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Resumen

El Modelo Estándar de física de partículas ha logrado explicar con asombrosa precisión
las interacciones de los componentes fundamentales del universo conocido. Sin embargo,
a partir del descubrimiento del fenómeno de las oscilaciones de neutrinos, sabemos que
los neutrinos estándar tienen una masa no nula, del orden de 0,1 eV (seis órdenes de mag-
nitud menor que la masa de los electrones1). Ésta es la primer evidencia convincente de
física más allá del Modelo Estándar. Para explicar la presencia de masas de los neutrinos
el Modelo Estándar puede ser extendido agregando neutrinos derechos singletes del grupo
de simetría electrodébil SU(2), que permiten generar términos de masa de Dirac y de
Majorana al existir la posibilidad de que estos neutrinos sean su propia antipartícula. Así
se generan auto estados de masa livianos (los ya conocidos) y pesados (los neutrinos de
Majorana pesados) mediante el mecanismo llamado seesaw (subibaja). Sin embargo, en
su versión clásica el mecanismo seesaw sólo logra explicar los pequeñísimos valores de las
masas de los neutrinos livianos requiriendo que la mezcla entre estos y los neutrinos pesa-
dos sea prácticamente despreciable, haciendo muy difícil la detección de los efectos de los
neutrinos de Majorana pesados en diversos experimentos. En estas condiciones cualquier
observación de efectos físicos atribuibles a neutrinos de Majorana correspondería a física
más allá del mecanismo seesaw. En vista de este escenario, se han propuesto teorías de
campos efectivas que introducen neutrinos de Majorana pesados como nuevos grados de
libertad, pero modelando sus interacciones con las partículas estándar mediante opera-
dores efectivos que preservan las simetrías de gauge del Modelo Estándar. En esta tesis se
estudia la fenomenología de este modelo efectivo en diversos procesos que evidenciarían
la existencia de neutrinos de Majorana pesados: se investigaron las predicciones para el
ancho de decaimiento total de los neutrinos de Majorana pesados y las fracciones de los
distintos canales para masas bajas [2] y altas [3], la producción de neutrinos de Majo-
rana en el propuesto colisionador electrón-protón LHeC (CERN) [4] y la posibilidad de
observar procesos mediados por neutrinos de Majorana de masas de algunos GeV en el
LHC (CERN) explotando observables de vértices desplazados [5]. Además se estudiaron
los efectos sobre la propagación en la Tierra de neutrinos del tau de ultra alta energía,
que se pueden observar en el telescopio de neutrinos IceCube [6].

Palabras clave: Neutrinos, Neutrinos de Majorana, Neutrinos estériles, Nueva Físi-
ca, Teorías de campos efectivas.

1El Particle Data Group toma como valor límite indicativo mν
m`

. 10−6 para ` = e [1].





Abstract

The Standard Model of particle physics has been able to explain with overwhelming
precision the interactions between the fundamental constituents of the known universe.
However, since the discovery of the neutrino oscillation phenomenon, we know standard
neutrinos have a non-zero mass, of the order of 0.1 eV (six orders of magnitude below
the electron mass2). This is the �rst compelling evidence of physics beyond the Stan-
dard Model. In order to explain the presence of neutrino masses the Standard Model
can be extended by incorporating right-handed neutrinos, which are singlets under the
electroweak symmetry group SU(2) and allow to generate Dirac and Majorana mass
terms, as they can be their own antiparticle. This generates light (the known neutrinos)
and heavy mass eigenstates (the heavy Majorana neutrinos) by the seesaw mechanism.
However, in its classic version the seesaw mechanism can only explain the tiny values for
light neutrino masses by requiring the mixing between them and the heavy states to be
almost negligible. The detection of any physical e�ect ascribable to Majorana neutrinos
would signal the presence of physics beyond the minimal seesaw mechanism. In view of
this scenario, e�ective �eld theories have been proposed, incorporating heavy Majorana
neutrinos as new degrees of freedom and modeling their interactions with the standard
particles by e�ective operators preserving the Standard Model gauge symmetries. This
thesis studies the phenomenology of the e�ective model in di�erent processes that would
indicate the existence of heavy Majorana neutrinos. We studied the predictions for the
total decay width of heavy Majorana neutrinos and the branching fractions for the dif-
ferent decay channels for low [2] and high [3] masses, the production of heavy Majorana
neutrinos in the proposed electron-proton collider LHeC (CERN) [4] and the possibility
to observe Majorana neutrino-mediated processes in the LHC (CERN) for masses around
a few GeV exploiting displaced vertices observables [5]. Moreover, we studied the e�ects
on the ultra high energy tau neutrinos propagation through the Earth, that can be ob-
served in the IceCube neutrino telescope [6].

Keywords: Neutrinos, Majorana neutrinos, Sterile neutrinos, New physics, E�ective
�eld theories.

2The Particle Data Group takes as indicative value mν
m`

. 10−6 for ` = e [1].
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Introduction

The history3 of neutrinos dates back to the discovery of the nuclear radioactive beta
decay, in which a nucleus A decays into another emitting a �beta particle� (A→ A′+e−)
and the continuous beta spectrum observation in 1914 by Chadwick. This was a challeng-
ing fact, because the momentum and energy conservation in two-body decays determines
that all the emitted beta particles -electrons- should have the same energy4. This totally
unexpected phenomenon led Bohr and Dirac to consider the extreme possibility that
energy was not conserved. By the time of 1930, Pauli proposed a remedy for this serious
problem: the existence of an electrically neutral, very weakly interacting spin 1/2 parti-
cle, which he called the neutron. His �neutrons� could solve the problem: being emitted
together with the electrons, they would make their spectrum not to be monochromatic
(A→ A′ + e− + n). The �neutrons� mass had to be less than one percent of the proton
mass, in order to be consistent with the measured spectrum.

In 1932 Chadwick discovered the particles we today call neutrons -the companions
of the protons forming nuclei- which were found to be the nuclear constituents decaying
in the beta process. In 1934 Fermi reformulated Pauli's idea of a very light weakly
interacting particle involved in nuclear radioactive decays, renaming it as neutrino: �the
little neutral one� in Italian. Fermi's famous theory of nuclear beta decay invoked Dirac's
antiparticles and Pauli's neutrinos in the form of a quantum �eld theory, in analogy to
quantum electrodynamics. In this theory -today known as Fermi's theory- in the weak
interaction neutrons decay to protons via a non-renormalizable four-fermion interaction
n→ p+ e− + ν̄, where ν̄ is the electron antineutrino. The electron and the antineutrino
are created as a pair, rather than being emitted from the nucleus. Since parity violation
was unthinkable at the moment soon the theory was extended by introducing vector and
axial-vector parity conserving currents, but also scalar, pseudoscalar and tensor couplings
were soon realized to be viable in the Gamow and Teller's extension of Fermi's theory.

Reines and Cowan conducted the Savannah River reactor experiment in 1956 and
observed the inverse beta decay, in which an antineutrino (emitted by the reactor in
beta decay) gets captured by a proton producing a positron and a neutron. Thus the
antineutrinos got detected and this �nally settled the existence of Pauli's neutrinos.

First indicated by cosmic rays and accelerator experiments with kaons (the �θ − τ
3This historical introduction is based on several review articles, from which I have mostly followed [7].

The citations to all the classical papers I mention here can be found in references therein.
4The kinematics of the �nal two-body phase-space are discussed in the appendix A.1
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puzzle�) and then observed in the beta decay of polarized 60Co in 1956, parity violation
in weak interactions was con�rmed. The possible weak interaction lagrangian became
more uncertain until the arrival of the maximal parity violating V − A (vector minus
axial vector) chiral coupling theory, formulated in 1958 by Feynman and Gell-Mann, and
simultaneously by Sudarshan and Marshak. It could easily be realized in the lepton sector
using the two-component theory of a massless neutrino proposed in 1957 by L.Landau,
T.D. Lee and C.N. Yang, and Salam (the idea had been developed by Weyl in the
1930s, but Pauli rejected it on the ground that it violated parity). In this theory, as the
�two-component� name suggests, neutrinos are left-handed and antineutrinos are right-
handed, leading automatically to V − A couplings. Many thought parity violation in
weak interactions was due to neutrino's nature: a massless neutrino only has one helicity
state. This was experimentally con�rmed 1958 in polarized electron capture experiments:
the polarization of the neutrino was in the opposite direction to its motion.

The concept of lepton number (L) was introduced in 1953 by Konopinski and Mah-
moud to explain certain missing decay modes, assigning distinct lepton numbers to lep-
tons and their antiparticles. While the radiative muon decay process µ− → e−γ is not
forbidden by lepton number conservation its experimental limits are very tight and this
suggested a lepton �avor conservation law, or an independent lepton number for each
lepton family. This assignment predicted that if the muon neutrino produced in pion de-
cay π+ → µ+ + νµ cannot induce e− then the νe and νµ are di�erent particles. This idea
led to the muon neutrino discovery in 1962. Nowadays the leptons are assigned L = 1
and antileptons L = −1 (for each family ` = e, µ, τ and including neutrinos). Due to
the conservation of the lepton number, for example, in the beta decay of the neutron an
electron and an antineutrino are produced.

However, there exist in nature also neutral particles with all charges equal to zero.
Examples are the photon, the π0 meson, etc. In the case of such particles there is no
notion of antiparticles (or particles and antiparticles are identical). In 1937 the Italian
physicist E. Majorana proposed a theory of truly neutral particles with spin equal to
1/2 (which today are called Majorana particles). Majorana was not satis�ed with the
existing at that time theory of electrons and positrons in which positrons were considered
as holes in the Dirac sea of the states of electrons with negative energies. He wanted to
formulate the symmetrical theory in which there is no notion of negative energy states.
In the paper �Symmetrical theory of electron and positron� he came also to a theory of
spin 1/2 particles in which particles and antiparticles are identical. It is an open problem
if the neutrino is a truly neutral Majorana particle or a Dirac particle which possesses a
lepton number.

All the experimental �ndings about the weak interactions were condensed in the for-
mulation of the Glashow-Weinberg-Salam Standard Model (SM) in 1967. Based on an
SU(2)×U(1) gauge symmetry model mixing the weak and electromagnetic interactions
and incorporating the Higgs mechanism of mass generation, the theory predicted that the
charged current weak interactions took place due to the exchange of massive W bosons
coupled to left-handed �elds, replacing the four-fermion description of Fermi's theory
of beta decay. Another new ingredient was the neutral weak current mediated by the
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massive Z boson. The SM neutrinos are left-handed, they do not interact with the Higgs
�eld at all, and thus are massless. The experimental success of the SM was a�rmed in
1974 with the discovery of neutral-current neutrino interactions in the Gargamelle bubble
chamber experiment at CERN, and the following discovery of the W and Z bosons in
the Super Proton Synchrotron (SPS, CERN) in 1983 and 1984. Its last missing piece
-the Higgs boson- seems to have been found in the LHC in 2012.

Neutrinos are copiously produced in natural sources: in the burning of the stars,
in the interaction of cosmic rays and also as relics of the Big Bang. Starting from the
1960s neutrinos produced in the Sun and in the atmosphere were observed. In 1987
neutrinos from a supernova in the Large Magellanic Cloud were also detected. Indeed an
important leading role in this story was played by the neutrinos produced in the Sun and
in the atmosphere. The experiments that measured the �ux of atmospheric neutrinos
found results that suggested the disappearance of muon neutrinos when propagating over
distances of the order of hundreds (or more) kilometers. Experiments that measured the
�ux of solar neutrinos found results that suggested the disappearance of electron neutrinos
while propagating within the Sun or between the Sun and the Earth. These results called
back to 1968 when Gribov and Pontecorvo realized that �avor oscillations -a change of
neutrinos �avor during their propagation- arise if neutrinos are massive and mixed.

The disappearance of both atmospheric νµ's and solar νe's was most easily explained
in terms of neutrino oscillations. The emerging picture was that at least two neutrinos
were massive and mixed, unlike what it is predicted in the SM. In the two last decades
this picture became fully established with the upcome of a set of precise experiments.
In particular, the results obtained with solar and atmospheric neutrinos have been con-
�rmed in experiments using terrestrial beams in which neutrinos produced in nuclear
reactors and accelerator facilities have been detected at distances of the order of hundred
kilometers. These huge experimental e�orts were awarded with the Nobel prize in 2015
to the directors of the SNO and Super-Kamiokande experiments for the discovery of neu-
trino oscillations. Neutrinos in the SM are truly massless fermions for which no gauge
invariant renormalizable mass term can be constructed. Therefore, the experimental ev-
idence for neutrino masses and mixing provided an unambiguous signal of new physics
and remains until now as compelling experimental evidence of physics beyond the SM.

From the theoretical point of view, well before the neutrino oscillations discovery,
the situation concerning neutrino masses and the mixing problem changed at the end of
the 1970s with the appearance of the grand uni�cation theories (GUT). In these models
leptons and quarks enter into the same symmetry multiplets and the generation of masses
of quarks and charged leptons in some models naturally lead to non-zero neutrino masses.
At that time the famous seesaw mechanism of the neutrino mass generation -which
could explain the smallness of the neutrino masses with respect to the masses of quarks
and charged leptons- was proposed and masses and mixing of neutrinos started to be
considered as a signature of the physics beyond the SM.

If one wishes to account for neutrino masses with only the SM degrees of freedom,
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one needs Weinberg's dimension �ve e�ective operator

L5 = − λ

2Λ
LLLLφ φ+ h.c. (1)

where LL stands for the SM lepton doublet and φ is the Higgs �eld. This operator
generates neutrino Majorana masses, and massive neutrino states which are Majorana
particles. The non-renormalizable nature of the above operator signals the appearance
of new physics through the scale Λ. Its main consequence is the ∆L = 2 violation of
lepton number through neutrinoless double beta decay (0νββ-decay) -suggested soon
after Majorana's classical work by Racah an Furry- and by the production of same-sign
lepton pairs in colliders, �rst suggested in the early eighties by Keung and Senjanovi�c.
With the arrival of the LHC at CERN the same-sign dilepton signal started to receive
wide attention.

In the seesaw mechanism neutrino masses are given by the seesaw formula: mν ∼
Y 2v2

Λ , where Y is a dimensionless Yukawa constant and v ∼ 250 GeV is the Higgs vac-
uum expectation value, which characterizes the scale of the violation of the electroweak
symmetry. The scale of the lepton number violation (LNV) Λ depends on the value of
the Yukawa constants Y which are unknown, but need to be �xed to accommodate the
known tiny values of the neutrino masses mν ∼ 0.1 eV .

In the most popular renormalizable realization for the Weinberg operator, called Type
I seesaw [8�11], the seesaw mechanism takes place by the introduction of right-handed
sterile neutrinos that -as they do not have distinct particle and antiparticle degrees of
freedom- can have a Majorana mass term leading to the tiny known masses for the
standard neutrinos, as long as the Yukawa couplings between the right-handed Majorana
neutrinos and the standard ones remain small. For Yukawa couplings of order Y ∼ 1,
we need a Majorana mass scale of order MN ∼ 1015GeV to account for a light ν mass
compatible with the current neutrino data, and this fact leads to the decoupling of the
Majorana neutrinos. On the other hand, for smaller Yukawa couplings of the order
Y ∼ 10−8 − 10−6, sterile neutrinos with masses around MN ∼ (1 − 1000) GeV could
exist, but in the simplest Type-I seesaw this leads to a negligible left-right neutrino
mixing U2

lN ∼ mν/MN ∼ 10−14− 10−10. As this mixing parameter is assumed to govern
all the Majorana neutrino interactions with the standard particles, this in fact leads to
the decoupling of the Majorana physics and makes it almost undetectable in experiments.

This situation has been accommodated in several proposals [12�14] increasing the
mixings value to be of order U`N ∼ O(0.1) by introducing speci�c textures to the Ma-
jorana mass matrices in the seesaw formula, generally imposing additional symmetries
or �ne tunning the entries. Many works in the past decade have been devoted to probe
the existence of Majorana particles with masses ' 1 TeV through the observation of the
mentioned LNV process of same-sign leptons in proton-proton collisions at the LHC in
the Type I seesaw scenario [15�23].

On the other hand, currently almost all neutrino oscillations data can be described
with the mixing of three �avor neutrino states, implying the existence of three light
massive neutrinos νj having masses which do not exceed approximately 0.1 eV . But
since 2001 there have been possible hints on the presence in the mixing of one or more
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additional sterile neutrinos with masses at the eV scale. These hints have been obtained
in the LSND and MiniBooNE experiments and in short baseline reactor neutrino oscilla-
tion data. There are two possible �minimal� phenomenological schemes widely discussed
in the literature giving explanations to this anomalies. These are the so called �3+1�
and �3+2� models [24], introducing neutrinos which should be Majorana particles, but
there exist other proposed explanations. These light sterile neutrino hypotheses are being
tested in many experiments, with reactor and accelerator neutrinos and in colliders, but
also in the �eld of neutrino astronomy. Cosmic rays o�er an opportunity to study the
properties of elementary particles, and a main objective in experiments like IceCube in
Antarctica or Auger in Argentina is to determine a �ux of neutrinos or cosmic ray nuclei
as they interact with terrestrial matter. These interactions involve energies not explored
so far at particle colliders, so their study should lead us to a better understanding of that
physics, specially concerning neutrino interactions.

In a paper by F.del Águila, S.Bar-Shalom, A.Soni and J.Wudka [15] an alternative
e�ective lagrangian approach for the Majorana neutrinos is proposed. Arguing that the
detection of Majorana neutrinos through LNV in colliders would be a signal of physics
beyond the minimal seesaw mechanism, the authors propose to describe its interactions
in a model-independent approach based on an e�ective theory, considering the addition
of only one relatively light Majorana neutrino with mass mN . 1 TeV and negligible
mixing with the left-handed standard neutrinos νL. A set of dimension six e�ective
operators preserving the SM symmetries with the Majorana neutrino �eld as an active
degree of freedom is introduced. The study of the phenomenological consequences of
these new interactions in high energy colliders and in neutrino telescopes is the purpose
of this thesis.

The text is organized as follows. In chapter 1 I introduce the most relevant features
of the SM focusing on the electroweak sector and how fermion masses are generated
through the Higgs mechanism leading to the Yukawa lagrangian and electroweak cur-
rents. The di�erent spinorial �eld representations are reviewed, in order to introduce
Majorana fermions and Majorana masses, which will be the tool for neutrino mass gen-
eration. Also, a brief introduction to the e�ective �eld theories framework is included.
Chapter 2 is devoted to the discussion of massive neutrino physics. It starts with a brief
introduction on the discovery of neutrino oscillations and how they are interpreted in
terms of non-vanishing neutrino masses. The seesaw mechanism of neutrino mass gen-
eration is thoroughly discussed. In particular the Type I seesaw scenario is presented
and its shortcomings discussed, in order to motivate the introduction of the new e�ective
lagrangian approach introduced in chapter 3. The goal of this chapter is the derivation of
the complete e�ective lagrangian from the dimension six e�ective operators introduced
in [15] and a discussion on how the existing experimental bounds can be translated to
the e�ective couplings. The original results are presented in the following.

Chapter 4 is devoted to the study of the Majorana neutrino decays, joining the
results published in the papers [2, 3]. In particular, it is found that in the low mass
region a dominant decay channel to a neutrino and a photon leads to a very interesting
phenomenology and can be invoked to explain some well known neutrino-related puzzles
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as the mentioned MiniBooNE anomaly. The phenomenology of Majorana neutrinos in
colliders is introduced in chapter 5, where we study the possibilities for their production
in the proposed electron-proton collider LHeC at CERN, presenting the results obtained
in [4]. In chapter 6 we study the phenomenology of the e�ective Majorana interactions
in the LHC focusing on two new features: Majorana neutrinos lead to the well known
same-sign dilepton signal mentioned above but in this work we propose to investigate the
possibility of detecting it with the aid of observables exploiting the separation between
the production and decay vertices, given that Majorana neutrinos with a mass of a few
GeV have a measurable decay length. Also, as in the low mass region we have a dominant
neutrino plus photon decay channel, a possible search with displaced photon observables
is considered [5]. Chapter 7 is dedicated to the study of the e�ects of the existence of
the Majorana neutrino on the propagation of ultra high energy tau neutrinos trough
the Earth and the possible detection of these e�ects in the IceCube neutrino telescope,
presenting the results obtained in [6]. The conclusions and future work perspectives are
included in chapter 8.



Chapter 1

The Standard Model

In this chapter I introduce the most relevant characteristics of the Standard Model of
particle physics, focusing on the scalar and electroweak sector and how fermion masses
appear in the Yukawa lagrangian. I include a brief discussion on the di�erent possible
spinor �elds in order to deepen in the properties of Majorana fermions, which I will
introduce later as a tool for generating non-zero masses for the neutrinos. In the end of
the chapter I comment on the renormalization procedure to introduce the e�ective �eld
theories framework, which is the approach taken throughout this thesis.

The contents of this �rst introductory chapter are based on the treatments made in
quantum �eld theory (QFT) introductory books and lecture notes, among which I have
chosen [25�29] and on specialized classic textbooks on neutrino physics as [30].

1.1. Introduction

The SM is a quantum �eld theory describing the electroweak (EW) and strong inter-
actions between the quarks and leptons. These constitute the fermionic matter content in
the theory and are replicated in three copies (families) only distinguished by their masses
and the �avor quantum number, as well as the baryon and lepton numbers. To �rst or-
der, the strong interaction is only existent between quarks, while quarks and leptons have
weak and electromagnetic interactions.

The free physical states can be classi�ed by the Poincaré group representations in a
one-particle Hilbert base space with de�nite momentum, leading to massive (or massless)
particles characterized by their spin. These particles are created out of the Fock space
vacuum by �eld operators, which are functions of the space-time coordinates with well
de�ned transformation properties under Poincaré transformations. Depending on their
transformation properties under Lorentz symmetries they are scalar �elds, Weyl, Dirac
or Majorana spinor �elds, vector �elds, etc. There are also other properties beyond
the energy, momentum and spin which characterize physical states and identify their
interactions, as the electric charges. The interactions can be determined by internal
symmetries in the theories beyond the Poincaré group. These are incorporated by means
of the local gauge symmetry, whose conserved charge is the corresponding interaction

1
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charge, and its generators give the number of required mediating particles, the spin 1
bosonic �elds: eight massless gluons for QCD, the massiveW± and Z for the weak force,
and one massless photon for electromagnetism. This makes the SM a local gauge theory
based on the G ≡ SU(3)QCD × [SU(2)L × U(1)Y ]EW symmetry group.

The mass terms for the �elds in the SM lagrangian break this local gauge symmetry.
This forces us to incorporate an ad-hoc mechanism which brings non symmetrical results
preserving the symmetries at the lagrangian level to include massive particles. The Higgs
mechanism -which is associated to the Goldstone theorem in the frame of the EW theory-
introduces the idea of spontaneous symmetry breaking (SSB), assuming a gauge-invariant
lagrangian with a non-invariant vacuum breaking the electroweak part of the symmetry
group G into the electromagnetic G → SU(3)QCD × U(1)EM subgroup. The breaking
is implemented by incorporating a scalar �eld with zero electric charge, and a non-zero
interaction with the vacuum (it acquires a vacuum expectation value 〈φ〉 = v). The scalar
�eld, once the gauge symmetry is broken, generates the Higgs particle as an excitation of
its fundamental state. The Higgs interaction with fermions, with gauge bosons by means
of the covariant derivative, and with itself is what brings in the masses, de�ned by the
corresponding interaction coupling and the non-zero vacuum expectation value.

1.2. The fundamental ingredients

As I mentioned in the introduction, the SM building blocks are �eld operators cre-
ating and destroying particles in a Fock-space. As we want these �elds to describe the
properties of particles in Nature they must be described by Lorentz invariant equations.
Having a collection of �elds ϕ and a di�erential operator D, the statement �Dϕ = 0 is
relativistically invariant� means that if ϕ(x) satis�es this equation and we perform a ro-
tation or boost to a di�erent reference frame, the transformed �eld must satisfy the same
equation. This is guaranteed if the ϕ dynamics is described by an equation of motion
coming from a lagrangian that is a Lorentz scalar. These can be built by systematically
�nding Lorentz transformation laws for �elds: restricting to linear transformation laws
leads us to the fact that they must form an n-dimensional representation of the Lorentz
group. As we also need to include space-time translations invariance, the valid quantum
�eld operators provide representations of the Poincaré group (space-time translations
plus Lorentz transformations).

I will focus on the spinorial �eld representations in order to describe the SM fermions.
Spinorial representations describe half-integer spin quantities. For spatial rotations, the
physically relevant group is not SO(3) but rather SU(2), besides both groups have the
same Lie algebras.

