper analyses the decision-making processes of heterogeneous agents, when both
individual preferences and group actions are taken into account. Under the assumptions of
certain mechanisms of interactions and assuming cognitive and informational restrictions,
an agent-based model is introduced to analyze the evolution of decisions over time.

The results of the simulations show how social pressures can determine the relationship
between individual and social preferences. Societies whose agents have strong individual
preferences have outcomes with fragmentation processes that generates a higher number of
groups. A minor importance of the individual preferences, results in a smaller proportion
of individuals maximizing their individual utility. As well, the quantity of options available
and the initial proportion of each alternative are significant variables to determine the
proportion of individuals selecting a particular option.

In addition, the study analyses the existence of equilibria of the dynamical system.
To this aim, the notion of metastable equilibria is introduced and linked to the dynamic
analysis, showing the existence of one or more stable/metastable states depending on the
parameters of the model.
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1 Introduction

A main aspect in opinion formation is to study the dynamics of this process. In particular, this
study aims to know how this process develops when individuals obtain information from choices
made by their closest neighbors. For this purpose, it is important to formalize the relationship
between individual and social preferences.

Conformity is linked to those decisions taken by agents that depend only on the observable
characteristics -or decisions- of the rest of individuals. This concept, studied in depth from
the pioneer experiments of Asch (1951), has been extensively analyzed experimentally. The
degree of conformity is related to the degree of influence that other individuals have on agents’
decisions, as shown by Bond and Smith (1996) and Hamamura (2012), between others.

The literature has focused on studying the consequences that social preferences have for
social welfare. In Banerjee (1992) and Bikhchandani et al. (1992) find that the solutions may
not be the socially desired. Other authors study how social pressure change agents motivations,
which generates changes in their preferences (see Maness and Cirillo (2016) and Vanhée et al.
(2015)).

The inclusion of social preferences leads us to study the trade-off between social and individ-
ual preferences. It may happen that local interactions allows to self-organization (see Kirman
(1992), Arthur et al. (1997) and Page (2001)). The opinion formation phenomenon and the
appearance of consensus and fragmentation processes are the main results in this field. See
Krause (2000), Hegselmann and Krause (2002), San Miguel et al. (2005), Watts and Dodds
(2007), Acemoglu and Ozdaglar (2011), Xie et al. (2016) and Ŝırbu et al. (2017) for review
studies in this topic.

Schelling (1971) shows that the level of tolerance of the individuals has consequences in the
result. Tolerance is posed as the permissible level of individuals in the environment of different
type, before modifying behavior. In addition, Schelling (1971) shows that lower tolerance leads
to greater segregation.

Granovetter (1978) introduces the notion of threshold in this framework as the level from
which the system changes its behavior. The model in this paper introduces agents with different
thresholds, according to their decision rules. The individual threshold depends on the preferred
choice and on the relationship between individual and social preferences. When individuals
choose their preferred option, they have a greater tolerance to different crowding types (or
options), compared with the case where individuals do not choose their preferred type. The
relationship between social and individual preferences also influences the threshold, since a
greater weight of individual preferences increases the level of tolerance to external pressures.

This paper introduces a dynamic version of Conley and Wooders (2001) where the solutions
to the model are based on different assumptions about the behavior of the agents and their
interactions. By assuming that the agents have intrinsic preferences over the actions to be
taken, the study shows the mechanism by which a choice of an agent determine the actions of
other individuals.

The paper contributes to the literature by introducing a different approach to the topic of
intertemporal change in decision-making processes, including differentiated individuals, cogni-
tive and processing constraints, and decisions that change over time according to the opinion
spreading mechanism selected.

The simulations of the model show that coalitions between individuals in clusters arise from
the iterative decision-making process of agents, based on their individual preferences (unob-
servable characteristics) and actions taken by other individuals (observable characteristics).
Both observable and unobservable characteristics are the fundamental ingredients of the static
models presented in Conley and Wooders (2001) and Brida et al. (2011). The present study
introduces a dynamic framework for these models.
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The performed simuations seem to show that generically the model converges towards a
stable situation. To analyze this point, the concept of metastable equilibrium is introduced
showing that -for some of the values of the parameters- the model converges to a stable equi-
librium and for others, to a metastable equilibrium.

The research also generalizes -by introducing intrinsic preferences- the dynamic models in
Castellano et al. (2009) and Axelrod (1997). This modification allows observing processes
of local convergence, fragmentation and polarization when the agents decide on the basis of
a single factor. Then, fragmentation processes are achieved from simpler and more realistic
heuristics.