The Lorentz algebra, given by commutation rules between the angular momentum J i

and the boost Ki generators
[J i, J j ] = iεijkJk (1.1)

[J i,Kj ] = iεijkKk (1.2)
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[Ki,Kj ] = −iεijkJk (1.3)

can be disentangled by de�ning the combinations

J±,i =
J i ± iKi

2
(1.4)

which give the commutators:

[J+,i, J+,j ] = iεijkJ+,k (1.5)

[J−,i, J−,j ] = iεijkJ−,k (1.6)

[J+,i, J−,j ] = 0. (1.7)

Equations (1.5) and (1.6) give two copies of the SU(2) angular momentum algebra
which commute with themselves. In order to include spinorial representations we take
all solutions of the algebra (1.5)-(1.7) including spinor representations, and �nd that the
representations of the the Lorenz algebra can be labeled by two half-integers: (j−, j+).
The dimension of the representation (j−, j+) is (2j−+1)(2j+ +1) and as the generator of
rotations J i is related to J± by J i = J+ +J−, by the usual addition of angular momenta
in quantum mechanics in the representation (j−, j+) we �nd states with all possible spin
j integer steps from |j+ − j−| to j+ + j−.

The (0,0) representation is the dimension one scalar representation. On it J i,± = 0
and also J i = 0 and Ki = 0.

1.2.1. Weyl spinors

The (1/2,0) and (0,1/2) representations both have dimension two and spin 1/2, so
they are spinorial representations. We denote (ψL)α with α = 1, 2 a spinor in (1/2,0)
and (ψR)α a spinor in (0,1/2). Now ψL is called a left-handed Weyl spinor and ψR a
right-handed Weyl spinor.

Let's �nd the explicit form of the rotation and boost generators J and K in the
spinor representation (1/2,0): by de�nition the J− is represented by a 2 × 2 matrix,
while J+ = 0. The solution of (1.6) in terms of 2× 2 matrices is J− = σ/2, with σ = σi

the Pauli matrices, and therefore

J = J+ + J− =
σ

2
(1.8)

K = −i(J+ − J−) = i
σ

2
. (1.9)

Then, under rotations, the spinor ψL transforms as ψL → e−
i
2
σ.θψL and under a boost

with rapidity η = tanh−1(β) it transforms as ψL → e−
1
2
σ.ηψL, in an �active" viewpoint.
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Analogously, it can be seen that ψR transforms in the same way under rotations but
changes sign under boosts. Summarizing:

ψL → ΛLψL = exp
{

(−iθ − η).
σ

2

}
ψL, (1.10)

ψR → ΛRψR = exp
{

(−iθ + η).
σ

2

}
ψR. (1.11)

With spinors ξL and ξR also transforming in the representations (1/2,0) and (0,1/2)
respectively, and de�ning σµ = (1,σ) and σ̄µ = (1,−σ), we can write the following four-
vector quantities:

ξ†Lσ̄
µψL ξ†Rσ

µψR. (1.12)

We can construct now a free lagrangian for the Weyl spinor �elds looking for quadratic
combinations that are Lorentz scalars. If one asks also for invariance under global phase
transformations ψL,R → eiφψL,R, we are left with one possibility (up to a sign)

LWeyl
L = iψ†Lσ̄

µ∂µψL (1.13)

for left-handed, and
LWeyl
R = iψ†Rσ

µ∂µψR (1.14)

for right-handed Weyl �elds. This is the Weyl lagrangian.
The spinor ψL is subject to the equation of motion (∂0 − σi∂i)ψL = 0 and therefore

to the massless Klein-Gordon equation (∂2
0 − ∂2

i )ψL = 0. Then a solution is ψL(x) =

uL(k)e−ikx with k0 = |~k| and we �nd (k0 + kiσi)ψL = 0, which implies that for the left-
handed Weyl �eld ψL the product ki.σi

k0 = −1. Recalling that the spin operator is de�ned
as si = σi

2 , this means the projection of spin along the momentum of a particle created by
a left-handed Weyl �eld is −1/2: left-handed massless Weyl spinors have helicity −1/2
(massless particles are helicity eigenstates). In the same way a right-handed massless
Weyl spinor is an h = +1/2 helicity eigenstate.

The Weyl lagrangians (1.13) and (1.14) where constructed with the vector bilinears in
(1.12), which correspond to the product representations (1/2,1/2) = (1/2,0)⊗ (0,1/2)
and (1/2,1/2) = (0,1/2) ⊗ (1/2,0). In particular, our insistence in demanding the
lagrangian to be invariant under a global U(1) symmetry ruled out the scalar term
that appears in the product representations (1/2,0) ⊗ (1/2,0) = (1,0) ⊕ (0,0) and
(0,1/2) ⊗ (0,1/2) = (0,1) ⊕ (0,0). The singlet representations correspond to the an-
tisymmetric combinations εab(ψaL,R)TψbL,R, where εab is the antisymmetric symbol. Here
we should keep in mind that �elds with half-integer spin obey the spin-statistics theo-
rem, and the �elds ψL,R satisfy anti-commutation relations, so the combinations do not
identically vanish. The antisymmetric symbol εab can be explicitly written in a 2 × 2
matrix representation suitable for two-component Weyl spinors as

ε = iσ2 = i

(
0 −i
i 0

)
=

(
0 1
−1 0

)
. (1.15)
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Majorana masses

We can now write a Weyl lagrangian including a mass term

LWeyl
L = iψ†Lσ̄

µ∂µψL +
1

2
m(ψL)T εψL + h.c. (1.16)

LWeyl
R = iψ†Rσ

µ∂µψR +
1

2
m(ψR)T εψR + h.c. (1.17)

These mass terms -called of Majorana type- are allowed if we do not worry about breaking
the global U(1) symmetry ψL,R → eiφψL,R. If we consider electrically charged fermions
a Majorana mass term is forbidden as it violates the conservation of electric charge or
any other U(1) gauge charge. Let's note that Majorana mass terms are constructed out
of a single Weyl spinor ψL or ψR.

Parity

If one performs a Parity transformation P (t, ~x) → (t,−~x) on the Lorentz SO(3, 1)
group rotation J i and boost Ki generators, they transform as pseudo-vectors and vectors
respectively:

P : J i → J i P : Ki → −Ki, (1.18)

meaning that P : J±,i → J∓,i and therefore a representation (j−, j+) changes to (j+, j−)
under parity. Thus a left-handed Weyl spinor in the representation (1/2,0) transforms
into a right-handed Weyl spinor in (0,1/2) and vice versa. A vector representation
(1/2,1/2) is invariant under parity.

1.2.2. Dirac spinors

We have seen that parity interchanges left-handed with right-handed Weyl spinors. So
an easy way to construct a parity invariant theory for fermions (which will be needed for
describing the parity-conserving electromagnetic and strong interactions) is to introduce
a pair of Weyl fermions ψL and ψR combined into a single four-component spinor

ψ =

(
ψL
ψR

)
(1.19)

transforming in the (1/2,0)⊕ (0,1/2) reducible representation. This is a Dirac spinor.
The equations of motion for ψL,R, iσ̄µ∂µψL and σµ∂µψR derived respectively from (1.13)
and (1.14) can be modi�ed -while being kept linear- to

iσµ∂µψR = mψL
iσ̄µ∂µψL = mψR

}
=⇒ i

(
0 σµ

σ̄µ 0

)
∂µψ = m

(
1 0
0 1

)
ψ. (1.20)

These equations of motion can be derived from the lagrangian

LDirac = iψ†
(

0 σµ

σ̄µ 0

)
∂µψ −mψ†

(
0 1
1 0

)
ψ (1.21)
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which can be written in the well-known compact form

LDirac = ψ̄(iγµ∂µ −m)ψ (1.22)

de�ning the Dirac γ-matrices as 1

γµ =

(
0 σµ

σ̄µ 0

)
(1.23)

and the conjugate spinor ψ̄

ψ̄ ≡ ψ†γ0 = ψ†
(

0 1
1 0

)
. (1.24)

The γ-matrices satisfy the Cli�ord algebra {γµ, γν} = 2ηµν , which in D dimensions
admits representations of dimension 2[D/2]. When D es even, the Dirac fermions ψ
transform in a reducible representation of the Lorentz group. De�ning the matrix

γ5 = −iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, (1.25)

we see that it anti-commutes with all other γ-matrices, implying the relation [γ5, σµν ] = 0,
with σµν = −i

2 [γµ, γν ]. Because of Schur's lemma, this implies that the representation of
the Lorentz group provided by the σµν matrices is reducible into subspaces spanned by the
eigenvectors of γ5 with the same eigenvalue. If we de�ne the projectors PR,L = 1

2(1±γ5)
these subspaces correspond to

PLψ =

(
ψL
0

)
PRψ =

(
0
ψR

)
(1.26)

which are precisely the four-component Dirac-spinor versions of the left-handed and
right-handed (two-component) Weyl spinors.

1.2.3. Charge conjugation and the Majorana condition

We can de�ne the operation of charge conjugation on Weyl spinors as an operation
transforming ψL into a new spinor ψcL, de�ned as

ψcL = iσ2ψ∗L = εψ∗L, (1.27)

using the de�nition given in (1.15).
Recalling the explicit form of the Lorentz group generators ΛL,R on Weyl spinors

given in (1.10) and (1.11) and using the property of the Pauli matrices σ2σiσ2 = −σi∗,
one can show that σ2Λ∗Lσ

2 = ΛR, so under a Lorentz transformation σ2ψ∗L transforms as
a right-handed Weyl spinor:

σ2ψ∗L → σ2(ΛLψL)∗ = (σ2Λ∗Lσ
2)σ2ψ∗L = ΛR(σ2ψ∗L) (1.28)

1This is called the Chiral representation for the γ-matrices.
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(using σ2σ2 = 1). If ψL ∈ (1/2,0) then σ2ψ∗L ∈ (0,1/2). This means that the charge
conjugation operation in (1.27) converts a left-handed Weyl spinor into a right-handed
one and analogously, de�ning ψcR = −iσ2ψ∗R the charge conjugate of a right-handed Weyl
spinor is a left-handed one.

On a Dirac �eld, charge conjugation is de�ned as

ψc =

(
−iσ2ψ∗R
iσ2ψ∗L

)
= −i

(
0 σ2

−σ2 0

)
ψ∗ =

(
−ε 0
0 ε

)(
0 1
1 0

)
ψ∗. (1.29)

If we de�ne the charge conjugation matrix in the chiral basis as

C =

(
−iσ2 0

0 iσ2

)
=

(
−ε 0
0 ε

)
(1.30)

we can write the charge conjugation operation on Dirac spinors as ψc = Cγ0ψ∗. This
relation can also be written as ψc = C(ψ†γ0)T = C(ψ̄)T , given that (γ0)T = γ0.

Summarizing:
ψc = Cγ0ψ∗ ψc = C(ψ̄)T . (1.31)

Finally, we get to de�ne a Majorana spinor: this is a Dirac spinor in which ψL and
ψR are not independent, but rather ψR = iσ2ψ∗L

ψM =

(
ψL

iσ2ψ∗L

)
, (1.32)

so it has the same number of degrees of freedom as a Weyl spinor, although it is written
in the form of a Dirac spinor. From this de�nition it follows that the Majorana �eld is
its own charge conjugate:

ψcM = ψM . (1.33)

This is called the Majorana condition, and is the de�ning property of a Majorana fermion.
Majorana fermions admit Majorana masses as those in (1.16) and (1.17).

When one writes down the quantized Majorana �elds in terms of creation and annihi-
lation operators the Majorana condition implies that a Majorana �eld describes particles
which are their own antiparticles.

1.2.4. Matter content and �avor symmetries

In table 1.1 a list of the fermion content is shown, including the gauge numbers. Here
the �elds are Dirac spinors, so -for example- one should think of uL in the �rst row as

uL =

(
(ψu)L

0

)
(1.34)

with (ψu)L the Weyl spinor representing the up quark left-handed �eld.
The lagrangian is the sum of the gauge, matter, Yukawa and Higgs terms

LSM = Lgauge + Lmatter + LY ukawa + LHiggs. (1.35)
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Gauge group
SU(3)c SU(2)L U(1)Y

QiL =

(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

3 2 1
6

uiR= uR cR tR 3 1 2
3

diR= dR sR bR 3 1 −1
3

LiL =

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

1 2 −1
2

`−iR = e−R µ−R τ−R 1 1 −1

Table 1.1: The fermion �elds in the SM and their gauge quantum numbers.

The matter lagrangian contents the kinetic and gauge interactions of the fermion
�elds,

Lmatter = iQ̄iL /DQ
i
L + iūiR /Du

i
R + id̄iR /Dd

i
R + L̄iL /DL

i
L + ē−iR /De−iR , (1.36)

with the indices i, j = 1, 2, 3 representing the three fermion families.
At this stage the fermions are still massless and the covariant derivatives are those pre-

sented below2 (see (1.44)) . Majorana masses are forbidden by the fact that all fermions
carry hypercharge. Dirac masses are forbidden by the fact that no fermion transforms
under the complex-conjugate representation of another fermion. It is important to no-
tice that there are no right-handed neutrino �elds: neutrinos only appear as the upper
component in the leptonic SU(2)L doublets in the fourth row of table 1.1.

The absence of fermion masses implies that Lmatter has many accidental global sym-
metries:

QiL → U ijQLQ
j
L (1.37)

uiR → U ijuRu
j
R

diR → U ijdRd
j
R

LiL → U ijLLL
j
L

`iR → U ij`R`
j
R.

This symmetry is accidental in the sense that it is not imposed, but rather follows from
the fermion content, the renormalizability and the gauge symmetries of the model. Since

2Without taking into account the SU(3)C strong gauge interactions. To include them, one must add
the gluon terms.
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there are �ve independent U(3) symmetries, the global �avor symmetry in Lmatter is
[U(3)]5. After the Yukawa couplings of fermions to the Higgs �eld are introduced (see
sect. 1.4.2), this symmetries will be violated.

We now need to implement the local gauge invariance and spontaneous symmetry
breaking ideas in order to introduce gauge invariant masses for the fermions and the
massive vector gauge bosons mediating the weak interactions. This will be done in the
next section.

1.3. The fundamental ideas

The two central ideas sustaining the SM success are the extension of the gauge in-
variance principle as a local concept (inspired in classical electrodynamics) and the im-
plementation of the spontaneous symmetry breaking phenomenon. The introduction of
the local gauge invariance generates the so called gauge bosons and their interactions
with matter (fermions) and among themselves (only for non-abelian gauge groups). In
turn, the combination of local gauge invariance with spontaneous symmetry breaking
leads naturally to the Higgs mechanism, providing the mass terms for the vector weak
gauge bosons (W± and Z) and the fermions while keeping the invariance under the gauge
group at the original lagrangian level.

In this section I introduce both ideas emphasizing the Higgs mechanism that leads
to the leptonic mass sector in the lagrangian.

1.3.1. Local gauge invariance

Beginning with classical electrodynamics it is known that Maxwell equations are
invariant under a local gauge transformation of the form Aµ → ∂µλ(x) + Aµ, where Aµ
is the four-vector potential. Also, taking the Dirac free lagrangian in (1.22) we can see
it is invariant under the global phase shift ψ → eiθψ. However, inspired by the local
gauge symmetry in electrodynamics, could we extend the global symmetry and ask it
to be local? If it is so, which are the physical consequences of that extension? It is
easy to prove that such �locality� could be achieved by replacing the usual derivative
∂µ with a covariant derivative Dµ ≡ ∂µ + iqAµ, where Aµ is a �eld transforming as
Aµ → ∂µλ(x) +Aµ when the local gauge transformation ψ → e−iqλ(x)ψ is performed. In
doing so, the lagrangian (1.22) is changed to

LDirac = ψ̄(iγµDµ −m)ψ = ψ̄(iγµ∂µ −m)ψ − qAµψ̄γµψ = LDirac − JµAµ. (1.38)

One can see this new lagrangian is invariant under the combined transformations ψ →
e−iqλ(x)ψ and Aµ → ∂µλ(x)+Aµ. Jµ = qψ̄γµψ is the electromagnetic-current four-vector.
To complete the Quantum Electrodynamics (QED) lagrangian we add the kinetic term
describing the free photon's propagation

LQED = LDirac − JµAµ −
1

4
FµνFµν , Fµν ≡ ∂µAν − ∂νAµ. (1.39)
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This kinetic term -from which the free Maxwell equations can be derived- is also locally
gauge invariant. Therefore, the coupling between matter and radiation is generated by
imposing locality. Moreover, to preserve locality we have introduced in the covariant
derivative a vector �eld Aµ called gauge �eld and a q parameter acting as the generator
of the local transformations group Û(x) = e−iqλ(x). In this case, in order to analyze the
symmetries we have used the one-dimensional rotations group in the complex space U(1),
the group of unitary 1×1 �matrices�. In the electroweak sector of the SM we will take the
SU(2) group, which is a non-abelian group whose generators obey the Lie algebra of the
three-dimensional rotations group. After applying the local gauge invariance to the whole
electroweak group [SU(2)×U(1)]EW , they will appear four gauge �elds, generating -after
some additional transformations- the three vectorial bosons of the weak force: W±, Z
and the photon.

1.3.2. Spontaneous symmetry breaking and the Higgs mechanism

The use of local gauge invariance as a dynamical principle is not enough to predict
the particle physics phenomenology, as it leads to massless gauge bosons which do not
correspond to the physical observations. In the SM these bosons acquire their masses by
means of the phenomenon of spontaneous symmetry breaking (SSB).

With the aim of generating masses, we have to somehow break the gauge symmetry.
However, we need a totally symmetric lagrangian in order to preserve its renormalizability
and unitarity. This dilemma can be solved thanks to the possibility of obtaining non-
symmetric results starting out of a symmetric lagrangian.

Consider a lagrangian which is invariant under a symmetry group G, with a degen-
erate set of minimal energy states which transform under G as the members of a given
multiplet. If one of these states is arbitrarily realized as the system's fundamental state
one says the symmetry is spontaneously broken.

When the spontaneous symmetry breaking mechanism occurs other particles called
Goldstone bosons appear in the theory's spectrum [31�33]. However, if the lagrangian
has a local gauge symmetry an interrelationship between gauge bosons and Goldstone
bosons gives the �rst a physical mass, while the last disappear from the spectrum. The
degrees of freedom corresponding to the massless Goldstone bosons are converted into a
longitudinal polarization for the massive vector bosons. That is why it is generically said
that the gauge bosons have �eaten� the Goldstone bosons in order to acquire their mass.
This is the Higgs mechanism [34�37]. However, it is worth noting that besides massive
vector bosons, the Higgs mechanism provides us with an additional physical degree of
freedom corresponding to a massive scalar �eld, which describes the Higgs particle.

We can remark that the Higgs mechanism is possible due to the spontaneous sym-
metry breaking and the local gauge invariance. For instance, if we implement a sponta-
neous symmetry breaking with a global symmetry, we obtain a certain number of mass-
less (physical) Goldstone bosons, given that a global symmetry does not provide vector
bosons to �eat� these extra degrees of freedom. Technically, the number of Goldstone
bosons produced by the SSB equals the number of broken generators of the symmetry
group in question [31,38].
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1.4. The Standard Model (as we know it)

The SM of particle physics [39�41] takes the ideas of local gauge invariance and
spontaneous symmetry breaking to implement the Higgs mechanism. The local gauge
symmetry of the electroweak sector is given by the group SU(2)L × U(1)Y and the SSB
obeys the scheme SU(2)L × U(1)Y → U(1)Q, where the subindex L indicates that the
SU(2) group only acts on fermion left-handed doublets. Y is the original hypercharge
U(1) group generator and Q corresponds to a non-broken generator's combination (the
electromagnetic charge).

Speci�cally, the SSB is implemented introducing an SU(2)L doublet, which is a
Lorentz scalar:

φ =

(
φ+

φ0

)
=

(
φ1 + iφ2

φ3 + iφ4

)
. (1.40)

To produce the breaking the scalar doublet3 must acquire a non-zero vacuum expectation
value (VEV)

〈φ〉 =

(
0

v/
√

2

)
. (1.41)

The original local symmetry group SU(2)L ×U(1)Y is non-abelian, leading to gauge
boson's self-interactions. They appear when the kinetic term for the gauge bosons is
introduced. The generators are called τi and Y , corresponding to SU(2)L and U(1)Y
respectively. The τi are de�ned using the Pauli matrices as τi ≡ σi

2 and they obey the
Lie algebra

[τi, τj ] = iεijkτk, [τi, Y ] = 0. (1.42)

When the symmetry is spontaneously broken in the scalar potential the φ doublet acquires
a VEV and we see all the SU(2)L × U(1)Y generators are broken

τ1〈φ〉 =
1

2

(
v/
√

2
0

)
6= 0, τ2〈φ〉 =

1

2

(
−iv/

√
2

0

)
6= 0

τ3〈φ〉 =
1

2

(
0

−v/
√

2

)
6= 0, Y 〈φ〉 =

(
0

v/
√

2

)
6= 0.

However, we can de�ne a non-broken combination using the Gell-Mann-Nishijima rela-
tion:

Q = (τ3 + Y ) Q〈φ〉 = 0

This de�nition of the electric charge operator Q �xes the Y hypercharge of the Higgs
scalar to be Yφ = 1

2 .
The SSB scheme is given by SU(2)L × U(1)Y → U(1)Q. In agreement with the

Goldstone theorem, the number of the would-be Goldstone bosons equals the number
of broken generators (which in turn equals the number of massive gauge bosons in the

3It is common to refer to the Higgs �eld as a scalar (Lorentz space-time transformations) doublet
(SU(2)L weak force gauge symmetry). We leave the name Higgs �eld for the h excitations around the
VEV after the SSB.
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case of local symmetries). Thus instead of working with four broken generators, we
will have three broken generators and a non-broken one Q. This scheme assures the
photon remains massless, while the other three gauge bosons acquire their masses by this
mechanism, and everything with a gauge invariant lagrangian [42].

1.4.1. The kinetic term

The kinetic term gives the interactions between the scalar particles and the four-
vector bosons and generates their masses when the Higgs �eld acquires a VEV. The
kinetic lagrangian is written introducing the gauge �elds in the covariant derivative as
we did in sec.1.3.1

LKin = (Dµφ)†(Dµφ), (1.43)

Dµ ≡ ∂µ − ig′Y Bµ − igτiW i
µ (1.44)

where W i
µ with i = 1, 2, 3 are the four-vector boson gauge eigenstates associated to the

three SU(2)L generators τi. On the other hand Bµ is the vector �eld associated with the
Y generator of the hypercharge symmetry U(1)Y . The constants g and g′ correspond to
the W i

µ and Bµ couplings, respectively.
After diagonalizing the gauge boson's mass matrix we obtain the following mass

eigenstates:

W±µ =
W 1
µ ∓ iW 2

µ√
2

; m2
W± =

1

4
g2v2 (1.45)

(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
(1.46)

m2
Z =

1

4
v2(g2 + g′2) =

m2
W

cos2 θW
; mA = 0. (1.47)

The photon Aµ remains massless, as it is the gauge boson associated to the unbroken
generator Q (the electromagnetic charge) of the surviving symmetry U(1)Q. Other im-
portant relation follows for the coupling of the unbroken symmetry: the electric charge
e is related to the SU(2)L coupling g and the U(1)Y coupling g′ as:

e =
gg′√
g2 + g′2

= g sin(θW ) = g′ cos(θW ), (1.48)

using the de�nition of the weak-mixing angle θW in (1.47).

1.4.2. The Yukawa lagrangian

The SM organizes the observed fermions in three families which are copies of the
same SU(2)L×U(1)Y structure, only distinguished by their masses and �avor. The left-
handed �elds transform as SU(2)L doublets, whereas the right-handed �elds are singlets,
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as indicated in table 1.1. I will start putting a �prime� in all the �elds, indicating that
I am referring to gauge eigenstates, which are the �elds that transform as stated under
the gauge group: (

u′

d′

)
L

,

(
ν ′`
`′

)
L

; u′R , d′R , `′R. (1.49)

Here u′, d′ and `′ are three-entries vectors in the �avor space, as was fully displayed in
table 1.1.

The most general renormalizable Yukawa lagrangian is given by

LY ukawa = −Γiju Q̄
′i
Lφ̃u

′j
R − Γijd Q̄

′i
Lφd

′j
R − Γij` L̄

′i
Lφ`

′j
R + h.c. (1.50)

Here, the conjugate scalar doublet φ̃ in the �rst term is de�ned as φ̃ = iσ2φ∗ = εφ∗,
and it can be seen it also transforms as an SU(2) doublet. In order to keep the gauge
invariance in the Yukawa term with up-type quarks φ̃ has hypercharge4 Yφ̃ = −1

2 . The

matrices Γiju,d,` are general Yukawa matrices corresponding to the couplings of the scalar
doublet with the up, down and charged leptons fermion sectors.

After the SSB the scalar doublet can be written as:

φ =

(
φ+

φ0

)
SSB−−−→ eiτiθi

(
0

(v+h)√
2

)
(1.51)

where the θi can be rotated out thanks to the SU(2)L invariance in the lagrangian, and h
is the Higgs �eld. When all the θi are rotated away we are in the unitary gauge, in which
the physical spectrum is explicit and no Goldstone bosons are present. The Yukawa
lagrangian can be written as

LY = −
(

1 +
h

v

)[
d̄′LM

′
dd
′
R + ū′LM

′
uu
′
R + ¯̀′

LM
′
l `
′
R

]
(1.52)

with M ′f = v√
2
Γf , f = u, d, `. The M ′f matrices can be decomposed as M ′f = HfUf =

S†fMfSfUf , with Uf unitary, Hf hermitian, Sf unitary and Mf diagonal, hermitian and
positive de�nite.

The matrices Mf = SfM
′
fU
†
fS
†
f are diagonal, with masses corresponding to the three

fermionic sectors:

Mu = diag(mu,mc,mt), Md = diag(md,ms,mb), M` = diag(me,mµ,mτ ).
(1.53)

The resulting fermionic mass eigenstates fL = Sff
′
L and fR = SfUff

′
R allow to write the

Yukawa lagrangian as

LY = −
(

1 +
h

v

)(
d̄LMddR + ūLMuuR + ¯̀

LM``R
)

+ h.c. (1.54)

4All the terms must meet the constraint
∑
k Yk = 0 in order to preserve the gauge invariance.
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This expression shows that all the Higgs couplings with fermions are proportional to
their masses and are �avor diagonal (di�erent �avors do not mix by the exchange of a
scalar particle). Also, one should notice that the masses in (1.54) are Dirac masses: the
left-handed and right-handed Weyl neutrinos we had introduced, are now paired up to
make Dirac masses for the quarks and charged leptons.

1.4.3. Electroweak currents

Let's now see how the electroweak currents are a�ected by the fact that the fermions
acquire masses.

The Dirac lagrangian, written with the covariant derivative in terms of the massive
weak bosons, gives us the charged and neutral interaction terms:

LDirac =
3∑
j=1

iψ′j(x)γµDµψ
′
j (1.55)

where the �elds ψ′j represent the quark or lepton fermion �elds. The lagrangian (1.55)
contains the interaction terms with the gauge bosons, and written in the mass eigenstates
from equations (1.45) and (1.46) can be separated in a part describing the charged-
currents (CC) and other describing the neutral-currents (NC), depending on weather the
fermions interact with the charged gauge bosons W± or the Z neutral boson and the
photon.

The charged-current lagrangian only couples the left-handed components of the fermions
to the SU(2)L gauge �elds, and can be written as

LCC = − g√
2
W+
µ J

µ
CC + h.c. (1.56)

where
JµCC = Jµlep + Jµhad (1.57)

with the leptonic and hadronic currents being

Jµlep = ν̄ ′`,Lγ
µ`′L, Jµhad = ū′Lγ

µd′L. (1.58)

Let's start with the leptonic charged-current: as the charged lepton �eld gauge state
is rewritten in terms of the mass state `′L = S†` `L, we can rede�ne the neutrino ν̄ ′`,L �eld
to be ν̄ ′`,L = S`ν`,L, and the charged-current for the leptons is written

Jµlep = ν̄ ′`,Lγ
µ`′L = ν̄`,LS`S

†
`γ

µ`L = ν̄`,Lγ
µ`L. (1.59)

Thus we �nd the leptonic charged-current is written in terms of charged lepton �elds
with de�nite mass `L, with ` = e, µ, τ . The neutrino �elds ν`,L are called �avor neutrino
�elds, because each of them couples only with the corresponding charged lepton �eld in
the weak current (1.59). In the SM, the �avor neutrino �elds are also mass eigenstates,
because the linear combination of massless �elds is also massless.



1.4. THE STANDARD MODEL 15

Fermions gL gR
ν` gνL = 1/2 gνR = 0

` = e, µ, τ g`L = −1/2 + sin2 θW g`R = sin2 θW
u, c, t guL = 1/2− 2/3 sin2 θW guR = −2/3 sin2 θW
d, s, b gdL = −1/2 + 1/3 sin2 θW gdR = 1/3 sin2 θW

Table 1.2: The fermion's NC couplings to the Z boson.

The hadronic CC is a�ected by the basis change, given that u′Ld
′
L = uLSuS

†
ddL ≡

uLV dL. In general, Su 6= Sd, and a unitary mixing matrix V appears. This is the
Cabibbo-Kobayashi-Masakawa matrix VCKM [43, 44] that couples every type-up quark
with all down-type quarks. Then the charged hadronic current is written as

Jµhad = ū′L γ
µ d′L = ūα,L γ

µ V α,β
CKM dβ,L. (1.60)

The charged-current interactions for quarks mix �avors between families: the indices α
and β indicate the quark family α = u, c, t and β = d, s, b.

In the case of the neutral-currents the lagrangian can be written as

LNC = − g

cos θW
JµZZµ − eJµγAµ (1.61)

with

JµZ = JµZ,lep + JµZ,had, Jµγ = Jµγ,lep + Jµγ,had. (1.62)

Here the electromagnetic current is

Jµγ,lep = ¯̀′γµ`′, Jµγ,had =
2

3
ū′γµu′ − 1

3
d̄′γµd′ (1.63)

and the Z current is

JµZ,lep = gνL ν̄
′
`,L γ

µ ν`,L + g`L
¯̀′
L γ

µ `L + g`R
¯̀′
R γµ `R (1.64)

JµZ,had = guL ū
′
L γ

µ u′L + guR ū′R γµ u′R + gdL d̄
′
L γ

µ d′L + gdR d̄′R γµ d′R. (1.65)

The couplings gL,R of the Z boson to quarks and leptons are shown in table 1.2. Here e
is the proton's electric charge.

When changing to the fermion's mass eigenstate basis, the NC lagrangian (1.61) keeps
its shape, as f ′Lf

′
L = fLfL and f ′Rf

′
R = fRfR for every fermion f . Therefore in the SM

there are no �avor changing neutral-currents. This phenomenon is known as the GIM
mechanism (for Glashow, Iliopoulos and Maiani) [45] and it is a consequence of treating
equally every fermion with the same electric charge.
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q q′

νℓ ℓ−

W

(a) Neutrino SM Charged Current (CC)

q q

νℓ νℓ

Z

(b) Neutrino SM Neutral Current (NC)

Figure 1.1: Example of charged (W ) and neutral (Z) neutrino-quark currents in the
SM. The diagram (a) is produced by the interactions in (1.59) and (1.60). The diagram
(b) is produced by the interactions in (1.64) and (1.65).

1.4.4. Anomalies and B-L conservation

As a consequence of mass generation, only a very small subgroup of the [U(3)]5

symmetries we had found in (1.37) remain valid, corresponding to baryon number

QiL → eiθ/3QiL (1.66)

uiR → eiθ/3uiR

diR → eiθ/3diR

and lepton number

LiL → eiφLiL (1.67)

`iR → eiφ`iR.

Baryon and lepton number are accidental global symmetries of the SM, in the sense
discussed in sec.1.2.4.

Baryon number conservation implies that in every process the quantity B = 1
3(nq−nq̄)

must be the same in the initial and �nal states, with nq representing the number of quarks,
and nq̄ of anti-quarks. A baryon -made of three quarks (like the proton)- has baryon
number B = 1. The lepton number is de�ned analogously as L = nl − nl̄, but also, as
lepton �avors do not mix in SM electroweak interactions, leptonic family numbers can
be de�ned: Le, Lµ, Lτ .

However, none of these classical global symmetries is carried over to the quantum
theory: when a symmetry present at the classical lagrangian level is not present upon
quantization, we say it is anomalous. It was pointed out by Adler, Bell and Jackiw
[46,47] that in chiral theories (those involving γ5 currents) of fermions one-loop triangular
diagrams in general destroy the current conservation which was true at the tree-level.
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In the case of the SM, the conserved quantum number is B − L, the di�erence between
baryon and lepton number.

The gauge anomalies are also very important for the SM. A quantum mechanical
violation of gauge symmetry leads to the non-decoupling of negative norm states, be-
cause the gauge-�xing constraints cannot be consistently implemented and unphysical
states that would be eliminated classically by the gauge symmetry become propagating,
spoiling the quantum theory's consistency. Anomalies in a gauge symmetry can be ex-
pected only in chiral theories where left and right-handed fermions transform in di�erent
representations of the gauge group.

The cancellation of anomalies emerging in triangle diagrams in the SM requires that
leptons and quarks appear in complete multiplets with the structure (LL, `R, QL, uR, dR)
as given in table 1.1, also �xing their quantum numbers as electric charges, hypercharges
and the existent number of quark colors. This set of �elds is called a family of quarks
and leptons. The consistency of the theory requires that quarks and leptons appear
in Nature organizing themselves into families in this way. It is remarkable that all the
known elementary fermions can be accommodated in appropriate representations of the
symmetry group of the SM with exact cancellation of quantum anomalies.

1.5. Neutrino mass and the Standard Model: perspectives

So far we have discussed how particle masses are generated in the SM framework:
the Higgs mechanism is introduced in order to give masses to the weak bosons, quarks
and charged leptons, because adding explicit mass terms for fermions and gauge bosons
to the lagrangian breaks gauge invariance, which is necessary for the renormalizability
of the theory.

For the neutrinos the situation is somewhat special: neutrinos in the SM are massless
because only one left-handed helicity state is included per fermion family. Therefore, it
cannot acquire a mass though the Yukawa interaction with the Higgs VEV. This is in
contrast with the masslessness of the photon: it is due to a gauge symmetry, which in
turn governs the dynamics of the electromagnetic interaction.

There is no reason why neutrinos should have no mass, and in fact the discovery of
neutrino oscillations implies they have very tiny masses. In the next chapter I will intro-
duce the most popular mechanism to bring in neutrino masses: the seesaw mechanism
emerging from the addition of the Weinberg dimension �ve operator, which as we will
discuss in the following, leads to a non-renormalizable lagrangian.

In the end of this chapter I will comment on the renormalization procedure, and how
it leads to our current use and understanding of e�ective �eld theories for describing
phenomena occurring in Nature at di�erent scales.

1.5.1. Renormalization

The physical observables we are concerned with in particle physics are (most of the
time) computed from quantummechanical amplitudes evaluated using perturbative QFT,
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with the aid of the Feynman diagrams tool, which helps us to compute the di�erent terms
in a series expansion over the coupling constants appearing in the classical lagrangian of
the theory. When we calculate physical quantities in perturbation theory, in�nities may
emerge as the result of taking into account higher order terms in the expansion (loop
corrections).

In the traditional renormalization procedure one �rst regularizes the divergent in-
tegrals in the computation of Feynman diagrams with loops, subtracting the in�nities
either by putting a cuto� in the momentum dependence of the integrals, or using dimen-
sional regularization. The integrals now depend on an energy (momentum) scale. When
this energy scale is set to in�nity the integral diverges. To �x that behavior, one adds a
�counterterm� in the classical lagrangian for each divergent lagrangian term in order to
cancel the in�nity, and derives new Feynman rules which lead to �nite results order by
order in the perturbative expansion. In removing the ambiguities associated with in�ni-
ties we introduce a dependence of the couplings on the energy scale at which a process
takes place. One can study how this dependence changes: this is done calculating the
di�erential equations giving the evolution of the couplings with the energy scale.

One can count how many divergent quantities are present in the theory: this can
be done by counting the number of external legs and vertices a Feynman diagram has,
relative to the space-time dimension considered. The theory will be super-renormalizable
if only a �nite number of amplitudes diverge, and renormalizable if one has a �nite num-
ber of diverging amplitudes but divergences occur at all orders in perturbation theory.
In these cases the counterterms needed to cancel the divergences have the same struc-
ture as the operators (the interaction terms) already present in the original lagrangian.
Non-renormalizable theories are those in which all amplitudes are divergent at a su�-
ciently high order in perturbation theory. Also, this criterion can be translated to the
mass dimensionality of the coupling constant: if it has positive or zero mass dimension
(dimensionless), the theory is renormalizable. If the coupling constant has negative mass
dimension, then the theory is non-renormalizable.

In spite of its successes the renormalization procedure presented above can be seen
as some kind of prescription or recipe to get rid of the divergences in an ordered way.
However, the work of Wilson [48�50] allows us to understand the process of renormaliza-
tion in a very profound way as a procedure to incorporate the e�ects of physics at high
energies by modifying the value of the parameters that appear in the lagrangian.

In this framework one assumes a particular theory (with a certain lagrangian, leading
to a certain action including certain interactions between the �elds) is valid up to some
energy scale Λ, such that beyond it one needs to include new �elds or new interactions in
order to describe physics at that new high energy scale. We can regularize the diverging
integrals taking this energy scale Λ as a regulator cuto�.

If we would like to compute the e�ective dynamics of the theory at an energy scale
µ < Λ, we only have to integrate out all physical modes with energies between the cuto�
Λ and the scale of interest µ. One begins with a QFT de�ned by the lagrangian for the
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�elds ϕa
L[ϕa] = L0[ϕa] +

∑
i

giOi[ϕa] (1.68)

where L0[ϕa] is the kinetic term, and gi are the couplings associated with the interac-
tion operators Oi[ϕa]. In principle we include all the operators Oi compatible with the
symmetries of the theory.

The e�ective action S[ϕ′a, µ] at the scale µ can be written in the language of functional
integration as

eiS[ϕ′a,µ] =

∫
µ<p<Λ

Πa Dϕa eiS[ϕa,Λ]. (1.69)

Here S[ϕa,Λ] is the action at the cuto� scale:

S[ϕa,Λ] =

∫
d4x

{
L0[ϕa] +

∑
i

gi(Λ)Oi[ϕa]
}

(1.70)

and the functional integral in (1.69) is carried only over the �eld modes with momenta
in the range µ < p < Λ. The action resulting from integrating out the physics at the
intermediate scales between Λ and µ depends not on the original �eld variables ϕa but
on some renormalized �elds ϕ′a. At the same time, the couplings gi(µ) di�er from their
values at the cuto� scale gi(Λ). Therefore the resulting action at scale µ can be written
as

S[ϕ′a, µ] =

∫
d4x

{
L0[ϕ′a] +

∑
i

gi(µ)Oi[ϕ′a]
}
. (1.71)

The consequence for physics at low momentum is that we have to replace our action
by a new one with di�erent values for the couplings. Our ignorance of the details of the
physics going on at high momentum results in a renormalization of the couplings of the
action describing the long range physical processes.

In this procedure the running of the coupling with the energy scale can be understood
as a way of incorporating into an e�ective action at scale µ the e�ects of �eld excitations
at higher energies E > µ. This dependence of the couplings with the momentum scale
is the equivalent to the renormalization group �ow in the Wilsonian approach. We can
picture the action of the renormalization group transformation as a �ow in the space of
couplings, and thus as a �ow in the space of di�erent quantum �eld theories.

There are QFTs that are �xed points of the renormalization group �ow, i.e. whose
properly adimensionalized coupling constants do not change with the energy-momentum
scale. When a scale invariant theory is perturbed with some operator: i.e. if we include
some operator in the lagrangian perturbing an action that is already at a �xed point in
the renormalization group �ow, the perturbed theory is not scale invariant anymore but
we may wonder whether the perturbed theory �ows at low energies towards or away the
�xed point theory. This can be decided by looking at the scaling dimension 5 d of the
operator O used to perturb the theory at the �xed point. In four dimensions the three
possibilities are:

5At tree-level the scaling dimension coincides with the canonical dimension.
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d > 4: irrelevant perturbation. The running of the coupling constants takes the
theory back to the �xed point.

d < 4: relevant perturbation. At low energies the theory �ows away from the
scale-invariant theory.

d = 4: marginal deformation. The direction of the �ow cannot be decided only on
dimensional grounds.

The coe�cient associated with an irrelevant operator dies away during the recursion
of the integration to lower and lower momentum scales. Instead, the coe�cients of the
relevant operators grow. Relevant and marginal operators dominate the dynamics in the
infrared, while irrelevant operators become suppressed in this limit.

One can interpret the relevant and marginal perturbing operators about a free la-
grangian L0 as the super-renormalizable and renormalizable interaction terms described
in the power-counting analysis we discussed above. The irrelevant operators are associ-
ated with non-renormalizable theories.

Since in the Wilsonian approach the quantum theory is always de�ned with a physical
cuto�, there is no fundamental di�erence between renormalizable and non-renormalizable
theories. A renormalizable �eld theory, like the Standard Model, can generate non-
renormalizable operators at low energies such as the e�ective four-fermion interaction
of Fermi's theory of nuclear beta decay. They are not sources of any trouble if we are
interested in the physics at scales much below the cuto� E � Λ, since their contribution
to the amplitudes is suppressed by powers of6 E/Λ.

1.5.2. E�ective �eld theories: a foreword

One of the main reasons behind the progress in the understanding of physical pro-
cesses is the fact that at a given length scale and using the correct variables, our descrip-
tion of the physical phenomena is to a large extent independent of the physics at much
shorter distances. The basic ingredients in the building of e�ective �eld theories (EFTs)
are the light degrees of freedom and the relevant symmetries of the problem. The latter
provide the guiding principle to write a lagrangian that would be the starting point for
the calculation of physical observables.

A lagrangian constructed using only relevant and marginal operators de�nes a renor-
malizable theory, such as the SM, and these operators dominate infrared physics. Ob-
servables can then be computed in terms of a limited number of parameters associated
to the renormalized couplings of the relevant and marginal operators in the action, but
while this description is very accurate in the deep infrared (low energy) region, if we
want to include the corrections due to new physics above an energy scale Λ we have
to include higher dimension irrelevant operators. These, generically, will appear in the
action suppressed by the necessary powers of the scale Λ at which the new degrees of
freedom become excited.

6To preserve gauge invariance one has to use another method to regularize the integrals, as dimensional
regularization.
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As we go to higher energies e�ective theories are replaced by a more complete de-
scription. In general this process is repeated as we increase the energy. In EFTs we are
interested in physical phenomena taking place in a range of energies much below the scale
of new physics E � Λ, and the contributions of the non-renormalizable counterterms to
a physical processes are weighted by powers of E/Λ. As it turns out, to a given degree
of accuracy, there are only a few irrelevant operators that need to be taken into account
in the computations. Therefore, non-renormalizable theories are predictive. Frequently
it is experimental information that forces us to introduce higher-dimensional operators
in a renormalizable theory, as is the case with the experimental fact that neutrinos have
non-zero masses, as we will study in the following chapter 2.

The EFT approach has been widely used in order to facilitate the computation of
observables in low energy regimes for theories in which the full ultraviolet renormalizable
theory is well known (such as the Fermi's four-fermion interaction theory replacing the
full electroweak SM interaction mediated by the vector bosons W , or the treatment of
the interactions of mesons like pions or kaons, with masses well below the scale of QCD,
etc.). In those cases the heavy �elds are integrated out to bring the e�ective operators
by means of the Euler-Lagrange equations of motion. We will present an example of this
procedure for the neutrino mass generation in sec.2.6.

Many examples are worked out in reviews and lecture notes such as those in [51�
53]. In those cases, the coe�cients accompanying the distinct e�ective operators, and
containing the information about the high energy physics, are calculated by the matching
procedure: they are �xed to make the observables calculated with the full high energy
theory equal to the e�ective lagrangian calculation, and then run down back to the
low-energy scale using the renormalization group equations.

In this picture, the physics is described by a chain of di�erent EFTs, with di�erent
particle content, which match each other at the corresponding boundary (heavy thresh-
old). Each theory is the low�energy EFT of the previous underlying theory. Going
backwards in this evolution, one goes from an e�ective to a more fundamental theory
containing heavier scales.

From now on I will comment on the e�ective lagrangian extension of the SM, regarded
as a low-energy e�ective theory deriving from some yet unknown ultraviolet theory in-
volving new physics at an unknown high scale Λ.

1.5.3. E�ective lagrangian extension of the Standard Model

The SM can be extended considering an e�ective lagrangian with irrelevant e�ective
operators including just the known SM �elds as degrees of freedom (the fermion �elds
in table 1.1, the four gauge bosons, and the Higgs �eld), and preserving the SU(3)c ×
SU(2)L × U(1)Y invariance, forming the following series:

Leff = LSM +
∞∑
d=5

(
1

Λd−4

∑
J
cJOdJ + h.c

)
(1.72)
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where d indicates the canonical dimension of the operator OdJ , J labels the distinct
operators of the same dimension and Λ is the new physics scale.

The canonical dimension d for the operators is obtained from its �eld and derivatives
content. The di�erent �eld's canonical dimensions are �xed in the following way: the SM
action S =

∫
L d4x is dimensionless. Then working in natural units7 x has dimensions of

[mass]−1 and the lagrangian density (which I will be just calling lagrangian throughout
the thesis) has dimension [mass]4 or just d = 4. Thus derivatives ∂µ ≡ ∂

∂xµ have canonical
mass dimension 1 as well as scalar and vector boson �elds, as can be checked from the
terms (1.43) and (1.44). It can be seen from (1.55) that fermion �elds have dimension
d = 3/2. Written as in (1.72) the so called �Wilson coe�cients� cJ are dimensionless.

The only dimension �ve operator containing the SM �elds and invariant under the SM
gauge group is the lepton number violating Weinberg operator [54] we will be considering
in detail in section 2.5, as it provides a mass term for neutrinos. Next come dimension
six operators, which have been thoroughly studied in the literature. A classical paper
containing a pretty redundant but complete operator's list is [55], later revised by [56].
As one moves forward to higher mass dimension, the calculations of observable quantities
with the use of the e�ective lagrangian (1.72) are proportional to a factor (E/Λ)d−4, so
for calculations of scattering cross sections or decay rates at a given energy E � Λ,
which is usually given by the energy scale at which certain experiment is performed, the
contribution of each term comes with a suppression factor and one needs to consider only
the lowest dimension operators for a given desired accuracy.

The idea behind the use of e�ective lagrangian methods in the case one does not
know the underlying ultraviolet theory is to estimate our ignorance by bounding the
coe�cients cJ with knowledge from experiments at the low-energy scale, where the ef-
fective lagrangian use is valid. This allows to get a hint of what kind of new physics is
responsible for the low energy measured e�ects.

1.5.4. Perspectives

Until now I have reviewed the main features of the SM we will be concerned with in
the rest of the thesis. Although this theory gives a spectacularly accurate description
of most measured high energy physics phenomena, many issues remain unexplained.
Neutrino mass is a conclusive experimental evidence of the need to include beyond the
SM physics. In the following chapter we will be concerned with the problem of neutrino
mass. It starts with a brief description of the neutrino oscillation phenomenon and
how it is interpreted in terms of non-zero masses for the neutrinos, introducing various
possibilities for generating neutrino masses in e�ective extensions of the SM.

The Dark Matter and the baryon asymmetry problems are frequently addressed in
building new neutrino mass-generating models, as the leptogenesis scenario connects the
neutrino mass mechanism with the matter-antimatter asymmetry of the universe. I will

7These units are de�ned by ~ = 1, c = 1 for the Planck constant and the velocity of light in vacuum.
In this system [lenght] = [time] = [energy]−1 = [mass]−1.
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not deepen on these and many other open and very interesting possibilities, but it is good
to keep them in mind, as another motivation for studying neutrino physics nowadays.





Chapter 2

Massive neutrinos

This chapter is devoted to the introduction of the physics of massive neutrinos. I start
with a very brief introduction of neutrino oscillations, moving to a detailed discussion
of the typical neutrino mass generation mechanisms, in order to understand the modern
view in which some lepton number violating new physics beyond the Standard Model,
present at higher energies, is invoked to explain the observed neutrino masses.

The presentation of the basic theoretical aspects is mostly based on neutrino physics
textbooks as [30,57,58] and more recent lecture notes and reviews as [59]. An introduction
to the experimental aspects concerning neutrino oscillations can be found in [60].

2.1. Invitation: neutrino oscillations

It is well established experimentally that the neutrinos and antineutrinos taking part
in the SM charged-current and neutral-current interactions reviewed in sec.1.4.3 are of
three varieties of �avors. The electron-neutrino νe was discovered in 1956 by Cowan
and Reines in the Savannah River reactor experiment [61]. The muon-neutrino νµ was
discovered by Lederman, Schwartz and Steinberger in the Brookhaven National Labora-
tory (BNL) in 1962 [62] and the tau-neutrino ντ discovery was claimed by the DONuT
Collaboration at Fermilab in 2001.

It is also well known that relativistic �avor neutrinos ν` are produced in weak inter-
action processes in a state that is predominantly left-handed. To account for this fact is
that the ν` are described in the SM with a left-handed �avor neutrino �eld ν`,L and -as
there is yet not compelling evidence for the existence of states of relativistic neutrinos
which are predominantly right-handed- no mass term is written in the SM lagrangian
for the neutrinos, as we discussed in the previous chapter. However, the discovery of
neutrino oscillations has led to the fact that neutrinos have a mass.