In addition, the proposed model allows to replicate the basic ideas of Thaler and Sunstein
(2008). These authors expressed that it would be desirable to use as public policies, small
mutations or “nudges” that cause coordinated actions. The simulation results presented in the
present study shows that the conjunction of small mutations and the interaction process allow
a higher frequency of coordinated actions.

This paper is organized as follows. Section 2 introduces the model, following the ODD
Protocol (Grimm et al., 2006). This methodology allows to introduce the experimental design
and working hypotheses. Section 3 describes the empirical results, exposing and discussing the
simulations. Finally, Section 4 presents the conclusions, limitations of the study and future
research.

2 Theoretical model and methodology

Economic theory in particular and the social sciences in general have benefited from the broader
range of aspects that allow for agent-based models, which can not be formulated from other
approaches. However, the way in which agent’s behavior is designed is fundamental. Small
variations can cause, given the nonlinearities of the model, very different effects. Then, the
different processes involved in these models must be explained. The advances arising from the
ODD Protocol (see Grimm et al. (2006), Grimm et al. (2010), Grimm et al. (2013)) go in this
direction, providing an appropriate framework for describing agent-based models for purposes
of scientific dissemination. This protocol was originally introduced in Ecological modelling
(Grimm et al., 2006), but its use in the social sciences has been increasing in recent times
(Grimm and Railsback, 2012).

2.1 Model description and documentation

In this subsection the characteristics and design of the model is introduced, following the next
points:

1. Purpose: the main purpose of this model is to analyze the dynamics of decision processes
of individuals and to understand how the groups of individuals are distributed and evolve
over time. The model is based on certain assumptions about the behavior of the agents
and topological characteristics of the configuration. It is sought to know if different types
of behavior, understood as differences in the valuation of individual and social preferences,
give rise to different aggregate behaviors, in particular to the emergence of consensuses
or the formation of clusters.

2. Entities, state variables, and scales: The model consists of agents, which are located in
cells of a two-dimensional grid. The individuals interact with other agents by means of
the public information they provide through their crowding type c (c = 1, ..., C). In this
context, there are C different crowding types.

3



3. Process overview and scheduling: In each period of time, each agent interacts with its
reference group -a Von Neumann or Moore neighborhood with radius 1-. Each agent
choose a type based on: i) its preferences on crowding types, ii) the type selected in the
previous period and iii) the type selected by the agents of its surroundings. The decision
rules determine the proportions needed of each type in the neighborhood to change or
maintain the crowding type.

4. Design concepts:

• Basic principles: This model seeks to study the dynamics resulting from the process
of interaction between individuals. Following Ajzen (1985), Conley and Wooders
(2001) and Brida et al. (2011), for each agent, the utility function is constructed
from individual and social preferences, and represents the different rules of behavior.

• Emergence: The distribution of crowding types in the population is an emergent
feature of the system. It originates from the process of interactions and can lead
to consensus (global convergence), defined clusters (local convergence and global
polarization; see Axelrod (1997)) or without defined patterns (global and local frag-
mentation).

• Adaptation: In order to decide the crowding type, the agents take into account
which of the alternatives generates a greater utility, considering three ingredients:
i) the prefered crowding type, tii) he crowding type selected in the previous period
and iii) the crowding type of its surroundings.

• Objectives: The utility function of these agents can be written as:

(1) ui,t(c, τ,m) =
a

C
∗ fi(c) + b ∗mc,t − d ∗mc′,t

where:

– f(c) are individual preferences, exogenous to the model, with f(c) > 0 if c = τ
(preferred crowding type) and f(c) = 0 in other cases.

– mc,t is the proportion of agents with crowding type c in the period t and mc′,t

is equal to the proportion of agents with a crowding type other than c in t, in
the neighborhood of i.

– C is the number of crowding types available.

– a, b and d are the parameters that will allow us to study other behaviors from
the initial model, with a = b = d = 1 (Table 1). In particular, we find:

∗ maximizer behavior: a = 1, b = 1, d = 1,

(2) ui,t(c, τ,m) =
1

C
∗ fi(c) +mc,t −mc′,t

∗ conformist behavior: a = 0, b = 1, d = 1,

(3) ui,t(c, τ,m) = mc,t −mc′,t

∗ loss aversion behavior: a = 1, b = 1, d = 2,

(4)
a

C
∗ fi(c) +mc,t − 2 ∗mc′,t

∗ exclusive -or snob- behavior: a = 1, b = −1, d = −1,

(5) ui,t(c, τ,m) =
1

C
∗ fi(c)−mc,t +mc′,t
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∗ intrinsic behavior: a = 1, b = 0, d = 0,

(6) ui,t(c, τ,m) =
1

C
∗ fi(c),

where τ is its preferred type.