Neutrino oscillation is a quantum mechanical phenomenon proposed in the late 1950s
by Pontecorvo [63,64]: neutrinos change �avor as they propagate through the vacuum and
matter. The oscillations are generated by the interference of di�erent massive neutrinos,
which are produced and detected coherently because of their very small mass di�erences.
In 1962 Maki, Nakagawa and Sakata represented the mixing of two neutrinos by a 2× 2

25
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matrix [65], and thus nowadays the matrix describing the oscillations is called PMNS
(Pontecorvo-Maki-Nakagawa-Sakata).

The �rst indication that neutrino oscillations may in fact occur was an apparent de�cit
in the �ux of electron-neutrinos withMeV energies that originate from the nuclear fusion
chain in the core of the Sun (called solar neutrinos) detected via the charged-current
interactions in (1.56)-(1.58). In 1968 [66] an experiment proposed by R. Davies in the
Homestake Mine in South Dakota reported an upper bound for solar neutrinos that
was a factor of two or three times smaller than predicted by the Standard Solar Model,
developed by J.N. Bahcall in [67,68] and explaining the expected neutrino �uxes due to
the nuclear reaction chains in the Sun. Already in 1968 Pontecorvo and Gribov suggested
that the de�cit could be due to electron into muon-neutrino oscillations νe → νµ [69].
This solar neutrino problem persisted in many experiments until the neutral-current
measurements made in the Sudbury Neutrino Observatory (SNO) �rst presented in 2001
con�rmed the oscillation hypothesis [70�72]. There the combined �ux of the three �avor
neutrinos could be measured, exploiting the neutral-current interactions in (1.61).

The �rst con�rmed oscillations were of GeV -energy neutrinos originated in the weak
decays of pions e.g. π+ → µ+ + νµ, kaons and muons produced by the interactions
of cosmic rays with the Earth's atmosphere: the so called atmospheric neutrinos. In
the early studies of atmospheric neutrino events by the Kamiokande [73, 74] and IMB
experiments [75, 76], after 1988, the νe/νµ rate was a factor of two above expectations:
a de�cit of νµ produced in the atmosphere on the other side of the Earth and detected
from the underground direction (upward events) was found, but not for those produced
on the same side (downward events). In 1998 the Super-Kamiokande experiment [77,78]
discovered that muon-neutrinos were oscillating into tau-neutrinos during their journey
through the Earth, consistently matching the dependence with the energy and distance
traveled to the νµ → ντ oscillation predictions.

The spectacular discovery of neutrino oscillations1 is a compelling experimental ev-
idence of physics beyond the Standard Model. In this section I will discuss the basic
aspect of this phenomenon: the implication that neutrinos have mass.

Oscillation formula for mono-energetic neutrinos in vacuum

If we consider a neutrino beam created in a charged interaction together with a
charged lepton `−, by de�nition, the created neutrino has �avor `, thus it is called
ν`. One can consider that this is not a physically propagating particle, but is rather a
superposition of propagating �elds να with masses mα:

|ν`〉 =
∑
α

U`α|να〉 (2.1)

where U is a unitary matrix.

1In 2015 the Nobel Prize in Physics was given to the directors of the SNO and Super-Kamiokande
experiments, Arthur B. Mc. Donald and Takaaki Kajita �for the discovery of neutrino oscillations, which
shows that neutrinos have mass�.
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Although the momentum ~p of the di�erent components in the beam are the same and
determined by momentum conservation in the process in which neutrinos are created,
the energies of the components are not the same -given that they have distinct masses-
and Eα =

√
~p 2 +m2

α. After a time t, the evolution of the initial beam is given by the
Schrödinger equation

|ν`(t)〉 =
∑
α

e−iEαtU`α|να〉. (2.2)

Since the Eα's are not equal, this state represents a di�erent superposition of the physical
states |να〉 compared to (2.1) and in general this state has not only the properties of a
ν`, but also those of other �avor states. The amplitude for �nding a ν`′ in the original
ν` beam is

〈ν`′ | ν`(t)〉 =
∑
αβ

〈νβ | U †β`′e−iEαtU`α|να〉 =
∑
α

e−iEαtU`αU
∗
`′α, (2.3)

where we have used the fact that the mass eigenstates are orthonormal: 〈νβ | να〉 = δβα.
At t = 0 the amplitude is just δ``′ , due to the unitarity of U . At time t the probability
of �nding a ν`′ in an originally ν` beam is

Pν`ν`′ (t) = |〈ν`′ | ν`(t)〉|2 =
∑
αβ

|U`αU∗`′αU∗`βU`′β| cos[(Eα − Eβ)t− ϕ``′αβ], (2.4)

where ϕ``′αβ = arg(U`αU
∗
`′αU

∗
`βU`′β). In all practical situations neutrinos are extremely

relativistic, so we can approximate the energy-momentum relation as

Eα ' |~p |+
m2
α

2|~p | , |~p | = E (2.5)

and we can also replace the time t for the distance traveled by the beam2 L, thus we get

Pν`ν`′ (t) =
∑
αβ

|U`αU∗`′αU∗`βU`′β| cos

[
2πL

Lαβ
− ϕ``′αβ

]
, (2.6)

with
Lαβ ≡

4πE

∆m2
αβ

, ∆m2
αβ ≡ m2

α −m2
β. (2.7)

The quantities |Lαβ| are called oscillation lengths. These give a distance scale over which
the oscillation e�ects are appreciable. If the distance L is an integer multiple of all
Lαβ one has Pν`ν`′ = δ``′ as in the original beam, but at other distances the e�ects of
the mixing can be detected. In particular, the dependence of the probability with the
distance is probed in experiments. It can also be rewritten in the usual form

Pν`ν`′ (t) =
∑
αβ

|U`αU∗`′αU∗`βU`′β| cos

[
∆m2

αβL

2E
− ϕ``′αβ

]
. (2.8)

2We work with natural units, in which the speed of light is c = 1, and then c = L
t
, so that t = L.
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So neutrino oscillations, i.e. the �avor change during propagation, imply that neutri-
nos have a mass: the squared mass di�erences ∆m2 6= 0 are needed in order to have a
non-zero oscillation probability. In the several current and past experiments on neutrino
oscillations the oscillation lengths, squared mass parameters and the L/E dependence,
as well as the mixing matrix UPMNS parameters are measured with great accuracy.

All existing compelling data on neutrino oscillations can be described assuming 3-
�avor neutrino mixing in vacuum. This is the minimal mixing scheme which can account
for the available data on the oscillations of the solar (mostly νe), atmospheric (mostly
νµ and ν̄µ), reactor (ν̄e) and accelerator (νµ and ν̄µ) neutrinos3. The existing data allow
the determination of the values of the squared mass di�erences between the mass states
∆m2

αβ . For instance, the best �t value for ∆m2
12 is 7.37 × 10−5 eV 2 [1]. Data on the

absolute scale of neutrino masses can be obtained by measuring the spectrum of the
electrons in tritium 3H β-decay experiments, and from cosmological and astrophysical
data. The most stringent upper bound mν̄e < 2.05 eV is given by the Troitzk experiment
[79]. The Planck Collaboration obtained a constraint on the sum of the neutrino masses,
assuming the existence of three light massive neutrinos -and other model dependent
information- which added to baryon acoustic oscillations (BAO) and supernovae data
give the limit

∑
jmj < 0.23 eV [80].

I will not deepen into the neutrino oscillations phenomenology, but start discussing
di�erent historically relevant theoretical models that predict masses for the neutrinos.

2.2. A Dirac mass

A Dirac neutrino mass can be generated with the same Higgs mechanism that gives
masses to quarks and charged leptons in the SM, as we saw in sec.1.4. The only extension
of the SM that is needed is the introduction of right-handed neutrino components ν`,R
for ` = e, µ, τ . Let's recall, however, that right-handed neutrino �elds are fundamentally
di�erent from the other elementary fermion �elds, because they are invariant under the
symmetries of the SM: they are singlets of the SU(3)C × SU(2)L symmetry group and
have zero-hypercharge (Y = 0). This is in order to be compatible with the experimental
non-�nding of right-handed neutrino states. The right-handed neutrino �elds are called
sterile4 because they don't participate in weak interactions, as well as strong or electro-
magnetic interactions, like any neutrino. Their only interaction is gravitational5. The
usual neutrinos, participating in weak interactions, are called active.

Also, it is important to notice that the introduction of right-handed neutrino �elds is
completely irrelevant for the cancellation of quantum anomalies constraining the fermion
content in the SM mentioned in sec.1.4.4. So the number of right-handed neutrinos

3There have been possible hints for the presence in mixing of one or more additional sterile massive
states, obtained by the LSND and MiniBooNe experiments, and short baseline (SBL) reactor neutrino
oscillation data. We will discuss them in chapter 4.

4The name was �rst introduced by Pontecorvo in [81].
5Let's emphasize that right-handedness is not an essential quality of the new chiral �elds, because we

could work as well with left-handed chiral �elds ν̃`,L = νc`,R as we saw in 1.2.3. The essential characteristic
is that the �elds are SM singlets, and hence sterile.
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is unconstrained by the theory, although it is usual to introduce three right-handed
neutrinos (one for each fermion family), but in fact, the presence of only one sterile
right-handed neutrino cannot be excluded.

Thus one can extend the SM with three right-handed neutrino �elds ν ′`,R (the primes
indicating it is not a mass eigenstate) -completing the fermion content in (1.49)- and
generating a Yukawa term that can be added to (1.50)

LY ukawa = −Γiju Q̄
′i
LΦ̃u′jR − Γijd Q̄

′i
LΦd′jR − Γij` L̄

′i
LΦ`′jR − Γijν L̄

′i
LΦ̃ν ′j`,R + h.c. (2.9)

which in the unitary gauge can be written as in (1.52)

LY = −
(

1 +
h

v

)[
d̄′LM

′
dd
′
R + ū′LM

′
uu
′
R + ¯̀′

LM
′
``
′
R + ν̄ ′`,LM

′
ν`
ν ′`,R

]
. (2.10)

This lagrangian can be diagonalized in the same way we did in sec.1.4.2, generating
a mixing between the three Dirac neutrinos in the same way the Cabibbo-Kobayashi-
Masakawa VCKM matrix allows for quark �avor-mixing. Recalling from sec.1.4.2 that
the matrices Mν = Sν`M

′
ν`
U †ν`S

†
ν` are diagonal, with the neutrino's masses as entries, the

massive chiral neutrino arrays are written in terms of the gauge eigenstates as νi,L =
Sν`ν

′
`,L and νi,R = Sν`Uν`ν

′
`,R, so the mass terms for the neutrinos can be written as

LD = −ν̄i,LmD
i νi,R + h.c. (2.11)

Here it is made explicit that the massive chiral eigenstates are identi�ed with an index
i = 1, 2, 3. The superscript D indicates that these mass terms are of the Dirac type.

The neutrino masses we obtain with this mechanism are proportional to the scalar
VEV v and the Yukawa couplings Γν , just as the masses of the charged leptons and
the quarks. However, it is known that the masses of the neutrinos are much smaller
than those of charged leptons and quarks. In the mechanism just described, there is
no explanation of the very small values of the Yukawa neutrino couplings. In fact, this
question is also left open in the framework of the SM. For example, for the particles in
the third fermion family the mass values are:

mt ' 173 GeV, mb ' 4.2 GeV mτ ' 1.78 GeV m3 . 0.2× 10−9 GeV, (2.12)

so the neutrino mass in the third family is 10 orders of magnitude smaller than the
corresponding charged lepton mass, and this concrete cold fact is left unexplained if we
only extend the SM with sterile neutrinos leading to a Dirac neutrino mass term.

As the massive chiral neutrino states are written in the form νi,L = Sν`ν
′
`,L, this

mechanism provides us with a mixing relation between the �avor neutrino left-handed
�elds ν`,L and the left-handed component of the Dirac massive neutrino �elds νi,L:

ν`,L =

3∑
i=1

S†ν`νi,L. (2.13)
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This mixing changes the neutrinos electroweak currents we found in sec.1.4.2. The lep-
tonic charged current coupling neutrinos and charged leptons to the charged W± bosons
in (1.59) is now written in terms of the massive chiral neutrino states νi,L as

Jµlep = ν̄ ′`,Lγ
µ`′L = ν̄i,LSν`γ

µS†` `L = ν̄`,Lγ
µSν`S

†
` `L = ν̄`,Lγ

µU †`i`L. (2.14)

Here, in the last step we de�ne the neutrino mixing matrix

U`i = S`S
†
ν`
. (2.15)

This de�nition allows us to write, as is customary, the left-handed �avor neutrino
�elds:

ν`,L = U`iνi,` ν`,L =

 νe,L
νµ,L
ντ,L

 (2.16)

and the charged current can be written as in the SM:

Jµlep = ν̄i,LU
†
`iγ

µ`L. (2.17)

It should be stressed that the �avor neutrino �elds must be treated with caution: in
practice they are useful only for calculations in which the e�ects of neutrino masses are
neglected, i.e. in the SM limit.

As in the SM, the unitarity of the charged lepton and neutrino mixing matrices leads
to the GIM mechanism we saw in (1.61).

The right-handed components of the massive neutrinos νi,R do not enter in the weak
charged-current in (2.17). Hence, they represent sterile degrees of freedom, not partici-
pating in weak interactions. That is why we do not de�ne superpositions of right-handed
neutrino �elds as in (2.13). In the presence of Dirac mixing, the active and sterile de-
grees of freedom remain decoupled, and in particular, oscillation between active and
sterile states is not possible in this formalism.

Total lepton number conservation

For massive Dirac neutrinos the �avor lepton numbers Le, Lµ, Lτ de�ned in sec. 1.4.4
are not conserved, as there is no global U(1) transformation on the charged leptons and
neutrino �avor �elds leaving invariant the Yukawa and kinetic lagrangians for neutrinos.
But -assuming baryon number is conserved- total lepton number L = nl−nl̄ is conserved,
as the lagrangian is still invariant under the global U(1) transformations

νi,L → eiϕνi,L, νi,R → eiϕνi,R (i = 1, 2, 3) (2.18)

`α,L → eiϕ`α,L, `α,R → eiϕ`α,R (α = e, µ, τ)

with the same phase ϕ for the independent chiral neutrino and charged lepton �elds.
Neutrinos and negatively charged leptons have L = +1, whereas anti-neutrinos and anti-
charged leptons (with positive electric charge) have L = −1. The lepton quantum number
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is di�erent for neutrinos and anti-neutrinos. Here, the Dirac character of neutrinos -which
implies that neutrinos and anti-neutrinos are di�erent particles- is closely related to the
invariance of the total lagrangian under the transformations in (2.18)6.

2.3. Majorana masses

As we saw in sec.1.2.1, one can write fermion mass terms using only one Weyl spinor,
as in equations (1.16) and (1.17). There we introduced the Majorana mass terms as those
made out of only a left-handed or right-handed Weyl spinor. We saw those mass terms
are allowed only for �elds that do not carry any charge, as they are not invariant under,
in particular, global U(1) transformations.

The right-handed sterile neutrino ν`,R we introduced in sec.2.2 carries no SM charge,
so we can construct a Majorana mass term out of it if we drop the possibility of lepton
number conservation. In fact, if we do not consider lepton number as an exact symmetry
in the theory there is no reason why a Majorana mass term is forbidden for ν`,R and,
thus, we must include it in the lagrangian.

We saw in sec.1.2.3 that we can use the charge conjugation operation to construct
the left-handed �eld

νc`,R = Cγ0ν∗`,R = C(ν̄`,R)T , (2.19)

using the relation given in (1.31). The Majorana mass term for ν`,R can then be written
as

LMR = −1

2
mM
R ν̄`,R C (ν̄`,R)T + h.c. = −1

2
mM
R ν̄`,R νc`,R + h.c. (2.20)

So if we incorporate sterile neutrinos to the SM (this is already physics beyond the
Standard Model) and we do not promote the accidental lepton number conservation to an
exact symmetry in our new extended theory, we are obliged to incorporate both Dirac and
Majorana mass terms in the lagrangian giving mass to neutrinos. This theory preserves
all the SM gauge symmetry. However, if we include both the Dirac and Majorana terms
in our neutrino mass lagrangian, then the ν`,L and ν`,R do not pair up to form one Dirac
neutrino �eld, and we will see soon that in fact massive neutrinos are Majorana particles,
following the de�nition given in (1.33).

We could also construct a Majorana mass term with the known SM left-handed
ν`,L. A term of this kind is strictly forbidden in the SM, as it is not invariant under
SU(2)L×U(1)Y gauge symmetry transformations. However, as we will see later, a term
like this could be generated by new physics beyond the SM.

With the aid of the charge conjugation operator we can construct the right-handed
�eld

νc`,L = Cγ0ν∗`,L = C(ν̄`,L)T , (2.21)

6As in the SM, the conserved quantum number is indeed B − L, as we argued in sec.1.4.4.



32 CHAPTER 2. MASSIVE NEUTRINOS

as we did in (2.19). Thus we can now write a Majorana mass only using the standard
neutrino �eld ν`,L:

LML = −1

2
mM
L ν̄`,LC(ν̄`,L)T + h.c. = −1

2
mM ν̄`,Lν

c
`,L + h.c. (2.22)

2.4. Dirac-Majorana mass term

The most general neutrino mass term which can be built from the �avor left-handed
�elds ν`,L and sterile �elds ν`,R has the form

LD+M = −1

2
ν̄`,L m

M
L νc`,L − ν̄`,L mD ν`,R −

1

2
ν̄c`,R mM

R ν`,R + h.c. (2.23)

One should notice here that the 1/2 factors in both Majorana terms avoid double count-
ing, as νc`,L and ν̄`,L are not independent, but νc`,L = Cν̄T`,L and the same holds for ν`,R.
This distinguishes the Majorana from the Dirac mass terms. The lagrangian in (2.23) is
usually called the Dirac and Majorana neutrino mass term [82, 83].

The matrices mM
L , mD and mM

R are non-diagonal, complex 3× 3 matrices. One can
see the Majorana mM

L,R matrices are symmetrical7 -taking into account that spinor �elds
anti-commute- and that CT = −C (carrying no �avor indices):

ν̄L m
M
L,R C ν̄TL,R = −ν̄L,R(mM

L,R)TCT ν̄TL,R = ν̄L,R(mM
L,R)T C ν̄TL,R. (2.24)

Let's now show that the neutrinos with de�nite masses generated by (2.23) are Ma-
jorana particles, i.e. they obey the Majorana condition given in (1.33).

De�ning the column vector of left-handed �elds

nL =

(
ν`,L
νc`,R

)
(2.25)

and the symmetrical 6× 6 mass matrix

MD+M =

(
mM
L mD

(mD)T mM
R

)
(2.26)

the mass lagrangian can be written as

LD+M = −1

2
n̄LM

D+MncL + h.c. (2.27)

A symmetrical matrix can be diagonalized by a unitary matrix U , giving MD+M =
U m UT , with m a diagonal matrix with positive elements. So, we can write

LD+M = −1

2
U †nL m (U †nL)c − 1

2
(U †nL)C m U †nL = −1

2
ν̄mνm = −1

2

i=6∑
i=1

miν̄iνi.

(2.28)
7Here I drop the �avor ` subindex, for simplicity.
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Here the mass eigenstates are

νm = U †nL + (U †nL)c =


ν1

.

.

.
ν6

 . (2.29)

Then each �eld νi has mass mi and satis�es the Majorana condition νi = νci = Cν̄Ti .
So far we have seen that in the case we generate the neutrino masses with a lagrangian

including Dirac and Majorana mass terms the resulting massive �elds are Majorana
particles: they are their own antiparticle. Also, we should keep in mind that as we have
included a Majorana mass term this theory violates both individual family and total
lepton numbers. These are both general features taking place every time we include
Majorana mass terms in the lagrangian of our theory.

2.4.1. One generation seesaw mechanism

The seesaw mechanism is the most popular mechanism of (very) small neutrino masses
generation [8�11]. In this section I will introduce the main idea behind the seesaw
mechanism in the simple case of just one fermion generation.

The Dirac and Majorana lagrangian mass terms are given by the expression

LD+M = −1

2
mLν̄Lν

c
L −mDν̄LνR −

1

2
mRν̄

c
RνR + h.c. (2.30)

where we will assume mL,mD and mR are real parameters. As we did in (2.28), we can
write the lagrangian as

LD+M = −1

2
n̄LM

D+MncL + h.c. (2.31)

now with a two row nL, and a 2× 2 matrix MD+M which is real and symmetric. So, it
can be easily diagonalized by an orthogonal matrix O, giving MD+M = O m′ OT . Here
m′ij = m′iδij is a diagonal matrix with eigenvalues m′1 < m′2

m′1,2 =
1

2
(mR +mL)∓ 1

2

√
(mR −mL)2 + 4m2

D. (2.32)

From the relation

MD+M = O m′ OT = (2.33)(
mL mD

mD mR

)
=

(
cos θ sin θ
− sin θ cos θ

)(
m′1 0
0 m′2

)(
cos θ − sin θ
sin θ cos θ

)
one �nds the mixing angle θ is de�ned by

cos(2θ) =
mR −mL√

(mR −mL)2 + 4m2
D

, tan(2θ) =
2mD

(mR −mL)
. (2.34)
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As the eigenvalues m′1,2 can be positive or negative, we can write down m′i = miηi,
with mi = |m′i| and ηi = ±1. Taking the unitary matrix U = O

√
η one diagonalizes

MD+M = U m UT bringing the mass lagrangian to the usual form

LD+M = −1

2
m ν̄mνm (2.35)

with

νm = U †nL + (U †nL)c =

(
ν1

ν2

)
. (2.36)

Thus, the �elds νL and νcR are connected with the massive ν1L and ν2L by the following
mixing relations

νL = cos θ
√
η1ν1L + sin θ

√
η2ν2L (2.37)

νcR =− sin θ
√
η1ν1L + cos θ

√
η2ν2L.

We have seen that neutrino masses are many orders of magnitude smaller than the
masses of the charged leptons and quarks, which as we saw in sec. 1.4.2 are all generated
by the standard Higgs mechanism of electroweak symmetry breaking. This has been
considered as evidence in favor of a non-standard mechanism for neutrino mass genera-
tion. Now we will see how the seesaw mechanism connects the smallness of the observed
neutrino masses with the violation of total lepton number at a new high energy scale.

The standard (Type I) seesaw mechanism [8�11], is based on the following assump-
tions:

The Dirac mass term is generated by the Higgs mechanism, so mD is of the order
of the mass of a charged lepton.

There is no left-handed Majorana mass term in the lagrangian: mL = 0.

The constant mR -which characterizes the right-handed Majorana mass term for
the sterile νR- is much larger than mD:

mR � mD. (2.38)

From (2.32), (2.34) and (2.38), we have:

m′1 ' −
mD

mR
mD, m′2 ' mR tan(2θ) ' mD

mR
� 1. (2.39)

Since m′1 is negative, we have η2
1 = −1 and thus m1 ' mD

mR
mD and m2 ' mR.

Then we �nd the seesaw mechanism generates a light neutrino mass m1 which is
much smaller than the Dirac charged lepton masses. In fact, this mass m1 gets smaller
the bigger is the heavy Majorana particle's mass m2 ' mR. The heavy mass m2 of ν2
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is responsible for the lightness of ν1, and hence the name seesaw for the mechanism.
Summarizing, the Type I seesaw mechanism gives the relations

m1 '
mD

mR
mD (2.40)

m2 ' mR (2.41)

In the seesaw limit, the mixing matrix U = O
√
η takes the form

U =

(
cos θ sin θ
− sin θ cos θ

)√
η '

(
1 mD/mR

−mD/mR 1

)√
η (2.42)

if we just keep terms up to linear in mD/mR � 1.
The mixing angle given by (2.39) is very small, thus ν1 is mainly composed of the

active νL, and the heavy ν2 is mainly composed of the sterile νcR, as can be seen from
(2.37).

The seesaw mechanism is very important, because it provides a very plausible ex-
planation of the smallness of neutrino masses with respect to the SM charged leptons.
The assumption mL = 0 is natural, since a Majorana mass term for the chiral �eld νL
is forbidden by the SM gauge symmetries and renormalizability. The Dirac mass mD

-which can be generated through the SM Higgs mechanism- is expected to be of the
order of the charged leptons mass, or of the order of the type-up quark mass of the same
generation. In any case, the order of magnitude of mD cannot be much larger than the
electroweak scale (which is 102 GeV ) because a Dirac mass term is forbidden by the
unbroken symmetries of the SM. This fact is summarized by saying that mD is protected
by the SM symmetries. It can only arise as the result of spontaneous symmetry breaking,
as for the other particles in the SM. On the other hand, since the Majorana mass term
in (2.20) is a singlet of the SM symmetries, the Majorana mass mR of the right-handed
chiral neutrino �eld νR is not protected by SM symmetries, and can be very big.

2.5. E�ective Majorana mass and seesaw mechanism

The Majorana mass term for the left-handed standard chiral �eld ν`,L considered in
(2.20) is forbidden by the SM gauge symmetries, as we already mentioned in sec.2.3.

However, if one considers the SM as a low-energy e�ective �eld theory as we discussed
in sec.1.5.2, given the �eld content and the gauge symmetries of the SM there is only one
dimension �ve operator �rst introduced by Weinberg [54] which leads to neutrino masses
after the electroweak symmetry breaking:

L5 = −λ
``′

2Λ
L`,LL`′,Lφ φ+ h.c. (2.43)

Here λ``
′
is a symmetric matrix, and Λ represents an unknown high energy lepton number

violating scale. This e�ective operator has only three renormalizable tree-level high-
energy realizations: all of them lead to a seesaw relation similar to (2.40). They are
called respectively Type I, II an III seesaw mechanisms [84].
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In the Type I seesaw mechanism, the scalar doublet φ and the lepton doublet L`,L
combine into an SU(2)L scalar, and the intermediate heavy particles are fermion
singlets: sterile Majorana neutrinos.

In the Type II seesaw mechanism, the product of L`,L and L`′,L forms as scalar
SU(2)L triplet (LT`,Lσ

iL`′,L)(φTσiφ)/2Λ. The intermediate heavy particle is a
scalar triplet [83,85�88].

In the Type III seesaw mechanism L`,L and φ form a fermion triplet:
(LT`,Lσ

iφ)(LT`′,Lσ
iφ)/2Λ. The intermediate particle is also a fermion triplet [89].

Type I seesaw

In the Type I seesaw mechanism, the Weinberg operator in (2.43) can be explicitly
written as

L5 =
1

2Λ
λ``
′
(LT`,Lεφ) C (φT ε L`′,L) + h.c. (2.44)

When the electroweak spontaneous symmetry breaking takes place, as in (1.41), the
Weinberg operator generates the Majorana mass term

LM = −m
``′v2

2
νT`,L C ν`′,L + h.c. (2.45)

with the Majorana mass matrix of the neutrinos given by the relation

m``′

2
=
λ``
′
v2

Λ
. (2.46)

2.6. �Vanilla� Type I seesaw model

The most popular realization of the Type I seesaw mechanism is usually called the
vanilla seesaw. It is implemented by the addition of three sterile right-handed neutri-
nos8 Ni,R to the SM �elds, and writing the most general dimension four renormalizable
lagrangian with Dirac and Majorana mass terms, above the electroweak scale:

Lν = −Γ`,jL`,Lεφ
∗Nj,R −

1

2
(Ni,R)TCMijNj,R + h.c. (2.47)

Here, the �rst term is the Yukawa interaction that will lead to the Dirac mass term, as
we saw in (2.2).

If we consider the mass of the sterile �elds Ni,R to be very heavy we can integrate
out these �elds by solving their Euler-Lagrange equations of motion taking into account
that in this limit they behave as classical, non-dynamical static �elds [90]. Thus we can

8I distinguish the Ni,R �elds from the ν`,R presented before in order to stress that these new �elds
are not related to the standard ν`,L by charge conjugation.
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neglect the kinetic term in the lagrangian and the equation of motion reads ∂Lν
∂Nj,R

' 0,
which, switching to an index free notation for simplicity, can be written as

∂Lν
∂NR

= −L̄LΓεφ∗ −NT
RMC + h.c. (2.48)

Solving for NR [28] gives NR = φ†ε C γ0(ΓM−1)TL∗L. Plugging this expression back in
Lν (2.47) gives the hermitian conjugate part of the L5 Weinberg lagrangian in (2.44) 9

Lν = − 1

2Λ
(L†εφ∗) C (φ†εL∗L) + h.c. (2.49)

where we must identify the couplings in (2.44) and (2.47):

λ

Λ
= −(Γ(M−1)TΓT )†. (2.50)

In the end, we �nd the lagrangian Lν of the vanilla model with right-handed sterile
neutrinos given in (2.47) reduces to the Weinberg operator and thus generates a Majorana
mass term for the Ni,R neutrino �elds, as shown in (2.45).

The vanilla seesaw model is the most popular high-energy renormalizable theory lead-
ing to the Weinberg operator, which, as we mentioned in sec.1.5.3, is the only dimension
�ve operator compatible with the SM gauge symmetry.

2.6.1. Masses and mixing

Taking into account that we have been dealing with �avor neutrino eigenstates, it
is convenient to see how the massive neutrino states appear in this formalism and the
seesaw mechanism takes place. The treatment will be similar to what we did in sec.2.4.

Once the electroweak SSB takes place, the lagrangian Lν in (2.47) generates a Dirac
and a Majorana mass term and can be written as

Lν = −ν̄`,LMD
`jNj,R −

1

2
N c
i,RM

N
ij Nj,R, (2.51)

with the Dirac mass given in terms of the Yukawa couplings matrix and the scalar VEV
as (MD)`j = Γ`jv/

√
2.

Expressed in the �avor basis n de�ned as

n =

(
ν`,L
N c
i,R

)
(2.52)

the neutrino lagrangian can be written in matrix notation as

Lν =
1

2
n̄

(
0 MD

(MD)T MN

)
n+ h.c. (2.53)

9I have used the following relations: CT = C−1 = −C, Cγ0 = −γ0C, εT = −ε = ε†, and the de�nition
of the conjugate spinor given in (1.24).
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The above mass matrix Mseesaw can be diagonalized as we did in sec.2.4 with the aid of
a unitary matrix U .

If we recall that in the seesaw limit the one-generation mixing matrix took the form
in (2.42) we can now try to diagonalize the mass matrix considering a mixing matrix U
as

U '
(

1 A
−A† 1

)
(2.54)

where A is a 3×3 matrix with elements Aj,k << 1. One can see that (up to linear terms
in A) U †U ' 1 and the non-diagonal element of the symmetrical matrix UTMseesawU in
the linear over A approximation is equal to

(MD)T −MNA†. (2.55)

So if we choose A† = (MN )−1(MD)T the matrix UTMseesawU takes the block-diagonal
form

UTMseesawU '
(
−MD(MN )−1(MD)T 0

0 MN

)
(2.56)

and the mixing matrix U can be written approximately as

U '
(

1 MD∗(MN )−1†

−(MN )−1(MD)T 1

)
. (2.57)

Thus we �nd that the spectrum has three light Majorana neutrino masses, given
by the seesaw relation MD(MN )−1(MD)T after taking into account the phases10 η and
three heavy Majorana neutrino masses characterized by the scaleMN of the total lepton
number violating phenomena associated with the existence of the Ni,R �elds.

If we call the light neutrino eigenstates νm and the heavy ones N , the left-handed
neutrinos of �avor ` ν`,L can be written in terms of mass eigenstates as

ν`,L = U`mνm + U`NN. (2.58)

The matrix U`m rules the mixing between the �avor-de�nite ν`,L neutrino states (the
well known standard neutrinos) and the light mass eigenstates νm. This mixing describes
the neutrino oscillation phenomena: it is the UPMNS matrix we encountered in sec.2.1.

On the other hand, the matrix U`N describes the only interaction of the heavy Majo-
rana neutrinos N with the standard particles: this mixing rules all the heavy N interac-
tions, as they only take place by the mixing with the standard light neutrinos. Recalling
the approximate form for the mixing matrix U in (2.57) we �nd the N − ν`,L mixings
U`N take values of order U`N ∼MD(MN )−1. The electroweak interactions of the mostly
sterile Majorana neutrinos N are then governed by the mixings U`N , which enter in the
electroweak charged- and neutral-currents, equivalently to what we saw in sec.2.2.

The leptonic charged-current in (2.17) now takes the form Jµlep = U`N N̄γ
µ`L giving

a charged-current lagrangian term for the heavy Majorana neutrinos N :

LNCC = − g√
2
U`N N̄γ

µ`LW
+
µ + h.c. (2.59)

10This is the same we did in the one-family seesaw case.
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Here I am not explicitly writing the charged leptons mixing matrix S` we considered in
(1.59), as this can be absorbed in the de�nition of the standard neutrino �avor eigenstates
ν`,L exactly as we did in sec. 1.4.3.

The neutral-current term is given by the substitution of the mixed expression for ν`,L
we have in (2.58) in the corresponding SM Z-boson current in the �rst term of (1.64)11:

LNNC = − g

2 cos θW
U`N N̄γ

µ ν`,LZµ + h.c. (2.60)

From the relation above it can be seen that again the GIM mechanism [45] does not work
anymore, as there can be neutral-current transitions between di�erent massive neutrinos
and thus �avor changing neutral-currents.

In the literature many authors consider this same �vanilla� Type I seesaw, but intro-
ducing a di�erent number of sterile neutrinos often called Ns, with s = 1, ...S. The light
massive states νm are still three but the heavy neutrino states are S = 1, 2.... This leads
us to a S×S matrix MN , and a 3×S A matrix in (2.54). Reference papers for this kind
of treatment focusing on collider phenomenology are [23] and [91]. Also, in a bottom-up
approach the right-handed neutrinos can just be introduced �by hand� as the only new
particles beyond the SM as it is done in the so called neutrino standard model νSM [92].

2.6.2. Phenomenological consequences and shortcomings

The most important phenomenological consequence of the presented Type I seesaw
models comes from the prediction of massive Majorana states. One should stress that
the Dirac or Majorana descriptions of a neutrino have di�erent phenomenological conse-
quences only if the neutrino is massive. If the neutrino is massless, since the left-handed
chiral component of the neutrino �elds obeys the Weyl equation (1.13) in both Dirac and
Majorana descriptions, and the right-handed chiral component is irrelevant for neutrino
interactions, both descriptions are equivalent. One can distinguish a Dirac or Majorana
neutrino only by measuring some e�ect due to the neutrino mass not of kinematical na-
ture: the neutrino oscillations cannot reveal the Majorana or Dirac nature of neutrinos.

The other striking e�ect is lepton number violation: the presence of Majorana neu-
trinos induces processes with ∆L = 2. The most promising way to �nd the Majorana
character of neutrinos is the search for neutrinoless double beta decay -that I will intro-
duce in sec.2.6.3- which is possible only if the massive neutrinos are of Majorana nature.
Also many other ∆L = 2 processes are being tested experimentally. In this thesis we will
be especially concerned with LNV processes taking place at high energy colliders.

However, one of the major shortcomings of the vanilla Type I seesaw mechanism
is that it in fact predicts an almost negligible interaction between the heavy massive
neutrinos N and the �avor eigenstates ν`,L. As we found in (2.57) the mixings U`N take
values of order U`N ∼ MD(MN )−1. As the light mass eigenstates νm predicted by the
seesaw mechanism have masses given by the seesaw relation mν = MD(MN )−1(MD)T

11The expression I am writing is indeed the hermitian conjugate of the neutral-current shown in (1.64).
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it is found that the N − ν`,L mixings take the values

U`N '
√

mν

MN
. (2.61)

Taking for instance the bound mν ≤ 0.1 eV , the current bound for the mixing in order
to �t this tiny light neutrino mass is

U`N . 1× 10−6

√
100 GeV

MN
. (2.62)

This relation tells us that the observation of lepton number violating phenomena
-which are suppressed by this factor- is practically impossible for MN above the EW
scale. This leads one to the conclusion that any LNV signal of a massive Majorana state
N at the electroweak scale would strongly indicate the existence of new physics beyond
the minimal seesaw framework we have reviewed until now.

2.6.3. Current bounds on neutrino mixings

From the above description it is clear that there are two key aspects of Type I seesaw
mechanism that can be probed experimentally: the Majorana mass MN of the mostly
sterile neutrinos N and their mixing with the active neutrinos U`N .

In the literature scenarios with sizable light-heavy neutrino mixings are made possible
by assigning speci�c textures12 to the Dirac and Majorana mass matrices in the seesaw
formula in (2.57). The stability of these textures can in principle be guaranteed by
enforcing some additional symmetries in the leptonic sector. But the current approaches
do not assume any relations between the mixing matrix elements, and bounds on the
mixings U`N are generally imposed considering the contributions of the existence of a
single heavy Majorana neutrino N (with mass MN ) to various processes [23,93�95].

The heavy neutrino interactions with the standard particles are assumed to be gov-
erned exclusively by their mixing with active light neutrinos via the charged- and neutral-
currents in (2.59) and (2.60), as well as the corresponding interaction with the Higgs �eld
obtained from the Yukawa lagrangian in (2.47). Although the production of the N is
always considered to happen via the mentioned interactions, some observables depend
explicitly on the possible decay modes and can be severely altered if the N has other
interactions than those obtained from the mixing with active neutrinos, or can decay to
invisible particles like dark matter particles.

Depending on the massMN distinct processes can test or put bounds on the existence
of the N and its mixing couplings.

12This means: they put zeros, or impose relations between some speci�c matrix entries, in order to
make the mixings small enough to satisfy the constrains imposed by the active neutrino tiny masses in
(2.62).
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Tests of lepton universality.

In the SM charged-current interactions couple to the three lepton families e, µ, τ
with a universal constant: g = ge = gµ = gτ , as we saw in (1.56). Such universality
can be studied at the percent and sub-percent level by measuring the ratios of
decay rates of charged leptons, pseudo-scalar mesons and the W boson. If a heavy
neutrino exists then the measured values of gµge ,

gτ
gµ

and gτ
ge

can deviate from unity.
We will be speci�cally interested in �avor conserving charged lepton decays as
τ− → e−ν̄eντ , τ− → µ−ν̄µντ and µ− → e−ν̄eνµ. The current bounds on lepton
universality tests are summarized in e.g. [93].

Invisible Z boson decays.

Precision measurements of the decay rates of the Z boson into invisible particles
(such as neutrinos) and to charged leptons were made in the e+e− collider LEP by
the DELPHI and ALEPH Collaborations [96, 97]. These experiments can bound
the number of active neutrinos and also give bounds on the mixings for a Majorana
neutrino mass MN < mZ .

Lepton �avor violating decays.

The presence of a heavy N participating in the loop level contributions to lepton
�avor violating processes -which as we already discussed are very restricted in the
SM- can bound the mixing products |U`NU`′N |. This set of processes includes
radiative ` → `′γ and three-body, i.e. ` → `′+`′−`− charged lepton decays, µ − e
conversion in nuclei, etc. The most stringent bounds from this group are given by
the µ→ eγ radiative decay [13,98].

This group of measurements together with constraints coming form the unitarity of
the quark mixing matrix VCKM (CKM-unitarity bounds) -usually referred as Electroweak
Precision Data (EWPD)- are considered in global �ts and give bounds on the mixings
U`N . Early works can be found in [13,99�102], updated to the available data at the time
in [103] and recent (2016) �ts can be found in [93,104].

In this thesis we will take this constraints into account by following the treatment
made in [91,105,106] and consider the bounds on the quantities

Ω``′ = U`NU`′N . (2.63)

The most stringent bounds for a heavy Majorana neutrino with mass MN > mZ =
91.2 GeV up to date are yet given by the µ → eγ radiative decay bounds Br(µ →
eγ) < 5.7× 10−13 [107] giving |Ωeµ| ≤ 1× 10−4. These bounds are very weak for masses
MN < mW = 80.4 GeV [13]. In the mass range MN < mZ the DELPHI bounds on Z
decays [97] give a constraint |U`N |2 ≤ 5× 10−3.

In sec.3.4 we will discuss how this constraint is taken into account in the results of
this thesis work.
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Figure 2.1: The 0νββ- decay pro-
cess diagram in the Type I seesaw
framework. Each neutron n = udd
undergoes a beta decay through the
SM process d→ W−u, becoming a
proton p = uud, and each W de-
cays asW− → e−νeL, where, if neu-
trinos are Majorana particles, they
can unite to form a Majorana νLν̄L
mass term.
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Kinematic constraints.

One can use the energy spectra of visible �nal-state particles in beta decay, pion,
kaon and muon decays, etc. to search for an invisible massive particle in the �nal
state. These experiments search for peaks in the �nal charged leptons spectra,
corresponding to the mass of the expected particle if it is lower than the originally
decaying particle's mass [108, 109]. Other kinematical tests include the decay of
heavier mesons like B decays in the Belle and LHCb experiments [110, 111]. The
kinematic constraints put bounds on the square product |U`N |2.

Neutrinoless double beta decay.

The single beta decay is the process by which a neutron decays into a proton
emitting an electron (beta particle) and an electron-antineutrino n→ p+ e+ + ν̄e.
Double beta decay occurs when two neutrons undergo a beta decay n + n →
p+ p+ e− + e− + ν̄e + ν̄e.

Neutrinoless double beta decay (0νββ) is the two-unit lepton number violating
process in which there are no �nal state neutrinos13: n+n→ p+p+ e−+ e−. It is
only possible if massive neutrinos are Majorana particles, and in the Type I seesaw
framework it is interpreted to happen as depicted in �g.2.1.

Experiments searching for 0νββ-decay measure the half-life τ0νββ of the process
waiting for it to happen in Germanium, Xenon or other nuclei. From the bounds
on the half-life for the decay, bounds can be obtained for the mixing of the �rst
family leptons |UeN |2. The most stringent bounds for τ0νββ & 1.1× 1026 years are
given by the KamLAND-Zen Collaboration [112]. In sec. 3.4 I discuss how this
bound is taken into account in our work.

Neutrino oscillations, cosmology.

Neutrino oscillations provide information on the light mass mixing parameters U`m
in (2.58) usually called UPMNS as we discussed in sec.2.1. However, a heavy neu-
trino with a mass of the order of MN & 10 eV would alter the oscillation pattern,

13For a review see the work by Bilenky and Giunti [59]
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and the oscillations of the three light neutrinos would be �non-unitary�, meaning
the oscillation probability for only three light neutrinos is distinctly di�erent from
the oscillation probability for three light neutrinos and one heavy neutrino.

If a heavy neutrino is in thermal equilibrium in the early Universe, it can have
an e�ect on cosmological observables, e.g. the Hubble constant, the primordial
abundance of light nuclei, the cosmic microwave background (CMB), supernova
luminosities, baryon acoustic oscillations (BAOs), and the large-scale distribution
of galaxies, as I commented in sec.2.1.

2.6.4. Perspectives

So far we have discussed the di�erent ways to implement neutrino masses: nowadays
neutrino masses are considered to be the �rst compelling evidence of physics beyond the
Standard Model. The modern treatment considers neutrino mass is generated by some
unknown new physics at a high-energy lepton number violating scale, with the Weinberg
operator we studied in 2.5 as its low-energy signature.

The vanilla Type I seesaw model presented here -which is widely studied in the
literature- seems to be the most �economic� renormalizable tree-level realization of the
Weinberg operator. However, the heavy, mostly sterile Majorana neutrino (or neutrinos)
introduced by the model are predicted to have negligible mixing with the active neutrinos,
as we found in (2.62), if one takes into account the bounds put by the actually tiny masses
active neutrinos are found to have. As the heavy neutrinos interaction with the standard
particles takes place only by their mixing with the active neutrinos these models indeed
predict the decoupling of the sterile neutrinos they introduce.

In the following chapter I will present an alternative e�ective lagrangian approach
by del Águila, Bar-Shalom, Soni and Wudka [15] which takes into account the possible
non-decoupling of the sterile heavy neutrinos. The study of various phenomenological
predictions given by this e�ective lagrangian, which introduces new e�ective interactions,
constitute the original work developed in this thesis.





Chapter 3

Majorana neutrino e�ective

lagrangian

In this chapter I introduce the e�ective lagrangian approach constituting the case
of study in this thesis. It includes the derivation of the lagrangian terms emerging
from the introduction of the Majorana neutrino e�ective operators made by del Águila,
Bar-Shalom, Soni and Wudka in their work [15], and a discussion on how the exist-
ing experimental knowledge is taken into account to introduce bounds on the e�ective
couplings.

3.1. An alternative approach

The discovery of neutrino oscillations in the end of the 2oth century -and its inter-
pretation in terms non-vanishing neutrino masses- claims for the extension of the SM
in order to incorporate them. Meanwhile, the discovery in 2012 at the CERN's Large
Hadron Collider of the SM Higgs boson favors the extensions including the Higgs scalar
doublet. This scenario has favored the Type I seesaw mechanism as a possible explanation
for the tiny but still non-zero neutrino masses.

However, as we saw in the last chapter, the naive �vanilla� Type I seesaw completion
of the dimension �ve Weinberg operator given by the Lν lagrangian in (2.47) predicts an
almost vanishing interaction of the heavy Majorana neutrino with the standard �elds, in
order to accommodate the tiny light neutrino masses, characterized by a νL−N mixing

U`N . 1× 10−6

√
100 GeV

MN
. (3.1)

This mixing governs all the interactions of the N with the standard particles, via the
charged and neutral currents

LNCC = − g√
2
U`N N̄γ

µ`LW
+
µ + h.c. (3.2)

45
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LNNC = − g

2 cos θW
U`N N̄γ

µ ν`,LZµ + h.c. (3.3)

Thus, as stated by the authors in [15], any lepton number violating signal of a sterile
N at or below the electroweak scale would strongly indicate the existence of new physics
beyond the minimal seesaw framework encoded in the Lν lagrangian presented in sec.2.6.

The proposal is to adopt an alternative approach, considering a Majorana neutrino
scenario with a relatively light N with mass mN . 1 TeV and negligible mixing with
the left handed standard neutrinos νL. The purpose is to present a natural and model-
independent formalism that allows a broader view of the expected physics for heavy
Majorana neutrinos, motivated principally by the study of N -mediated lepton number
violating processes at high energy colliders.

This approach departs from the customary viewpoint [23,91], in which the couplings
in (3.2) and (3.3) are taken to determine the rate of N -mediated LNV signals, and to
satisfy a �ne-tuned value for the mixings U`N . O(0.1), many orders of magnitude larger
than the value derived from the seesaw mechanism.

3.1.1. New physics parameterization

In view of the discussion above, the authors in [15] choose to depart from the tradi-
tional viewpoint and incorporate an e�ective lagrangian including the SM �elds and the
heavy Majorana neutrino N as the e�ective degrees of freedom.

The new physics underlying neutrino masses and interactions can be parameterized
as a series of e�ective operators OJ constructed with the N and the SM �elds and
preserving the SU(2)L × U(1)Y electroweak symmetry of the Standard Model. These
operators have coe�cients suppressed by inverse powers of the new physics scale Λ, in a
similar way to the SM e�ective operator extension presented in sec.1.5.3.

So the e�ective lagrangian we will consider can be written as

Leff = LSM + Lν +
∞∑
d=5

(
1

Λd−4

∑
J
αJOdJ + h.c.

)
(3.4)

with the di�erence that now the operators include the Majorana neutrino N in their
composition. The term Lν is the dimension four lagrangian of the �vanilla� Type I
seesaw realization of the Weinberg operator in (2.47), which is considered to be the only
contribution to this operator.

The dominating new physics e�ects are generated by the contribution of the operators
of the lowest canonical dimension that can be generated at tree-level in the underlying
unknown ultraviolet theory. Here the new physics responsible for the e�ective interactions
is assumed to be weakly coupled, meaning that radiative (quantum loop level) corrections
are smaller than tree-level contributions, and decoupling, meaning that the unknown
particles responsible for the e�ective interactions decouple from low-energy physics in
the limit in which their masses become large. The expansion in (3.4) is useful when
the new physics scale Λ is larger than all the experimentally available energies and the
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masses of all the new physics spectrum except mN , the Majorana neutrino's mass. In
particular this requires Λ� mN and E, where E is the typical energy of the considered
process. One should notice that there is no compelling argument suggesting mN must
be of order Λ: the new physics scale can be set by the symmetry breaking scale in some
ultraviolet model, completely independent of the Majorana mass scale.

As introduced in sec.1.5.3, the complete list of dimension six operators only including
the SM �elds can be found in the classic work by Buchmüller and Wyler re-analyzed in
the more recent work by Grzadkowski et.al. [55, 56]. Also, some operators constructed
only with the SM �elds but allowing for lepton number violation were presented in the
works by Babu and Leung [113] and de Gouvêa and Jenkins [114].

There is only one dimension �ve N -operator contributing to Leff : it can be written
as

O5
N = (N cN)(φ†φ). (3.5)

The contribution of this operator can be included in the renormalization of the Majorana
mass matrix MN . In fact, considering explicitly the contribution of the Lν lagrangian
from (2.47), the part of the e�ective lagrangian in (3.4) contributing at tree-level to the
neutrinos mass, after the spontaneous electroweak symmetry breaking, takes the form

Leff−mass = −ν̄`,RMD
`jNR −

1

2
N c
RM

NNR −
v2

2Λ
α

(5)
N N c

RNR (3.6)

where the �rst two terms are the contributions from the seesaw lagrangian Lν we found
in (2.51). Thus we �nd the e�ect of this operator can be absorbed in a renormalization
of the Majorana mass matrix1 MN .