From this characterization, the agents decide which of the alternatives allows
them to obtain a greater utility.

• Learning: Each agent draw on information from the previous period and can change
their decision, but do not change their decision rules based on this new information.

• Prediction: When agents make their decisions, they use all available past informa-
tion. They do not consider the future actions of the rest of agents.

• Sensing: Agents know only their preferences about crowding types, their decision
regarding crowding type in the previous period and the decisions of the agents in
their neighborhood. Based solely on that information, the agents construct their
decisions.

• Interaction: Interactions occur from available public information about the crowding
type selected in each time period.

• Stochasticity: In this model, the crowding type preferred by each agent and the
crowding type selected in the initial period are randomly distributed. As a con-
sequence, in C−1

C
cases, the crowding type is different from the preferred crowding

type in t = 0. Also when more than one crowding type generates the maximum
level of utility among the available options, agents choose randomly between them.
Note that there is also randomness when studying the model under the presence of
mutations.

• Collectives: Are an emergent feature of the system. These are derived from the
process of interactions, which lead to the formation of clusters and consensuses.

• Observation: From the computational model, the following information is obtained
for each time period:

– Number of groups formed, discriminated between those one individual and those
with several agents.

– Proportion of agents that opted for each crowding type.

– Proportion of agents who selected their preferred crowding type.

– Proportion of agents who change their crowding type, compared to the previous
period.

5. Inicialization: The simulations are performed from a grid of 35 x 35 agents, in Netlogo
software (Wilensky, 1999). As discussed above, the initial crowding type and their pre-
ferred crowding type are generated randomly in each simulation. As a result, the initial
conditions vary between simulations.

6. Input data: The model does not use external data sources to represent the interaction
processes between agents.

7. Sub models: The parameters involved the model are described in Table 1. Following
Oremland and Laubenbacher (2014), to determine the total population of agents and the
number of time periods, data average and dynamical changes in the configuration are
examined to decide an increase in the number of runs. The model pseudo-code can be
found in Appendix I.
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Table 1: Model parameters

Parameter Description Value

N total of agents 35 x 35 = 1225
t time periods 800
a individual utility parameter 0 when conformist,

1 in o/c
b social utility parameter -1 when exclusive,

1 in o/c
d antisocial utility parameter -1 when exclusive,

2 when loss aversion,
1 in o/c

c crowding type c ∈ {1, ..., C} = C.
p mutation rate p = 0 o p = 0.015

We perform 100 replicates of each simulation, by using:

• three decision rules (maximizer, conformist and loss aversion),

• two values of p (0 & 0.015), as in Breukelaar and Bäck (2005),

• two, three or four crowding types,

• two sets of neighborhoods (Moore and Von Neumann).

3 Numerical results

In this section we describe the main results of the study, using the model parameters for the
discussion.

3.1 Convergence

0 200 400 600 800

0
5

10
15

20

(a)

steps

gr
ou

ps

mean
median

0 200 400 600 800

0.
02

0.
04

0.
06

0.
08

0.
10

(b)

steps

cr
ow

di
ng

 ty
pe

 v
ar

ia
tio

n 
ra

te

mean
median

Figure 1: Convergence of the model from central tendency measures (a): Decrease in groups
quantity. (b): decrease of the crowding type variation rate.

Note that one indicator of convergence of the model is a decrease in crowding types variation.
Figure 1 presents the graphical representation of the simulation results, comparing number and
rates of variation of groups from t = 0 to t = 800. Figure 1(a) shows a decrease in the quantity
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of groups, both in mean and median. After a small number of runs, the quantity of groups
stabilize in five. Figure 1(b) shows a decrease in the crowding type variation rate, converging
at the end of the periods to values below 4 %. Then the system tends to a state with fewer
groups and crowding type variations.

Figure 2: Crowding type variation rate, with respect to different lags. The exercise is con-
structed using C=3, maximizer behavior, and a time period from t = 0 to t = 300.

Figure 2 shows a decrease in the crowding type variation rate, confirming the facts illustrated
in Figure 1(b). In this case, the deviation with respect to the previous period is around 5%.
This deviation occur frequently in the edge of the groups, because several different options
influence agent’s behavior. Note that when the number of different lags is higher than one and
if randomization prevails, the crowding type variation rate with respect to t lags would be the
same.