Another dimension �ve operator can be constructed at one-loop level in a fully renor-
malizable theory. It is O(5)

NNB = N̄σµνN cBµν [115], where the antisymmetric �eld
strength is Bµν = ∂µBν − ∂νBµ. However, it vanishes in the case N represents one
sterile singlet. Eq.(1.31) implies that N c = CN̄T and (N c)T = (CN̄T )T = N̄CT = N̄C−1.
Thus, N̄ = (N c)TC. Then, using the relation CσµνC = (σµν)T 2, one can write

N̄σµνN c = (N c)TCσµνC(N̄)T = (N c)T (σµν)T (N̄)T = (N̄σµνN c)T .

On the other hand

(N̄σµνN c)T = −(N c)T (σµν)T N̄T = −N̄CT (σµν)TC−1N c =

−N̄C(σµν)TCN c = −N̄σµνN c,

where the minus sign in the �rst equality comes from the transposition of two fermion
�elds. Finally N̄σµνN c = −N̄σµνN c = 0 and the operator vanishes.

Our proposal for this thesis is to consider only the operators leading to new N inter-
actions, and study the possible observable e�ects of these operators in di�erent scenarios:
electron-proton (ep) and proton-proton (pp) colliders as well as the propagation of tau
neutrinos ντ through the Earth.

1We are neglecting the NNhh interaction given by this operator.
2It can be obtained from the relations in 1.2.
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3.2. Dimension six e�ective operators

Following the proposed alternative approach, we will consider that the sterile neutrino
N interacts with the light neutrinos by higher dimension operators, and take this interac-
tion to be dominant in comparison with the mixing through the Yukawa couplings. The
dominating e�ects come from dimension six operators that can be generated at tree-level
in the unknown underlying renormalizable theory.

Following [15] we start with a rather general e�ective lagrangian density for the
interaction of right handed Majorana neutrinos N with leptons and quarks, including
dimension six operators. The �rst subset includes operators with scalar and vector bosons
(SVB)

OLNφ = (φ†φ)(L̄iNφ̃), ONNφ = i(φ†Dµφ)(N̄γµN), ON`φ = i(φT εDµφ)(N̄γµ`i) (3.7)

and a second subset includes the baryon-number conserving four-fermion contact terms:

OduN` = (d̄iγ
µui)(N̄γµ`i), OfNN = (f̄iγ

µfi)(N̄γµN), OLNL` = (L̄iN)ε(L̄i`i),

OLNQd = (L̄iN)ε(Q̄idi), OQuNL = (Q̄iui)(N̄Li), OQNLd = (Q̄iN)ε(L̄idi),

OLN = |N̄Li|2, OQN = |Q̄N |2, ONN = (N cN)2, O′NN = |N cN |2 (3.8)

where `i, ui, di and Li, Qi denote, for the family labeled i, the right handed SU(2)
singlets and the left-handed SU(2) doublets, respectively, as introduced in sec.1.1, and
fi represents any of these �elds. The antisymmetric symbol ε is de�ned as in (1.15).

One can also consider operators generated at one-loop level in the underlying full
theory, whose coe�cients are naturally suppressed by a factor 1/16π2 [15, 116]:

ONB = (L̄iσ
µνN)φ̃Bµν , ONW = (L̄iσ

µντ IN)φ̃W I
µν ,

ODN = (L̄iD
µN)Dµφ̃, OD̄N = (DµLiN)Dµφ̃ . (3.9)

Here the �eld strength Bµν is de�ned as in the last section, and W I
µν = ∂µW

I
ν − ∂νW I

µ +

gεIJKW J
µW

K
ν , where the indices I, J,K run as I, J,K = 1, 2, 3 and the τ I are the SU(2)

generators introduced in sec.1.4.
We start by writing the e�ective operators in terms of the scalar, fermion and vector

�elds, in order to write explicitly the dimension six lagrangian to extract the Feynman
rules for calculating the di�erent observables we will be interested in.

3.3. E�ective lagrangian

We present here the complete e�ective lagrangian obtained from the operators listed
in (3.7), (3.8) and (3.9).

Standard vector bosons operators

The �rst operators subset presented in (3.7) involves the SM vector bosons, which ap-
pear as part of the covariant derivative for the electroweak sector as given in (1.44). Here
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we explicitly write the hypercharge of the scalar doublet as Yφ = 1
2 , and the derivative

takes the form Dµ = ∂µ− ig
′

2 Bµ− igτiW i
µ. After the electroweak symmetry breaking, the

term3 Dµφ is written as in the SM. It depends explicitly on the massive vector bosons
W± and Z, the scalar VEV v and the Higgs �eld h as:

Dµφ =

( −ig
2 W+

µ (v + h)
∂µh√

2
+ iev

mZ
√

2
(v + h)Zµ

)
, (3.10)

where the de�nitions for the weak boson's masses and the electric charge given in (1.47)
and (1.48) are used.

We have also used the Feynman rule for �eld derivatives (which can be resumed
in substituting a derivative for the momentum entering the interaction vertex ∂µϕ →
−iP (ϕ)

µ ϕ) writing explicitly the momentum dependence in the lagrangian.

Labelling the e�ective coupling for the operator OLNφ = (φ†φ)(L̄iNφ̃) as αLNφ ≡
αφ, the one for ONNφ = i(φ†Dµφ)(N̄γµN) as αNNφ ≡ αZ , and the one for ON`φ =
i(φT εDµφ)(N̄γµ`i) as αN`φ ≡ αW , the SV B part of the e�ective lagrangian is written
as

LtreeSV B =
1

Λ2

{
α

(i)
φ

(
3v2

2
√

2
ν̄L,iNR h+

3v

2
√

2
ν̄L,iNR hh+

1

2
√

2
ν̄L,iNR hhh

)
−αZ

(
−(N̄Rγ

µNR)
(mZ

v
Zµ

)(v2

2
+ vh+

1

2
hh

)
+(N̄Rγ

µNR)

(
v

2
P (h)
µ h+

1

2
P (h)
µ hh

))
− α(i)

W (N̄Rγ
µ`R,i)

(
vmW√

2
W+
µ +

√
2mWW

+
µ h+

g

2
√

2
W+
µ hh

)}
+ h.c. (3.11)

where a sum over the fermions family (or generation) index i is understood. Here one
can see the presence of vectorial interactions in the terms corresponding to the αZ and
α

(i)
W couplings, due to the presence of the γµ Dirac matrices.

3Taking φ =
(

0
v+h√

2

)
.
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Four-fermion contact operators

The four-fermion contact operators presented in (3.8) lead in a straightforward man-
ner to the tree-level lagrangian:

Ltree4−f =
1

Λ2

{
α

(i)
V0
d̄R,iγ

µuR,iN̄Rγµ`R,i + α
(i)
V1

¯̀
R,iγ

µ`R,iN̄RγµNR

+α
(i)
V2

(ν̄L,iγ
µνL,iN̄RγµNR + ¯̀

L,iγ
µ`L,iNRγµNR)

+α
(i)
V3
ūR,iγ

µuR,iN̄RγµNR + α
(i)
V4
d̄R,iγ

µdR,iN̄RγµNR

+α
(i)
V5

(ūL,iγ
µuL,iN̄RγµNR + d̄L,iγ

µdL,iN̄RγµNR)

+α
(i)
S0

(ν̄L,iNR
¯̀
L,i`R,i − ¯̀

L,iNRν̄L,i`R,i) + α
(i)
S1

(ūL,iuR,iN̄νL,i + d̄L,iuR,iN̄`L,i)

+α
(i)
S2

(ν̄L,iNRd̄L,idR,i − ¯̀
L,iNRūL,idR,i) + α

(i)
S3

(ūL,iNR
¯̀
L,idR,i − d̄L,iNRν̄L,idR,i)

+α
(i)
S4

(N̄RνL,i ¯̀
L,iNR + N̄R`L,i ¯̀L,iNR) + α

(i)
S5

(N̄RuL,iūL,iNR + N̄RdL,id̄L,iNR)

+α
(i)
S6

(N cNR)(N cNR) + α
(i)
S7
|N cNR||N cNR|

}
+ h.c. (3.12)

In (3.12) a sum over the family index i is understood, and the constants α(i)
O are associated

to the speci�c operators:

α
(i)
V0

= α
(i)
duN`, α

(i)
V1

= α
(i)
`NN , α

(i)
V2

= α
(i)
LNN , α

(i)
V3

= α
(i)
uNN , α

(i)
V4

= α
(i)
dNN , α

(i)
V5

= α
(i)
QNN ,

α
(i)
S0

= α
(i)
LN`, α

(i)
S1

= α
(i)
QuNL, α

(i)
S2

= α
(i)
LNQd, α

(i)
S3

= α
(i)
QNLd, α

(i)
S4

= α
(i)
LN , α

(i)
S5

= α
(i)
QN ,

α
(i)
S6

= α
(i)
NN α

(i)
S7

= α
′(i)
NN .

As the notation suggests, one can classify the distinct four fermion operators by their
Lorentz structure in vectorial (those involving the Dirac γµ) and scalar.

One-loop level generated operators

The last operators subset, presented in (3.9), includes the operators that can only be
generated at one-loop level in the unknown underlying high energy renormalizable theory,
as is proven in [116] for operators with SM �elds only. This means this operators cannot
be produced by dimension four vertices preserving the SM gauge symmetry, and must
be generated by loop graphs in the full theory. Therefore, their couplings are suppressed
by a loop factor 1

16π2 arising from the proper normalization of the loop four-momentum
integral in comparison with the operators generated at tree-level.

The operator ONB = (L̄iσ
µνN)φ̃Bµν involves the antisymmetric �eld strength Bµν

and the antisymmetric Dirac tensor σµν = i
2 [γµ, γν ]. The �eld strength Bµν can be

written as
Bµν = cW (∂µAν − ∂νAµ)− sW (∂µZν − ∂νZµ), (3.13)

using (1.46), and where cW ≡ cos(θW ) and sW ≡ sin(θW ). Replacing the derivatives for
the incoming photon and Z momenta, and recalling the de�nition of φ̃ = εφ∗, after the
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u d

O1
duNe O1

QuNL O1
LNQd O1

QNLd

N

e−

O1
Neφ

d u

W

N

e−

(a) (b)

Figure 3.1: Contribution to 0νββ-decay. In the diagram (a) the solid dot represents the
operator O1

Neφ and in the diagram (b) the four-fermion operators O1
duNe, O1

QuNL, O1
LNQd

and O1
QNLd.

SSB the operator ONB gives the terms in the one loop lagrangian with the coupling we
have called α(i)

L1
= α

(i)
NB.

The operator ONW = (L̄iσ
µντ IN)φ̃W I

µν leads to the combination

σµντ IW I
µν = 2σµν∂µ(τ IW I

ν )− igσµν(τJW J
ν )(τKWK

ν ). (3.14)

Here the product τ IW I
ν can be written, using eqs. (1.45) and (1.46) as:

τ IW I
ν =

1

2

(
W 3
ν

√
2W+

ν√
2W−ν −W 3

ν

)
=

1

2

(
cWZν + sWAν

√
2W+

ν√
2W−ν −cWZν − sWAν

)
. (3.15)

The terms in the lagrangian (3.18) with coupling α(i)
L3

= α
(i)
NW are the ones generated by

this operator.
The remaining two operators are ODN = (L̄iD

µN)Dµφ̃ and OD̄N = (DµLiN)Dµφ̃.
These can be written using the following expressions for the covariant derivatives, derived
from the de�nition in4 (1.44):

Dµφ̃ =

(
∂µh√

2
− imZ√

2
Zµ − i e√

2s2W
Zµh

−imWW
−
µ − ig2W−µ h

)
, (3.16)

DµLi =

(
∂µνL,i − i e

s2W
Zµ − i g√

2
W+µ

−i g√
2
W−µ + ∂µ`L,i + ie cWsW Z

µ`L,i + ieAµ`L,i

)
(3.17)

and DµN = ∂µN → −iPµ(N)N .
4Here we take the hypercharge values Yφ̃ = − 1

2
, YL = − 1

2
and YN = 0.



52 CHAPTER 3. MAJORANA NEUTRINO EFFECTIVE LAGRANGIAN

Their lagrangian parts in (3.18) correspond to those with couplings α(i)
L2

= α
(i)
DN and

α
(i)
L4

= α
(i)

D̄N
respectively.

Then the complete one-loop level lagrangian is the following:

L1−loop
eff =

α
(i)
L1

Λ2

(
−i
√

2vcWP
(A)
µ ν̄L,iσ

µνNR Aν + i
√

2vsWP
(Z)
µ ν̄L,iσ

µνNR Zν+

−i
√

2cWP
(A)
µ ν̄L,iσ

µνNR Aνh+ i
√

2sWP
(Z)
µ ν̄L,iσ

µνNR Zνh
)

−
α

(i)
L2

Λ2

(
mZ√

2
P (N)
µ ν̄L,iNR Zµ +

mz√
2v
P (N)
µ ν̄L,iNR Zµh+mWP

(N)
µ

¯̀
L,iNR W−µ

+

√
2mW

v
P (N)
µ

¯̀
L,iNR W−µh+

1√
2
P (h)
µ P (N)µ ν̄L,iNR h

)

−
α

(i)
L3

Λ2

(
i
√

2vcWP
(Z)
µ ν̄L,iσ

µνNR Zν + i
√

2vsWP
(A)
µ ν̄L,iσ

µνNR Aν

+i2
√

2mW ν̄L,iσ
µνNR W+

µ W
−
ν + i

√
2vP (W )

µ
¯̀
L,iσ

µνNR W−ν

+i4mW cW ¯̀
L,iσ

µνNR W−µ Zν + i4mW sW ¯̀
L,iσ

µνNR W−µ Aν

+i
√

2P (W )
µ

¯̀
L,iσ

µνNR W−ν h+ i2gcW ¯̀
L,iσ

µνNR W−ν Zµh

+i2gsW ¯̀
L,iσ

µνNR W−ν Aµh+ i
√

2cWP
(Z)
µ ν̄L,iσ

µνNR Zµh

+i
√

2sWP
(A)
µ ν̄L,iσ

µνNR Aµh+ i
√

2g ν̄L,iσ
µνNR W+

µ W
−
ν h
)

−
α

(i)
L4

Λ2

(
mZ√

2
P (ν̄)
µ ν̄L,iNR Zµ +

mZ√
2v

(P (ν̄)
µ − P (h)

µ ) ν̄L,iNR Zµh

+
1√
2
P (h)µP (ν̄)

µ ν̄L,iNR h−
√

2m2
W

v
ν̄L,iNR W−µW+

µ −
m2
z√

2v
ν̄L,iNR ZµZ

µ

−1

2

m2
Z

v2
ν̄L,iNR ZµZ

µh−
√

2m2
W

v2
ν̄L,iNR W+

µ W
−µh

+mWP
(l̄)
µ W−µ ¯̀

L,iNR +
mW

v
(P (¯̀)

µ − P (h)
µ )W−µ ¯̀

L,iNR h

+emW
¯̀
L,iNR W−µAµ + emZsW ¯̀

L,iNR W−µZµ

+
emZsW

v
¯̀
L,iNR ZµW

−µh+
emZcW√

2v
¯̀
L,iNR AµW

−µh

)
+ h.c. (3.18)

where P (a) is the four-moment of the incoming a-particle and a sum over the family index
i is understood again.

The lagrangian terms corresponding to the operators ONB with coupling αL1 , and
ONW with coupling αL3 have a tensorial Dirac structure, given the presence of σµν .
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3.4. Bounds on the e�ective couplings

The e�ective coupling α(i)
J associated to each e�ective operator OJ can be bounded

exploiting the existing constraints on the sterile-active neutrino mixings U`N in seesaw
models I reviewed in sec.2.6.3.

In the e�ective lagrangian framework we are studying, the heavy Majorana neutrino
couples to the three fermion family �avors i = e, µ, τ with couplings dependent on the
new physics scale Λ and the coe�cients α(i)

J .
We can interpret the current experimental bounds comparing the e�ective couplings

with the general structure of the interaction between heavy neutrinos with the standard
gauge bosons, which I introduced in sec.2.6.1. In the �vanilla� seesaw models, the modi�ed
charged-current (2.59) and neutral-current (2.60) are taken into account in the calculation
of the di�erent bounds on the mixings U`N . In the e�ective theory, we saw the ON`φ
operator induces a lagrangian term in (3.11) which can be directly related to the CC
interaction in (2.59):

LSV B ⊃ −
1

Λ2
α

(i)
W

vmW√
2

(N̄Rγ
µ`R,i)W

+
µ + h.c. LNCC = − g√

2
U`N (N̄γµ`L)W+

µ + h.c.

(3.19)
One can then relate the e�ective coupling α(i)

W with the mixing U`N taking

α
(i)
W '

gΛ2

vmW
U`N =

2Λ2

v2
U`N , (3.20)

where the second equality follows form (1.45).
This is not the case with the neutral currents in (2.60): the e�ective operators we

are considering do not lead to any lagrangian term (vertex) sharing their Lorentz-Dirac
structure, nor at tree, neither at one-loop level. The gauge invariant e�ective dimension
six operators do not lead to a vectorial coupling between theN , νL and Z �elds. However,
as some terms in the one-loop lagrangian in (3.18) contribute to a NνZ coupling, in some
applications we have calculated explicitly the possible bounds for their couplings, coming
from Z decay experiments, although they are suppressed by the 1/16π2 loop factor.

We then take a conservative approach, and in order to keep the analysis as simple
as possible, but with the aim to put reliable bounds on the e�ective couplings, we relate
the mixing between light and heavy neutrinos and the e�ective couplings as

U`N '
αv2

2Λ2
, (3.21)

and we use it to infer bounds on α(i)
J from the existing bounds on U`N [15].

In the di�erent applications presented in this thesis we have taken distinct approaches
in order to consider the existing bounds for the e�ective couplings: in our early works
we took all the couplings to satisfy the same and most stringent constraints, but in the
most recent works we considered bounds on sets of e�ective couplings depending on their
Lorentz-Dirac structure, thus making all the scalar, vectorial or tensorial sets of couplings
obey the most stringent bounds found in each case. The details on the treatment made
in the di�erent works will be presented in the corresponding chapters.
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Electroweak precision data bounds

As I reviewed in sec.2.6.3, there is a stringent set of bounds on the neutrino mixings
put by electroweak precision tests as lepton universality, Z decays and lepton �avor
violating decays. Following the treatment made in [91,105,106], we consider the bounds
on the quantities

Ω``′ = U`NU`′N , (3.22)

and use them to put bounds on the e�ective couplings, as we explained in the previous
section.

For the Lepton-Flavor-Violating processes (LFV), e.g. µ → eγ, which are induced
by the quantum e�ects of the heavy neutrinos, we have several bounds [13,117�119] but
the most restrictive one comes from Br(µ→ eγ) ≤ 5.7 10−13 [13, 98]. This bound is the
most stringent for the higher mass range mN > mW and imposes |Ωeµ| ≤ 0.0001, which
can be translated to the constants α as

Ωeµ = UeNUµN =

(
α

2

v2

Λ2

)2

< 0.0001,

and for Λ = 1 TeV we have

αboundEWPD ≤ 0.32 . (3.23)

In the case of the low mass range mN < mZ the most stringent bounds come from
the DELPHI Collaboration and give |U`N |2 ≤ 5 × 10−3, which can be translated to the
e�ective couplings as:

αboundColl ≤ 2.3 (3.24)

Neutrinoless double beta decay bounds

One common constraint for all our results stems from the neutrinoless double beta
decay bounds discussed in sec.2.6.3. The 0νββ experiments put the most stringent limits
on the mixings UeN for the �st fermion family i = e. The four-fermion operators with
u and d quarks and the e charged lepton O1

duNe, O1
LNQd, O1

QuNL and O1
QNLd -as well

as the SV B operator O(1)
N`φ- contribute to the 0νββ-decay process depicted in �g.2.1 via

the interactions in �g.3.1.
We take into account the bounds for the 0νββ-decay following the general treatment

made in [120], where an e�ective interaction Hamiltonian for the udeN interaction is
considered:

H = Geff ūΓd ēΓN + h.c. (3.25)

Here Γ represents a general Lorentz-Dirac structure. We �nd the Geff constant can be
parameterized as depending on the Majorana neutrino mass mN as

Geff ≤ A× 10−8
( mN

100 GeV

)1/2
GeV −2, (3.26)
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where the numerical constant A depends on the nuclear model used and the lifetime for
the 0νββ-decay. We take the most stringent limit τ0νββ ≥ 1.1 × 1026 years obtained by
the KamLAND-Zen Collaboration5 [112].

The operators in �g.3.1 contribute to the e�ective Hamiltonian (3.25), with Geff =
α
Λ2 , which is related with the mixing angle between light and heavy neutrinos as we
stated in (3.21). We �nd that the value A = 3.2 �ts very well the bounds obtained for
the mixings [93,122] in the most recent literature.

We can translate the limit coming from Geff on this set of �rst family operators
α

(1)
O0νββ

which, for Λ = 1 TeV, is

αbound0νββ ≤ 3.2× 10−2
( mN

100 GeV

)1/2
. (3.27)

3.5. Perspectives

The e�ective operators presented in this chapter lead to a very rich phenomenology:
its study in the context of high energy colliders and also in neutrino telescopes constitutes
the purpose of the original research presented in this thesis.

I would like to emphasize that the e�ective operators presented here cover a wide
variety of well known renormalizable new physics models as extended scalar and gauge
sectors, vector and scalar leptoquarks, heavy fermions, etc. and as discussed in sec.1.5.2
one can try to get a hint of what kind of new physics is responsible for the low energy
measured e�ects by studying their phenomenological implications. In the next chapters
I present the contributions we have made during this period towards this direction.

5In our �rst works [2, 4] this limit still came from the GERDA result [121] giving τ0νββ ≥ 2.1× 1025

years.





Chapter 4

E�ective Majorana neutrino decays

I start the presentation of the di�erent results obtained in the study of the phe-
nomenology of Majorana neutrinos in the framework of the e�ective lagrangian approach
introduced in chapter 3. This chapter is devoted to the calculation of the Majorana
neutrino decay width and the branching ratios for its di�erent decay modes, introducing
the work leading to the publications in [2, 3].

4.1. Introduction

The study of sterile Majorana neutrino decays is an issue of great interest in di�er-
ent areas of high energy physics, as the search strategy or the discovery of new e�ects
for heavy neutrinos often rely on their di�erent decay channels to detectable particles.
Besides the heavy Majorana neutrino detection in colliders by lepton number violation
processes -subject we will address in the following chapters- other kinds of searches ex-
ploiting the displaced vertex and delayed photons techniques have been proposed and
are taking place at the LHC [123�130] in the framework of �vanilla� and �inverse� Type I
seesaw scenarios. Also, searches in neutrino telescopes like IceCube [131,132] have been
proposed, and the new decay modes and their relation with the explanation of several
anomalies as the sub-horizontal events detected by the neutrino telescope SHALON [133]
or the anomaly in the MiniBoone accelerator-neutrino experiment [134] are being investi-
gated [135]. In astrophysical environments, the cosmic and the di�use supernova neutrino
backgrounds can be used to probe possible radiative decays and other decay modes of
cosmological interest [136,137].

With these motivations in mind, in this chapter we study the decays of heavy Majo-
rana neutrinos in a general, model-independent approach in the context of an e�ective
theory. This chapter includes the work made in two papers, studying the N decays in
two mN regimes: a �rst paper [2] restricts to the case of mN < mW , and a following
paper [3] treated all the available decay modes into standard particles.

I will �rst present the general results we obtained for the decay widths and branching
ratios for all possible two-body and tree-body N decays in section 4.2 and our numerical

57
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results for the high mass (sec.4.3.1) and low mass (sec.4.3.2) regimes, explaining how the
constraints on the e�ective couplings are taken into account in each case.

In our work [2] we studied the decay modes of a relatively light Majorana neutrino
in the context of the general e�ective framework. We focused in a mass interval below
the standard massive vector bosons mass (mN < mW ) as this reduces the possible decay
channels, letting us concentrate on the phenomenology of the neutrino plus photon decay
mode. This heavy neutrino decay channel has been introduced as a possible answer to
some experimental puzzles, like the MiniBooNE [138, 139] and SHALON [140] anoma-
lies, considering sterile heavy neutrinos created by νµ neutral current interactions and
decaying radiatively due to a transition magnetic moment [141]. We revisit here the
mentioned anomalies in the light of an e�ective lagrangian description for the heavy Ma-
jorana neutrino decays in sec.4.4 and comment on its possible detectability in colliders
like the LHC.

4.1.1. Decay widths and branching fractions

In this chapter we deal with the calculation of the decay widths and branching ratios
of the possible unpolarized decay modes of a sterile Majorana neutrino. I will now give
a brief de�nition of these observables.

The decay rate (or decay width) of an unstable particle into a speci�ed �nal state of
two or more particles is de�ned as the number of decays per unit time divided by the
number of available decaying particles, i.e. the probability per unit time of a particle to
decay1. The total decay width is the sum of the decay widths of all possible channels:

Γtot =
∑
i

Γi. (4.1)

The lifetime of an unstable particle is the de�ned as τ = (Γtot)
−1, and its half-life as

τ ln(2).
The branching fraction or branching ratio for a given decay channel is de�ned as its

decay width divided by the total decay width for the unstable particle:

Br(i) =
Γi

Γtot
. (4.2)

The di�erential decay width of an unstable particle with 4-momentum p into a �nal
state with k particles of momentum p′j and phase-space factor dΦk can be calculated as

dΓ =
1

2Ep
|Mi→f |2dΦk. (4.3)

Here the phase-space dΦk factor is de�ned as in the appendix A.1. The two-body phase-
space and the treatment of resonances A.1.2 are brie�y introduced there as a reference
to the reader.

1In natural units, it is measured in [s−1] = eV .
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The matrix elementMi→f gives the transition amplitude between the initial and �nal
state. This is calculated perturbatively with the aid of Feynman diagrams, and depends
on the di�erent momenta of the �nal state particles, to be integrated in order to calculate
the decay width. In this work we are considering only the tree-level contributions to the
N -decays, taking into account the diagrams shown in the di�erent �gures for each possible
decay channel, and integrating the phase-space factor in each case. In the case of two-
body decays the phase-space can be easily integrated, giving analytic expressions for the
decay widths. For three-body decays, the phase-space integration is more involved, and
in some cases has to be done numerically, using Monte Carlo techniques. The di�erential
decay widths are usually expressed in terms of a dimensionless variable x representing
the quotient between the momenta of one of the product particles and the rest-mass of
the decaying particle. Many examples can be seen in specialized textbooks like [142] and
for reference I have worked out a detailed calculation of a three-body decay phase-space
integration in the appendix A.2.

4.2. N decays

An unstable particle can decay into other particles if the process is kinematically
accessible: this requires that at least the sum of the decay products rest-mass must be
smaller than the rest-mass of the parent particle.

A heavy Majorana neutrino N with su�ciently high mass mN can decay to any
combination of standard particles2. We chose to analyze in two di�erent papers the
possible decays of the N : in a �rst work [2] we studied the possible decay channels
for a Majorana neutrino lighter than the W, Z and Higgs bosons mass (mN < mW =
80.4 GeV ) and focused on its decay modes to fermions and the novel decay channel to
an ordinary neutrino and a photon. In a subsequent paper, we completed the calculation
including all two-body and three-body decay channels, for a su�ciently heavy N [3].

Both mass regimes are tested by di�erent experiments, and then the experimental
bounds we have to take into account for the e�ective couplings α(i)

O in each case are
di�erent. I will comment on the considered bounds for the α(i)

O and how we implement
the numerical calculations separately for each case.

4.2.1. Two-body decays

The two-body decay channels for the heavy Majorana neutrino N are shown in �g.4.1.
They receive contributions from the lagrangian terms originated in operators involving
gauge bosons and the Higgs �eld presented in (3.7) and (3.9) that lead to the e�ective
lagrangian terms in (3.11) and (3.18).

The analytical expressions obtained for the decay widths of channels N → νZ, N →
l+W− and N → νh shown in �g.4.1 are:

2In processes allowed by conservation laws.
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(a) A,Z

N

ν̄

(b) W−

N

l+

(c)

ν̄

h

N

Figure 4.1: Two-body decays with gauge bosons and Higgs �eld.

ΓN→νiZ =
( mN

128π

)(mN

Λ

)4
(1− yZ)2

[
(α

(i)
L4
− α(i)

L2
)2(1− yZ)2+

8(α
(i)
L4
− α(i)

L2
)(α

(i)
L3
cW − α(i)

L1
sW )(1− yZ)

√
yZyv +

16(2 + yZ)yV (α
(i)
L3
cW − α(i)

L1
sW )2

]
with yZ = m2

Z/m
2
N and yv = v2/m2

N .

ΓN→liW =
mN

32π

(mN

Λ

)4
α

(i)
W (1− yW )2(1 + 2yW )yv

with yW = m2
W /m

2
N .

Γ(N→νih) =
9mN

128π

( v
Λ

)4
α

(i)2
φ (1− yh)

with yh = m2
h/m

2
N .

Finally we have the decay mode to a photon and an ordinary neutrino N → νA:

ΓN→νiA =
1

4π

(
v2

mN

)(mN

Λ

)4
(α

(i)
L1
cW + α

(i)
L3
sW )2 (4.4)

This decay mode leads to an interesting phenomenology to be discussed in sec.4.4.
It is important to take into account here that the W and h resonant contributions

to other decays, as can be seen in �gs. 4.5 (a) and (b) were already included in those
decays and will not be added to the total width.

4.2.2. Three-body decays

Gauge and Higgs bosons

The three-body decays of the heavy Majorana neutrino N involving gauge bosons and
the Higgs �eld receive contributions from the lagrangians presented in (3.11) and (3.18),
whereas the decays to three fermions come also from the operators presented in (3.12).
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The e�ective model we are working with also gives tree-level contributions to four-body
decays, but as their contributions are very small -mostly due to the phase-space volume
factor, as I comment in the appendix sec. A.1.1- they are not presented in this work.

The three-body decay channels involving gauge bosons and ordinary neutrinos are
shown in �g.4.2: (a) and (b) N → νW+W−, (c) and (d) N → νZZ, and (e) N → νZA.
The di�erential decay rates are expressed in terms of x = 2p0

mN
, with p0 being the energy of

the lepton (charged lepton or ordinary neutrino) in the N -rest frame. Detailed examples
of this kind of calculations are included in the appendix sec.A.2.

h

W+

W−

N

ν̄

Z

Z

ν̄

hN

Z

Z

N

ν̄

W+

W−

N

ν̄

ν̄N

ν̄

Z

A

(a)

(b)

(c)

(d)

(e)

Figure 4.2: Three-body decays with two gauge bosons and ordinary neutrinos.

The analytical expressions for the di�erential decay widths are:

dΓN→νiW
+W−

dx
=

mN

6144π3

(mN

Λ

)4 x2

(1− x)2yW
((1− x)(1− x− 4yW ))1/2 ×[

16α
(i)2
L3

(3− x)((1− x)2 + 4(1− x)yW − 8y2
W )+

3 | α̃(i) |2 g2(1− x)((1− x)2 − 4(1− x)yW + 12y2
W )
]

where α̃(i) = α
(i)
L4

+ 3
2α

(i)
φ

yv
1−x−yh+i

√
yhyΓW

, yΓW = Γ2
W /m

2
N and 0 ≤ x ≤ 1 − 4yW . In

this process we discard the N → lW followed by the l → νW SM vertex contribution,
because the amplitude is proportional to the intermediate lepton mass, and thus negligible
in comparison with the diagrams shown in �g.4.2 (a) and (b)3.

3These diagram's contributions are a factor of m`
mN

. 0.01 shorter than those shown in �g.4.2 (a) and

(b) in the case of tau leptons (which have the bigger mass) for mN > 2mW .
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dΓN→νiZZ

dx
=

mN

64π2

(mN

Λ

)4 αemg

s2
2W

yZ

α(i)
L4

+
3α

(i)
φ yv(1− x− yh)

(1− x− yh)2 + yhyΓh

2

+

 3α
(i)
φ yv
√
yhyv

(1− x− yh)2 + yhyΓh

2×
x2

(1− x)

(
2 +

(1− x− 2yZ)2

4y2
Z

)
((1− x− 2yZ)2 − 4y2

Z)1/2

with αemg = e2

4π being the electromagnetic constant, yΓh = Γ2
h/m

2
N and 0 ≤ x ≤ 1− 4yZ .

dΓN→νiZA

dx
=

mN

32π3

(mN

Λ

)4 (
cWα

(i)
L1

+ sWα
(i)
L3

)2 (1− x+ 2yZ)(1− x− yZ)x3

(1− x)3
.

with 0 ≤ x ≤ 1− yZ .

A,Z

N

ν̄

h

h

N

ν̄

h

h

N W−

l+

ν̄N

ν̄

Z

h

(a) (b)

(c) (d)

Figure 4.3: Three-body decays with gauge bosons and Higgs �eld.

The three-body channels with Higgs �elds in the �nal state are shown in �g.(4.3) (a)
N → νhh, (b) N → l+W−h, (c) N → νhA and (d) N → νhZ. The obtained expressions
for the decay widths are:

dΓN→νihh

dx
=

18α
(i)2
W mN

2048π3

(
v

mN

)2 (mN

Λ

)4
x2 ((1− x− 2yh)2 − 4y2

h)1/2

(1− x)

with 0 ≤ x ≤ 1− 4yh.

dΓN→liWh

dx
=
mNα

(i)2
W

768π3

(mN

Λ

)4
((1− x− yh)2 − 2(1− x+ yh)yW + 4y2

W )1/2 ×[
(3− x)

(
(1− x− yh)2 + y2

W

)
+ (6− 3yh + x(−11 + 5x+ yh))yW

] x2

(1− x)3
,
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with 0 ≤ x ≤ 1− (yh + yW + 2
√
yhyW ).

dΓN→νiAh

dx
=

mN

192π3

(mN

Λ

)4 (
cWα

(i)
L1

+ sWα
(i)
L3

)2 (1− x− yh)3x3

(1− x)3

with 0 ≤ x ≤ 1− yh.

dΓN→νiZh

dx
=

9 mN g2

214π3

( v
Λ

)4
α

(i)2
φ ×[

(2− x)(1− x+ yh + 2yz)(1− x+ yh − yz)(x2 − 4yh)1/2

yz(1− x+ yh)

]

with 2
√
yh ≤ x ≤ 1 + yh − yz. This decay width is obtained from the diagram shown

in �g.4.3(d), as this contribution involves a tree-level vertex coming from the lagrangian
(3.11) and a SM vertex, and is dominant comparing to the one-loop level term coming
from the lagrangian (3.18) that would give a vertex as the one shown in �g.4.3 (c).

The three-body decay channels with two gauge bosons and charged leptons in the
�nal state are shown in �g.4.4: N → l+W−A,Z. We cannot obtain analytical expressions
for these decay widths, and we have done numerical integrations of the phase space in
the usual way using the numerical Monte Carlo routine RAMBO [143].

W−

A,Z

N

l+

W−
W−

A,Z

N

l+

l+

l+

A,Z

N

W−

(a) (b) (c)

Figure 4.4: Three-body decays with two gauge bosons and charged leptons.

Fermionic three-body decay widths

Some of the three-body decays involving only fermions in the �nal state come from
the four-fermion contact operators presented in (3.8) leading to the tree-level lagrangian
in (3.12).

The partial decay widths of a heavy Majorana neutrino N decaying to three fermions
were calculated including the contributions in the e�ective lagrangians (3.11) and (3.12).
The decay channels are shown in �g.4.5. As was previously mentioned, the diagrams
(a) and (b) show the resonant contributions coming from two-body decays to W and h
bosons.
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hN

ν̄ d
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ū, ν̄W−
N

d, u, d, l−

l+, ν̄, ν̄, l+

ū, ū, d̄, ν̄
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N

l+

Figure 4.5: Majorana neutrino decaying to three fermions.

The decays to one lepton and two quarks can be written as

dΓ

dx

(N→l+ūd)

=
mN

512π3

(mN

Λ

)4
x

(1− x− yl + yu)

(1− x+ yl)3

{
(1− x+ yl − yu)

[
6αiu,il1 x(1− x+ yl)

2

+ 12αiu,il2 (2− x)(1− x+ yl)
√
ylyu + αiu,il3 (2x3 − x2(5 + 5yl + yu)− 4yl(1 + yl + 2yu)

+ x(3 + 10yl + 3y2
l + 3yu + 3ylyu))

]
+ 24αiu,il4 x(1− x+ yl)

2√ylyu
}

(4.5)

with 2
√
yl < x < 1 + yl − yu, yl = m2

l /m
2
N , yu = m2

u/m
2
N and the coe�cients α1,..,4

take the expressions:

αiu,il1 =
(
α(iu)2
s1 + α(iu)2

s2 − α(iu)
s2 α(iu)

s3

)
δiu,il

αiu,il2 =

(
α(iu)
s1 α

(il)
W

yW (1− x+ yl − yW )

(1− x+ yl − yW )2 + yW yΓW

− α(iu)
s3 α

(iu)
V0

)
δiu,il

αiu,il3 =
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α(iu)2
s3 + 4α

(iu)2
V0
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δiu,il + 4α

(il)2
W

y2
W (1− x+ yl − yW )
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αiu,il4 = α(iu)
s2 α

(iu)
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δiu,il .

dΓ
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=
mN

128π3

(mN

Λ

)4 x2

4
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}
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d/m
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D h
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Dh
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h/m
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3gv2md

4
√
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.
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dΓ

dx

(N→νuu)

=
mN

128π3
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Λ

)4
α̃il,iu 2 3

2
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1− 4yu
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(1− x− 2yu)δiu,il
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.

The purely leptonic decay gives:

dΓ

dx

(N→l+leptons)
=

mN

1536π3
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Λ

)4 (1− x+ yl − yl′)2

(1− x+ yl)3
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1 = α(il) 2

s0 δil,il′ +
4α

(il) 2
W y2

W

(1− x+ yl − yW )2 + yW yΓW

α
il,il′
2 = 12α

(il′ )
s0 α

(il)
W

(1− x+ yl − yW )

(1− x+ yl − yW )2 + yW yΓW

δil,il′

P (x) = 2x3 − x2(5 + 5yl + yl′)− 4yl(1 + yl + 2yl′) + x(3 + 10yl + 3y2
l + 3yl′ + 3ylyl′)

R(x) = (2− x)(1− x+ yl)(ylyl′)
1/2.

4.3. Numerical results

Besides the values for the standard particles masses and couplings, the numerical
values for the N decay widths and branching ratios depend on the mN mass, on the new
physics scale Λ considered, and on the values of the α(i)

O e�ective couplings. Here we
consider the benchmark value Λ = 1 TeV .

4.3.1. High mN range

Regarding the e�ective couplings, in order to simplify the discussion, for the numerical
evaluation we only consider the two following situations. In the numerical set we call A
the couplings associated to the operators that contribute to the 0νββ-decay are restricted
to the corresponding bound αbound0νββ given and discussed in (3.27) and the other couplings
are restricted to the bound determined by the EWPD constraints and given in (3.23)
αboundEWPD = 0.32. In the case of the set called B all the couplings are restricted to the
0νββ bound αbound0νββ which is the most stringent. For the one-loop generated operators we
consider the coupling constant as 1/(16π2) times the corresponding tree-level coupling:
α1−loop = αtree/(16π2). Thus, for the operators ODN , ONW and OD̄N , which contribute
to 0νββ we have

α
(1)
L2
, α

(1)
L3
, α

(1)
L4
∼ 1

16π2
αbound0νββ
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for fermions of the �rst family. For the remaining operators we take

α ∼ αboundEWPD, α
bound
0νββ

in the sets A and B respectively.
The numerical results for the Majorana neutrino branching ratios and total decay

width are presented in the following. In �gs.4.6 and 4.7 we show the results for the
branching ratios for the di�erent decay channels found in the previous section. We
display the branching ratios as a function of the Majorana neutrino mass mN calculated
for di�erent numerical values of the constants αiO. In all the following results when
ordinary neutrinos are present in the �nal states we sum the contributions of the neutrino
and antineutrino channels.

In �gure 4.6a we present the branching ratios of the three-fermion and photon-
neutrino channels for the couplings setA. These are the only kinematically open channels
for mN < mW . One can appreciate here the dominance of the neutrino-photon channel
for the lower mN values.

Figure 4.6b shows the massive gauge and Higgs boson decay channels for the N . The
branching ratio for the N → νhA mode is smaller than 1.0 × 10−7 and is not visible in
the plot.
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Figure 4.6: The branching ratios for the Majorana neutrino decay in the setA considering
the sum in fermion families.

For completeness we present the branching ratios for the two-body decay channels
in �g.4.7. As we explained in the previous section the N → νh,W channels are not
included in the total width, as their contribution has already been taken into account in
the channels where the W and h bosons participate as intermediate resonant states.

Finally, �g.4.8 shows the total decay width dependence on the mass mN for both
coupling sets considered, and again a sum over families and channels with particles and
antiparticles in the �nal state is performed.
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Figure 4.8: Total decay width with coupling constants in the setsA andB for Λ = 1TeV .

4.3.2. Low mN range

As will be explained in sec.4.4, the relevant Majorana neutrino mass range for consid-
ering this heavy neutral particle as a solution to the MiniBooNE anomaly is 400 MeV <
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mN < 600 MeV [141]. The experimental bounds for this mass values are exhaustively
discussed in [94] and references therein. Taking into account that the MiniBooNE exper-
iment deals with muon-type neutrinos, we now discuss the bounds on the UµN mixings,
which are not constrained by 0νββ-decay and are more restrictive than the existing ones
for the third fermion family.

It can be seen in the review [94] that the existing bounds for the mixing UµN for a mass
mN ' 500 MeV come from beam dump experiments as NuTeV [144], CHARM II [145]
and BEBC [146], rare lepton number violating (LNV) meson decays at LHCb [111] and
from colliders as those from DELPHI [97]. In the case of the heavy Majorana neutrino
with the e�ective interactions we are considering, the clear dominance of the neutrino
plus photon channel found in (4.4) makes the beam dump and rare LNV experiments
bounds inapplicable, as this decay mode to invisible particles is not considered in those
analyses and can considerably alter the number of events found for N decays inside
the detectors [94, 118]. In the light of this argument, we consider the bounds from
DELPHI [97] discussed in the previous chapter in sec.3.4 and given in (3.24) αboundColl ≤ 2.3.

For completion we have explicitly calculated the bounds that can be inferred from the
single Z → νN and pair Z → N N �excited� neutrino production searches at LEP [96].
The �rst process can be generated by one-loop level e�ective operators in (3.9) giving
the terms in the lagrangian (3.18). As the one-loop level couplings are suppressed by the
factor 1/16π2 the corresponding bound for the couplings α1−loopv2/2Λ2 is absorbed by the
(16π2)2 multiplying the bounds, so that the value αboundColl (3.24) is still more stringent. It
is important to mention that other e�ective operators (four-fermion operators in (3.12))
contribute to the νN and NN production at LEP, but at the Z peak they give less
restrictive bounds than αboundColl . For the decay Z → N N we have a direct contribution
from the tree-level operator ONNφ giving

Γ(Z → NN) =
α2
Zc

2
W

96πs2
W

( v
Λ

)4
mZ . (4.6)

A conservative limit for anymN mass is obtained from Br(Z → NN)Br2(N → ν(ν̄)γ) <
5 × 10−5 [96]. This result is model-independent and holds for the production of a pair
of heavy neutral objects decaying into a photon and a light invisible particle. For the
low mN values considered in this work, we can take Br(N → ν(ν̄)γ) ' 1 and the

corresponding bound is α2
Zv

2

2Λ2 < 3.0 × 10−5. This bound is more stringent than the one
in (3.24) but it is not taken into account because the corresponding operator does not
contribute at tree-level to the N decay in this low mN range.

For the numerical evaluation we consider again the sets A with the bound αbound0νββ on
the 0νββ-decay related operators, and the other couplings restricted to the bound (3.24),
αboundColl ≤ 2.3. For the set B and the 1-loop generated operators we take the same values
we considered in sec.4.3.1.

In �g.4.9 we show the results for the Majorana neutrino decay presented in sec.4.2,
for the low mN mass range shown. Figure 4.9a shows the branching ratio as a function
of the Majorana neutrino mass mN . The decay is calculated for di�erent values of the
constants αiO. We show the branching ratios for both sets A and B. It can be seen
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that for low masses the dominant channel is the decay of N to a photon and a neutrino.
Figure 4.9b shows the total decay width dependence on the mass for both coupling sets
considered.

Taking the values of the couplings α(i) to be equal for every family i and also for
every tree-level coupling αtree and taking the one-loop generated couplings as α1−loop =
αtree/16π2 we derived an approximated expression for the ratio between the widths
Γ(N → ν(ν̄)A) in (4.4) and Γ(N → l+ūd) in (4.5):

Γ(N→ν(ν̄)A)

Γ(N→l+ūd)
→ 2

15π

(
v

mN

)2

(cW + sW )2 . (4.7)

This limiting value explains the behavior found in �gs.4.9 and 4.6a for low Majorana
neutrino masses, showing the neutrino plus photon decay channel is clearly dominating.
This is an interesting fact since we have a new source of photons, leading to a very rich
phenomenology discussed in the next section.
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Figure 4.9: (a)The branching ratios for the Majorana neutrino decay with coupling
constants in the set A (solid lines) and set B (dashed lines). Only the charged anti-
lepton channels are plotted. The unlabeled curves correspond to the decay N → νuu
and N → νdd. (b) Total width for the two combinations of coupling constants de�ned
in the text (set A and set B) and Λ = 1 TeV.

4.4. Application to neutrino-related questions

Searches for heavy neutrinos rely on their possibility to decay to detectable particles.
The interpretation of the corresponding results for such searches requires a model for
the decay of the heavy neutrino. Several explanations to di�erent kind of experimental
puzzles seem related to weakly interacting neutral particles, like new neutrinos. In par-
ticular the MiniBooNE [138] anomaly or the observation of sub-horizontal air-showers by
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the Cherenkov telescope SHALON [140] have possible explanations by long lived neutral
particles like the one studied in this work.

The MiniBooNE neutrino oscillation experiment at Fermilab was built to search for
νµ → νe conversion in order to con�rm or refute the previous results of the LSND oscilla-
tion experiment at Los Alamos, which were inconsistent with global neutrino oscillation
data [147] existing at the time. The MiniBooNE experiment detects the appearance of
electron-like neutrinos νe in a beam originally consisting in muon neutrinos νµ, pointing
the νµ beam into a detector �lled with mineral oil in which Cherenkov radiation from
charged particles is detected by photomultipliers4. The MiniBooNE anomaly consists in
an unexplained excess of low energy electron-like events in charged-current quasi-elastic
νe events over the expected standard neutrino interactions that would be given by con-
sidering the charged-current standard interactions shown in (1.58) [138,139].

This excess of electron-like events could be caused by the decay of a heavy neutrino.
This solution was proposed by Gninenko [141] in a model with a sterile neutrino mixed
with the standard neutrinos by a matrix UµN . He �nds that an N neutrino with

400 MeV < mN < 600 MeV

10−3 < |UµN |2 < 4× 10−3

10−11s < τN < 10−9s (4.8)

could explain the anomaly, as the excess of electron-like events appearing in the νµ
beam could be caused by the decay of a heavy neutrino with a radiative dominant decay
mode N → νγ, where the �nal photon would be converted into an e+e− pair with a
small opening angle, indistinguishable from an electron in the detector. This is called
a converted photon. The pair (detected by its Cherenkov radiation) would be counted
as coming from the charged-current interaction produced by a νe appearing in the beam
from νµ → νe oscillation and contribute to the registered νe excess.

The Gninenko analysis is based on the assumption that the heavy neutrino radia-
tive decay is dominant. The e�ect of the mentioned strong radiative decay is the �ux
attenuation by N decay and then the decrease of the signal events in the detector. The
consequences are less restrictive bounds on |UµN |2 [94,118], as we explained in sec.4.3.2.
The proposal is then that the excess of events observed by MiniBooNE could originate
from converted photons and not from electrons truly coming from νe charged-current
interactions. The future experiment MicroBooNE will provide a test to this proposal, as
it will be able to separate photons from electrons or positrons [148,149].

In the context of the e�ective interactions considered in this work, one has to check
if the N → νA is the dominant decay, by comparing the decay of N to pions, which is
the correct hadronic �nal state for the low masses studied here. We have found that the

4The detection principle is similar to the one presented for the IceCube telescope in the appendix
C.3.1.
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Figure 4.10: Production process of extra neutrino N by e�ective interactions and their
subsequent decay.

corresponding decay is mainly given by

ΓN→l
+
i π
−

=
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π
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×√(
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l
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N
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π

m2
N

)2

− 4
m2
l

m2
N

, (4.9)

with GF being the Fermi and fπ the pion-decay constants5.
In the mass range proposed in [141] we �nd that the ratio of the branching ratios

for the di�erent decay channels is Br(N → l+i π)/Br(N → ν(ν̄)A) ' 8 × 10−6 and
Br(N → leptons)/Br(N → ν(ν̄)A) ' 4 × 10−6 thus con�rming the dominance of the
radiative decay N → νA.