Figure 2 shows that there is a number of agents who remains in a stable state and other
agents who cyclically changes his state -spin- between the different options. This indicates
the emergence of a metastable equilibrium. Comparing the crowding type variation rate at
different lags, a 5% of agents vary between two crowding types. The system fluctuates between
two different states, with variations in the edges of the groups.

Kelso (1995) describes metastability as a state when the fixed points have disappeared, but
visits to the remnants of those fixed points are inherent to the system. (Kelso, 2009, p. 1538)
defines a significant aspect of metastability, as follows: “... is the simultaneous realization of two
competing tendencies: the tendency of the components to couple together and the tendency
of the components to express their intrinsic independent behavior.” A metastable result is
suggested by Balenzuela et al. (2015) in a voting scheme, under certain circumstances. In a
two-dimensional social network grid, this is one of the outcomes of this study.

Cohesion emerges from the formation of consensus, i.e., an agreement between the people of a
community. Thus the dynamic process leads to crowding types shared by the whole community
and crowding types that are no longer chosen. In terms of market share, the crowding type
share by the entire community has a 100% market share and the options not chosen have a 0%
market share.

Figure 3 shows the average market share of each crowding type, from initial conditions -when
all the options have similar market share- to final conditions, when much of the simulations
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arrive to a consensus -with market share equal to 0% or 100%- and several simulations have a
fragmentation and polarization process -with market share different to 0% or 100%-.
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Figure 3: Opinion dynamics (market share of each crowding type) from t = 5 to t = 800,
estimating the model with (a): two crowding types; (b): three crowding types

The figure shows that at the beginning of the time period, there is a balance between
the different options (represented as a continuous line) and a predominance of some options
over others (at t = 800, in bold). This is a consequence of the interaction process between
individuals, that also depends on the initial conditions of the system. The behavior coincides
when using two options (Figure 3(a)) or three options (Figure 3(b)).

3.2 Random decisions and consensus

Figure 4 shows the different performance of the model with and without mutations. In the case
of the model in the presence of mutations, the dynamical process of interactions significantly
modifies the quantity of agents who choose their preferred option (Figure 4(b)), the number of
groups (Figure 4(c)) and the consensus is more frequent (Figure 4(d)). Note that the crowding
type variation rate converges to the same level at t = 800 (Figure 4(a)) for the cases of p = 0
or p = 0.015.

Note that the random choice of crowding types, implies that options who are selected that
may not be individually preferred, could be socially desirable. Due to mutation the results with
different behavioral rules are similar -but different to results without mutation-, as can be seen
in Figure 4(c).

3.3 Opinion dynamics and decision rules

This section analyzes how the behavioral type exhibited by individuals (maximizer, conformist
or loss aversion) affect the solutions of the model, both in the speed of convergence and in the
degree of cohesion reached under each behavioral type.

The “conformist” behavioral type shows individuals only concerned about their social pref-
erences (Eq. 3), as the individual utility parameter is zero. As mentioned earlier, this behavior
has been analyzed extensively -see Asch (1951) and others for experimental results and Baner-
jee (1992) and others for theoretical results in economics, both in dynamic environment-. The
agent observes the options taken by their neighbors and then, opt for the most popular; in the
case that two options have the same demand, the agent sort at random.

The “maximizer” behavior seeks to emulate the individual?s characteristics in the Conley
and Wooders (2001) model in a dynamic environment (Eq. 2). In this case, each agent knows
the actions that individuals selected the previous period in their neighborhood and his preferred
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Figure 4: (a): variation rate of the crowding type. (b): Rate of individuals selecting their
preferred crowding type. (c): Number of groups, according to the decision rules. (d): Opinion
dynamics (market share of each crowding type), evaluated in t = 800.

option. Note that this behavioral type is the one that gives higher relevance to the individual
preferences, as the individual parameter a is equal to the social parameters b and c.

By the contrary, the “loss aversion” behavior ponders differently the number of individuals
in the surroundings that have the same crowding type than those having a different crowding
type (Eq. 4). This can lead to higher variation in the actions of individuals over time and could
allow to the emergence of cohesion.

For each simulation, in the initial period, the crowding types are randomly distributed
(approximately 25 % of each type when there are four types, one third of each type when there
are three types and 50 % of each type when there are two crowding types).

Figure 5 shows the distribution of the chosen crowding types, discriminated by behavior
and quantity of crowding types. The 95 % confidence intervals is generated by bootstrap.

Figure 5(a) shows that in simulations with maximizing or loss-averse behaviors, no una-
nimity is generated after 800 periods -unanimity seen as a market share equal or close to one
for dominant crowding types and market share equal or close to zero for dominated crowding
types-. By the contrary, the conformist behavior has a bi-modal distribution: more than half of
the simulations shows cohesion and the rest shows a fragmentation process, with market share
close to the mean. Figures 5(b) and 5(c) shows the same results for C = {3, 4}. Note that
under a conformist decision rule, individuals tend to be more cohesive, with a higher frequency
of consensus over other types of behavior. This result is coherent with intuition, given that
the utility function of these individuals depends solely on the actions taken by others in their
surroundings, with respect to other behavioral types that also depend on individual preferences.
The mode of the conformist decision rule is at the extremes, in contrast to other behavioral
types. The distribution function of the other behavioral types concentrates in values close to
the mean, showing also a behavior that is coherent with the initial intuition of the experiment.

Figures 7, 8 and 9 in Appendix II show the dissimilar behavior of the system under different
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Table 2: Kolmogorov-Smirnov and Anderson-Darling statistic tests. Comparison of distribu-
tions between maximizer and loss-aversion behavior types.

Figure K-S Test A-D Test

Fig.5 (a) 0.095* 6.771***
Fig.5 (b) 0.167*** 18.93***
Fig.5 (c) 0.08 2.091*

* Significant at 10%; ** significant at 5%; *** significant at 1%.

crowding types for different periods and number of available crowding types, showing also
the correlation between the initial proportion of crowding types and the final proportion of
individuals choosing and option.

We can establish that different decision rules lead to different results, if the distribution
function of each decision rule is significantly different from the rest. Table 2, shows the results
of testing the null hypothesis that maximizers and loss-averse agents arose from the same
distribution function. The Kolmogorov-Smirnov and Anderson-Darling tests indicate that we
can reject the null hypothesis when there are two or three crowding types (Figure 5(a),(b)),
and we can not reject it in presence of four crowding types (Figure 5(c)).
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Figure 5: Frequency of each crowding type at t = 800, according to behavior type and number
of crowding types (a): two options, (b): three options, (c): four options.

Figure 6 represents the differences between decision rules, when a dynamic environment
is simulated. Figure 6(a) shows the crowding type variation rate by period, according to the
different decision rules. As we mentioned before, the values ??reached (less than ε = 5%, for
different behaviors from t = 200 onwards) and their trajectory seems to ahow the existence of
a dynamic equilibrium. However, the way in which actions evolve is different according to the
decision rule: the conformist heuristic stabilizes at a variation rate of 2%, while the maximizer
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Figure 6: (a): crowding type variation by period, according to the different decision rules. (b):
Percentage of population with individual preferences equal to their choice, according to the
different decision rules.

rule and the loss-averse rule stabilize at 4%.
Figure 6(b), shows the proportion of individuals choosing their preferred option, for each

moment t. As expected, the results show that the maximizer behavior is the one that gives
greater importance to the individual preferences, whereas the conformist behavior does not
weigh it. Between both extremes we have the loss-averse behavior, which gives a greater weight
to the losses caused by belonging to a different crowding type compared to the neighborhood.

Note also that the conformist behavior quickly converges to its reference value. In the other
cases, two phases happen: the first, dominated by individual preferences, while the second stage
is determined by the pressure exerted by the environment to change the chosen option. In the
first phase, the percentage of population who choose their preferred option grows; after that,
social pressure produces a decay on this phenomena.

As a final comment, beggining from a simple set of rules, the model reveals a complex set
of interactions and an emergent group behavior. The set of rules concerns only the relation
between an agent and his neighbors and between individual, social and antisocial preferences.

4 Conclusions

4.1 Main results and discussion

The formulated model and the decision rules evaluated allow to reach different forms of equilib-
rium. The results show that these equilibrium are characterized by the grouping of individuals
into clusters, the amount of which depends on the decision rules adopted, the number of options
available, the mutation probability and the initial proportion of each option. Also, simulations
show that these equilibrium can be stable or metastable.

Under a strong influence of social pressures, individuals organize themselves in a smaller
number of groups and manage to converge to a lower crowding type variation rate. As a
counterpart, individuals less frequently select their preferred option, as we can find in Wooders
et al. (2006), Xu et al. (2015) and Beran et al. (2015).

Cohesion is common when individual preferences are not taken into account; we may even
find that different weights to individual and social preferences yield different results. We can find
differences between societies, according to the degree of individualism or intrinsic collectivism.
This work then allows us to study the behavior of societies, in the sense of Bond and Smith
(1996) and Hamamura (2012).

Different weights to individual and social preferences lead to different outcomes. With a
predominance of individualism, agents execute their preferred actions more frequently compared
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with a predominance of conformism.
The loss aversion behavior has a different treatment to the gains derived from the individuals

of its surroundings who choose the same crowding type, with respect to the utility losses
generated by choosing a different option to its surroundings. As a consequence, these individuals
will obtain a greater utility from the cohesion.

This study analyses how the results of the original computational model are modified, when
we allow crowding type’s mutations. In this case, a higher amount of consensus is reached and
fewer groups are made, with fewer individuals choosing their preferred option. The effect is
similar to conformity, although in this case the process begins with a random mutation and
then is reinforced with the interaction process. However, it was observed that this effect is
more important when the decision rules have an individual preference component. This can be
explained by the fact that individual preferences act as a restriction, the default option in the
sense of Thaler and Sunstein (2008).

Due to mutation, individuals acquire a new state, which they could not previously reach.
This model allows us to understand how socially undesirable options interact over time, the
possibilities of introducing a mutation in the default option, and the consequences it has on
aggregate behavior. Together with decision rules and the possibility of mutations, result show
that the quantity of options available and the initial proportion of the crowding type are
significant variables to determine the proportion of individuals choosing a particular option.
Then, the conclusions of Clark and Polborn (2006), Brida et al. (2010) and Brida et al. (2011)
are fulfilled in a dynamic context1. In economics, it is important to understand that the initial
distribution is significant, even in the case where individuals do not know the initial distribution.
The model predicts that the initial market share of a given product influences its final market
share, because individuals obtain a greater utility of consuming the same product as other
agents, even though agents do not know the market share of the product.

4.2 Final considerations and recomendations

The simulations performed in this paper show that after an initial number of periods, larger
groups emerge from the dynamical process. These groups allow to reach the necessary threshold
to move from the individually-preferred option (outside the group) to the non-individually-
preferred option (within the group). The decrease in the proportion of individuals choosing
their preferred crowding type is an emergent behavior of the group.

The model proposed in this paper serves as a nexus between models with ordinal individual
preferences and models where the actions of individuals depend only on the actions of the
neighborhood. Hence, it is a generalization of several models in opinion formation dynamics
and allows the comparison between the results of those.

This model supports multiple extensions. One possible improvement is to study other
decision rules, allowing individuals to interact with different heuristics. In particular, one can
introduce influential members between the population of agents, (Mäs and Flache (2013); Xu
et al. (2015)), “fundamentalist” or “intrinsic” members who are not influenced by the rest of the
society; or members who are contrary to the opinion of the majority (Galam (2004); Borghesi
and Galam (2006); Makarewicz (2016)).

An additional extension of the model is to introduce other types of interactions as those in
the case of “small worlds” (Watts (1999); Wang and Shang (2015)).

Finally, another direction of future research can include the introduction of these simple
decision rules to study macroeconomic phenomena such as inflation (Salle et al. (2013)), the

1As in (Nowak et al., 1990, p. 370), the result of this type of model may not be a consensus, although the
result of the interaction process is the conformation of a smaller number of groups and a dependence of the
initial proportion on the final proportion.
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occurrence of crisis (Heymann et al. (2004)) or investment, saving, education and consumption
decisions.
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Appendix I: pseudo-code

;; in the first period, the selected and preferred crowding type is randomly chosen.
set c-type ( random )
set t-type ( random )

;; now, we count the agents in the neighborhood who have the same crowding type or dif-
ferent crowding type than the agent.
for c in (1:C)
mc = (count neighbors with c− type = c) ; same type
mc’ = (count neighbors with c− type != c) ; different type
for c in (1:C)
uc = a

C
* f(c-type) + b * mc - d * mc’

;; then, each agent choose an option according to the comparison between the utility gains that
give the different alternatives: c-type = max (uc), con c ∈ {1, ..., C} = C
;; finally, the system counts again the number of neighbors with each crowding type and calcu-
lates the alternative utilities. This process is iterative.

Appendix II: Convergence. Comparison of different deci-

sion rules.
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Figure 7: Convergence: market share with C = 2, comparing to t = 0
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Figure 8: Convergence: market share with C = 3, comparing to t = 0
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Figure 9: Convergence: market share with C = 4, comparing to t = 0
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