The heavy neutrino N could be directly produced by the νµ in neutrino-nucleon
reactions by the e�ective operators OQuNL, OLNQd and OQNLd, with the subsequent
decay and photon conversion as we show in �g. 4.10.

The excess of νe events is related to the relative magnitude between the Standard
Model Neutral Current (SM-NC) νµN → νµN process and the e�ective NC-like N
production νµN → NN being N a nucleon. For the e�ective operators we have a
4-fermion contribution with intensity α/Λ2 and for the SM-NC g2/(4m2

W ). Then the
amplitude ratio is K = αv2/2Λ2 and the N production is weighed by the factor K2 =
(αv2/2Λ2)2 relative to the SM-NC νµ scattering. The constant K2 plays the role of the
mixing matrix U2

µN in the Gninenko [141] work, and then the value U2
µN found in (4.8)

is consistent with the allowed value by the collider bound in (3.24) [103].
The constraint for the lifetime of the heavy neutrino in (4.8) must also be ful�lled

in order to consider the N e�ective radiative decay as an alternative explanation for the
MiniBooNE anomaly. In �g.4.11 we show the lifetime τN as a function of mN for the sets
A and B and for Λ = 1 TeV. In the case of Λ > 1 TeV the allowed region is upwards
the curves. Thus, we can see a region compatible with set A where τN < 10−9 s as in
the solution proposed by Gninenko.

5Their current experimental values are GF = 1.166× 10−5 GeV and fπ ∼ 130 MeV .
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Figure 4.11: N lifetime as a function of its mass for the sets of coupling constants labeled
A and B for Λ = 1 TeV . For Λ > 1 TeV the values allowed for the lifetime correspond
to the region upwards the curves. The horizontal solid line corresponds to the limit value
found in the Gninenko solution for the MiniBooNE anomaly (τN < 10−9s).

As was previously mentioned, this kind of neutral particle which decays dominantly
to a neutrino and a photon could be the explanation for several sub-horizontal air-shower
events detected by the Cherenkov telescope SHALON [140]. The SHALON mirror tele-
scope is a gamma-ray telescope located in the Tien-Shan mountains Astronomical Ob-
servatory in Kazakhstan, that detects the Cherenkov radiation produced by cosmic rays
in the atmosphere. The analysis of the signal at di�erent zenith angles has included
observations from the sub-horizontal direction (θ = 97°). This inclination de�nes an
Earth skimming trajectory with 7 km of air and around 1000 km of rock in front of the
telescope. In [140] they claim to have detected �ve air-showers of TeV energies coming
from the sub-horizontal direction, which is a con�guration where the signal from cosmic
rays is expected to be zero. In the cited work the authors propose that the solution could
be a neutral and then penetrating long-lived massive particle able to cross 1000 km of
rock and decay within the 7 km of air in front of the telescope, with the same properties
of those found by Gninenko in his analysis of the MiniBooNE anomaly.

In �g. 4.12 we show the decay length as a function of the heavy neutrino mass for
di�erent energies and couplings in the sets A and B. We can see that there is a region
of the parameter space which could possibly explain the SHALON observations with a
ldecay ∼ 1000 km.

Long-lived neutral particles: detectability

To conclude, a few words about the detectability of this particle in colliders like the
LHC. Searches for neutral long-lived particles as the heavy neutrino proposed by [141]
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have been studied in the context of τ− rare decays [135]. The authors propose to search
for events with two vertices, featuring the production and decay of the unstable neutrino
N . The use of displaced vertices has also been proposed to search for sterile neutrinos
at the LHC [124,127] for N decaying to leptons and quarks or purely leptonically. Early
displaced vertices searches are reviewed in [150].

As we have shown, for the N masses considered in this work the dominant decay is
the radiative N → νγ channel, which can be observed by the signature of an isolated
electromagnetic cluster together with missing transverse energy:

γ + EmissT (4.10)

where the photon originates in a displaced vertex.
New physics searches involving such �nal states have been performed at the LHC [126,

151] and it has been suggested that this signal could be enhanced with the combined use
of missing transverse momentum plus photons and displaced vertices searching techniques
[128, 152]. The use of this technique will allow to probe parts of the parameter space
which are inaccessible by other methods. The use of displaced vertices has the advantage
that for decay lengths of the order of very roughly L ∈ (10−3 − 1) m, there is little
standard model background. We �nd that decay lengths as the above mentioned for
masses between 1 − 30 GeV are possible in this model as we show in �g.4.12b for the
sets A and B in the region between the horizontal lines.
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Figure 4.12: Decay length for di�erent neutrino energies as a function of the neutrino
mass for the coupling constant sets A (solid lines) and B (dashed lines) for Λ = 1 TeV.
The energies, E = 10n GeV, vary from left to right with increasing n (1-5). For Λ > 1
TeV the decay length corresponds to the top right region from the curves.

4.5. Summary and perspectives

Searches for heavy neutrinos often rely on the possibility that they may decay to
detectable particles. The interpretation of the corresponding results of such searches
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requires a model for the heavy neutrino decay. In this chapter we calculated the di�erent
decay modes and branching ratios for heavy sterile Majorana neutrinos in an e�ective
approach for its interactions. Depending on the Majorana neutrinos mass scale, the
decay can have e�ects on di�erent physical contexts like solar/astrophysical neutrinos,
collider searches like those taking place at the LHC, neutrino experiments as OPERA,
MiniBoone, SHALON, etc. We presented the analytical results for the dominant chan-
nels, discussed the existing bounds taken into account for the e�ective couplings, and
displayed the di�erent branching ratios and the total decay width for the heavy sterile
neutrino considered.

For a relatively light heavy Majorana neutrino (with mN < mW ) we �nd that for
masses below approximately 30 GeV the dominant channel is the neutrino plus photon
mode: N → νA. With this decay mode in mind, we explored the plausibility of con-
sidering it as an explanation for the MiniBooNE and SHALON anomalies. We checked
that in the e�ective model the radiative decay is dominant respect to the lepton plus
pion mode, and leads to values of the e�ective couplings α which are consistent with the
mixing value |UµN |2 found by Gninenko [141] and with collider bounds [97]. Moreover,
we showed that the Majorana neutrino lifetime also �ts the limits in [141]. This kind
of weakly interacting long-lived particle has also been proposed as an explanation for
sub-horizontal events in the SHALON telescope [140], and we �nd the N decay length
is compatible with the proposed explanation for part of our parameter space. This kind
of particle could also be searched for in the LHC, with the use of the displaced vertices
technique, with little standard model background. We will explore more concretely this
possibility in chapter 6, where we study the N phenomenology in the LHC.

In the following chapters I continue presenting the results we obtained studying the
possible production of Majorana neutrinos in ep and pp colliders.



Chapter 5

Majorana neutrinos production at

the LHeC

In this chapter I present our �rst work on the collider phenomenology given by the
e�ective lagrangian for the Majorana neutrinos considered in this thesis. This work leads
to the publication in [4].

The basic concepts on collider phenomenology are presented in an appendix B. These
include the de�nition of scattering cross sections, a brief introduction on detectors, and
the most important de�nitions of kinematical variables to take into account when study-
ing physics in collider environments.

5.1. Introduction

In the case that heavy neutrinos do exist, present and future experiments will be
capable of determining their Dirac or Majorana nature. In particular, the production
of Majorana neutrinos via e+e−, e−γ, γγ and hadronic collision have been extensively
investigated in the past [15�23,153�156].

In this chapter we study the possibility for an e−p collider at CERN (LHeC: Large
Hadron electron Collider [157]) in order to produce clear signatures of Majorana neutrinos
in the context of interactions coming from an e�ective lagrangian approach. We study
the lepton number violating reaction e−p → l+j + 3jets1 (lj ≡ e, µ, τ) which receives
contributions from the diagrams depicted in �g.5.1. We have not considered the pure
leptonic decay channels because they involve light neutrinos that escape detection, in
which case the Majorana nature of the heavy neutrinos would have no e�ect on the
signal, since we should be able to know whether the �nal state contains neutrinos or
anti-neutrinos.

The lepton number violating process studied here was previously investigated in [158,
159] for the Type I seesaw mechanism, focusing on the DESY experiment and extended

1The jet de�nition is given in B.2.3: it can be taken as the sequel of an outgoing quark, after
hadronization.
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to LEP and the LHC. Recent studies of the seesaw model at lepton-proton colliders like
the proposed LHeC were performed in [160,161].

The principal advantage of electron-proton collisions with respect to proton-proton
colliders is the cleanness of the signal. In the case of the LHeC, the leptonic number
violation by two units is ensured by the presence of a �nal anti-lepton. Conversely, LNV
detection in hadron colliders implies tagging two leptons of the same sign in the �nal
state, together with a higher number of jets, making the signal more challenging to search
for.

5.2. Scattering amplitudes

In order to study the production on Majorana neutrinos N in an electron-proton col-
lider we calculate the scattering cross-section for a process where an electron encounters
a �parton� (quark) constituent of the proton, producing an N . This kind of processes are
commonly treated in introductory quantum �eld theory and particle physics books under
the name deep inelastic scattering. The general kinematical treatment of parton-model
collisions in the case of hadron colliders is introduced in the appendix B.2.3 and can be
found useful in this easiest case.

The production process for an N out of the scattering of an electron and a light
quark inside the proton can take place by an e�ective vertex (I) in �g.5.1, which receives
contributions form the four-fermion interactions we obtained in (3.12), and the SM ud̄W
vertex together with the WlN vertex in2 (3.11). The decay vertex (II) also receives
contributions from the same operators.

pe

e−

u d

N
kN

II

l+

ū

d
I

pu kd

ld

lu

kl+

Figure 5.1: Diagrams contributing to the production of Majorana neutrinos in ep col-
liders.

We calculate the cross-section for the production of the Majorana neutrino according
to the processes shown in �g.5.1. I write here only the lagrangian terms contributing to

2These are the ones depicted in �g.3.1, contributing to 0νββ-decay.
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the studied process, which come from the lagrangian terms in (3.11) and (3.12)

Ltreeeff =
1

Λ2

{
−mW v√

2
α

(i)
W W † µ NRγµeR,i + α

(i)
V0
d̄R,iγ

µuR,iNRγµeR,i+

α
(i)
S1
d̄L,iuR,iNeL,i − α(i)

S2
ēL,iNRūL,idR,i + α

(i)
S3
ūL,iNRēL,idR,i

}
+ ...+ h.c. (5.1)

Taking the center of mass energy
√
s =

√
4EeEp, σ̂ to be the parton level scattering

cross-section, and with x the usual deep inelastic scaling variable, de�ned respectively as
in secs. B.2.1 and B.2.3, we obtain the cross-section

σ(ep→ l+ + 3jets) =
∑
i

∫ 1

m2
N/s

dxfi(x)σ̂i(xs) (5.2)

where i = 1 corresponds to the channel eu → Nd and i = 2 to the crossed channel
ed̄ → Nū obtained by the crossing symmetry. The function f1(x) represents the u(x)
parton distribution function3 (PDF), f2(x) the one for d̄(x) and the parton level cross-
section is

σ̂i(xs) =

∫
(2π)4δ(4)(pe + pu −

∑
j=1,4

kj)|M(i)|2
∏
j=1,4

d4kj
2π3

. (5.3)

The squared scattering amplitudes in the narrow width approximation (reviewed in sec.A.1.2)
are:

|M(i)|
2

=

(
π

4mNΓN ŝ

)
δ(k2

N −m2
N )|Λ(I),i|2(|Λ(+)

(II)|
2 + |Λ(−)

II |2) (5.4)

where

|Λ(I),1|2 =
4

Λ2

[
4(αS2(αS2 − αS3) + α2

S1
)(kd · pu)(kN · pe)+

(4α2
W |Π(2)

W |2 + αS3(αS3 − αS2))(kd · pe)(kN · pu)

+(αS3αS2 + 4α2
V0

)(kd · kN )(pe · pu)
]

|Λ(−)
(II)|

2 =
16

Λ4

[
|Π(2)

W |2α2
W (kN · lu)(kl+ · ld) + α2

V0
(kN · ld)(kl+ · lu)

]
|Λ(+)

(II)|
2 =

4

Λ4

[
(α2

S1
+ α2

S2
− αS2αS3)(lu · ld)(kl+ · kN )+

(α2
S3
− αS2αS3)(kl+ · ld)(lu · kN ) + αS2αS3(lu · kl+)(ld · kN )

]
(5.5)

with Π
(1)
W = m2

W /(−2(pu · kd) −m2
W ), Π

(2)
W = m2

W /(2(lu · ld) −m2
W ). The �nal leptons

can be either of e+, µ+ or τ+ since this is allowed by the interaction lagrangian (5.1).

3A plot of the x-dependence of the proton PDFs can be found in �g. B.1.
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All these possible �nal states are clear signals for intermediary Majorana neutrinos, thus
we sum the cross-section over the �avors of the �nal leptons.

The total width (ΓN ) for the Majorana neutrino decay we used for the numerical
results in this work is the one calculated in [155], only taking into account the fermionic
decays shown in sec.4.2.2, which are dominant in the Majorana neutrino mass region
considered.

5.3. Numerical Results

For the numerical study we assume an LHC-like beam of protons with an energy of
7 TeV , while examining two choices for the electron beam. We consider a low energy
scenario with an electron beam of Ee = 50 GeV (Scenario 1), and other high energy
scenario with Ee = 150 GeV (Scenario 2). For each experimental setup we assume a
baseline integrated luminosity4 of L = 100 fb−1 which is close to the values discussed for
the LHeC proposal [157].

The branching ratios, cross sections and discovery regions for the Majorana neutrino
in the e�ective lagrangian approach considered in this chapter depend on the quotient of
the coupling constants α(i)

J , associated with the operators in (5.1), and the new physics

scale Λ squared i.e. κ(i)
J = α

(i)
J /Λ

2, in addition to the Majorana neutrino mass mN . The
considered operators are bounded by LEP and low energy data and we have also taken
into account the bounds on the operators which come from the 0νββ-decay.

We start this section discussing the SM backgrounds, the LEP, low-energy data and
0νββ-decay bounds, before showing our results for the scattering cross-section for the
process e−p → l+j + 3jets, the di�erent distributions and cuts implemented, and the
Majorana neutrino discovery regions for both considered scenarios.

Standard Model background

The considered signal, being a lepton number violating process, is strictly forbidden
in the SM, assuming that baryon number is also preserved, as we already discussed in
sec.1.4.4. In fact, the SM background will always involve additional light neutrinos that
escape the detectors and generate missing energy. This fact makes the signal very clean
and di�cult to mimic by SM processes.

As was pointed out in [160], the dominant background comes from W production,
with its subsequent decay into charged leptons l+ (e+, µ+, τ+). In particular, the process
e−p → e−l+jjjν is not distinguished from the signal if the outgoing electron is lost in
the beamline. This process is dominated by the exchange of an almost real photon with
a very collinear outgoing electron (pγ → l+jjjν). This last process, convoluted with the
parton distribution function (pγ/e) representing the probability of �nding a photon inside
an electron, is found to be the major contribution to W production. The simulation of

4The instantaneous luminosity is the number of particles passing each other per unit time through
unit transverse area at the interaction point. The reaction rate, i.e. the number of scattering events per
unit time is directly proportional to the luminosity: R(s) = σ(s)L.
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the background processes was done using the program CalcHep [162]. In section 5.3.1
we discuss di�erent cuts that can be made in the phase space to increase the sensitivity
and improve the signal to background relation.

E�ective couplings bounds

The heavy Majorana neutrino couples to the three �avor families with couplings
κ

(i)
J = α

(i)
J /Λ

2.
From the electroweak precision tests bounds discussed in sec.3.4, considering the most

stringent bound in [13] and for a generic new physics scale Λ we have

κboundEWPD = αboundEWPD/Λ
2 ≤ 0.32/Λ2. (5.6)

By the time this work was published, the neutrinoless double beta decay bounds were
still constrained by the results from the GERDA Collaboration [121], giving:

κ0νββ =
α0νββ

Λ2
≤ 7.8× 10−8

( mN

100GeV

)1/2
TeV −2, (5.7)

so this numerical value is the one used in de�ning our benchmark e�ective coupling sets,
as I explain in the following.

Signal Cross section

We have already discussed in the previous section that some of the operators that
contribute to the 0νββ-decay may be strongly constrained. Therefore, for studying the
Majorana neutrino production cross-section in ep colliders and the following decay N →
l+ + 2jets we analyze two situations: in Set I we consider the case where the e�ective
couplings for the operators that do not contribute to neutrinoless decay take all the same
value α = 1. In Set II we consider all those e�ective couplings to be equal and limited
by the neutrinoless double beta decay bound (5.7).

In �g.5.2a we show the results for the cross-section, as a function of the Majorana
neutrino mass mN , for the considered electron beam energies: Ee = 50 GeV (Scenario
1) and Ee = 150 GeV (Scenario 2) for both Sets I and II. We have considered

√
s < Λ

in order to ensure the validity of the e�ective lagrangian approach. We display here the
results for Λ = 2500 GeV .

The phase space integration of the squared amplitude is made generating the �nal
momenta with the Monte Carlo routine RAMBO [143]. This allows us to make the
distributions and necessary cuts in the phase space to study the possibility of discovering
Majorana neutrino e�ects.

5.3.1. Distributions and Kinematical Cuts

The dominant backgrounds for the studied process have been analyzed in [160]. In
particular they conclude that a cut that could be e�ective to separate signal and back-
ground is to reject events where the outgoing l+ does not have a minimum transverse
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Figure 5.2: Cross section for the process ep → NX with N decaying according to Ref.
[155] (a) and Background dependence with missing ET (b).

momentum5. On the other hand, as the signal only includes visible particles and the
background includes at least one neutrino, another possible cut is imposing an upper
bound on the missing transverse energy. We follow this approach and implement the
mentioned cuts. In �g.5.2b we show the behavior of the background with the maximum
missing energy ET for the scenarios where Ee = 50 GeV (Scenario 1) and Ee = 150GeV
(Scenario 2). A cut of ET,max ≤ 10 GeV , which is a reasonable value for the detector
resolution, has not appreciable e�ects on the signal but signi�cantly reduces the back-
ground.

dσ
/d
p T

e+
[p
b/
G
eV

]

10−8

10−7

10−6

10−5

10−4

pT,l+[GeV]
0 100 200 300 400 500

mN=400 GeV

mN=700 GeV
background

(a) Scenario 1

dσ
/d
p T

,l+
[p

b/
G
eV

]

10−8

10−7

10−6

10−5

10−4

pT,l+[GeV]
0 100 200 300 400 500

mN=400 GeV

mN=700 GeV

background

(b) Scenario 2

Figure 5.3: Di�erential cross-section of signal and background in function of transverse
momentum pT,l+ . The cut in missing ET is included.

5The transverse momentum pT is de�ned in (B.6), and missing transverse momentum and energy in
(B.9).
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In �g.5.3 we show the di�erential cross-section for the background and the signal for
di�erent values of the Majorana mass as a function of the transverse momentum pT,l+
of the anti-lepton. In this �gures the cut on the missing energy ET has already been
included. As it can be appreciated, the background is mostly concentrated at low values
of pT,l+ , and a cut imposed on pminT,l+ could be e�ective to improve the signal/background
relation.

Finally, in �g.5.4 we show a plot comparing the magnitude of the signal for di�erent
values of the Majorana neutrino mass (solid lines), and the background for di�erent
ET,max cuts (dashed lines), depending on the pminT,l+ cut imposed. In both �gures the
arrows indicate the value of the cuts used in the analysis: we impose pT,l+ ≥ 90 GeV and
ET,miss ≤ 10 GeV in order to reduce the background without appreciably decreasing the
signal.
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Figure 5.4: Comparison between signal and background for di�erent Majorana neutrino
masses, cut in missing ET and the transversal momentum of the �nal lepton pT,l+ . The
solid lines show the cross section for the signal, and the dotted lines, for the background.
The arrows indicate the cuts and backgrounds used in the analysis.

5.3.2. Discovery Regions

In order to investigate the possibility of detection of Majorana neutrinos in the process
under consideration, we study the region (discovery region) where the signal can be
separated from the background with a statistical signi�cance higher than 5σ. We use
the method of the e�ective signi�cance described in [163,164]. There they show that the
e�ective signi�cance is well approximated by

S = 2(
√
ns + nb −

√
nb)− k(α) (5.8)

with k(α)=1.28 for α = 0.1 where 1 − α is the probability of measuring a number of
events bigger than a value n0, such that the probability (β) that the Standard Model
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Figure 5.5: Majorana neutrino discovery regions at 5σ in the κ,mN plane. The hori-
zontal line represents the low-energy and LEP limits discussed in sec. 5.3.

reproduces such number is rather small, β < 3 × 10−7 for S > 5 (5σ-test). In (5.8)
ns = Lσs and nb = Lσb are the number of events for signal and backgrounds, being L
the luminosity.

In �g.5.5 we show the discovery regions for di�erent values of the Majorana neutrino
mass mN , and the quotient κ(i)

J = α
(i)
J /Λ

2. As we explained in sec.5.3, we consider the

case in which all the 0νββ contributing coupling constants α(i)
J (generically α) are non-

zero and equal, so that κ ≤ κ0νββ in (5.7). The �gure shows that Majorana neutrinos of
masses up to near 700 GeV for Scenario 1 and 1300 GeV for Scenario 2 may be detected.

The maximum allowed value for the Majorana neutrino mass corresponds to the
intersection between the 0νββ bound (5.7) and the contour of level �ve for the surface
S (5.8), this is: S(mN ,Λ) = 5. The last equation can be written as α0νββ/Λ

2 ≈ f(mN )
where f is a function of mN and the collider energy, but independent of Λ. Thus, the
intersection and then the maximum possible value for mN is almost independent of the
new physics scale Λ6.

Systematic uncertainties are hard to estimate without a detailed reconstruction of
the detector, but they are expected to be around a few percent [165]. However, the
in�uence of the background systematic uncertainties in the result is small, because the
background itself is small. In the case of the signal we have calculated the modi�cations
for the discovery region if the number of events for the signal is changed by ±30%. The
results are shown in �g.5.6, showing no appreciable change in the region.

6Provided thet the signal is larger than the background.
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Figure 5.6: Sensitivity of the discovery regions to a ±30% change in the number of signal
events.

5.4. Summary and perspectives

In order to investigate the possibilities for discovering Majorana neutrinos in an e−p
collider at CERN (LHeC), we have calculated the cross-section for the lepton number
violating process e−p → l+j + 3jets in an e�ective lagrangian approach, complementing
previous analyses for this facility involving typical seesaw scenarios.

While models like the minimal seesaw mechanism lead to the decoupling of the heavy
Majorana neutrinos, predicting unobservable LNV, the e�ective lagrangian framework
considered in this work parameterizes the new physics e�ects in a model independent
way, enabling the occurrence of sizable LNV signals for e�ective couplings α(i)

J of order
one.

We have calculated the total unpolarized cross-section σ(e−p → l+j + 3jets) for dif-

ferent values of mN , the e�ective couplings α(i)
J and the new physics scale Λ, and im-

plemented cuts in the phase space that can help to enhance the signal to background
relation. We obtained the Majorana neutrino discovery regions at 5σ statistical signi�-
cance, combining the e�ect of the SM backgrounds with the most restrictive 0νββ-decay
bounds for the e�ective couplings.

Our analysis shows that the LHeC facility could discover Majorana neutrinos with
masses lower than 700 GeV and 1300 GeV with a 7 TeV proton beam, and electron
beams of Ee = 50 GeV and Ee = 150 GeV respectively. Thus, we �nd lepton-proton
colliders could provide a new probe of the Majorana nature of neutrinos, shedding light
on this fundamental unsolved issue in particle physics.

I now move on to introduce our study of the possible Majorana neutrino phenomenol-
ogy in the CERN Large Hadron Collider (LHC).





Chapter 6

Not-that-heavy Majorana neutrino

signals at the LHC

In this chapter I present our work on the LHC phenomenology for the e�ective la-
grangian approach introduced in chapter 3. This chapter is based in the preprint [5],
currently under revision.

We consider the possibility of Majorana neutrinos production at the Large Hadron
Collider (LHC) by studying the pp → l+i l

+
j + 2 jets (lj ≡ e, µ) process which, due

to leptonic number violation, is a clear signature for intermediate Majorana neutrino
contributions, as we studied in chapter 2. Majorana neutrinos with masses of a few GeV
are long-lived neutral particles. Following the ideas in sec.4.4 we take advantage of its
measurable decay length: in the same-sign dilepton channel (ss-dilepton), we exploit this
fact imposing cuts that help in rejecting the SM background, and analyze the distribution
corresponding to the angle between the �nal leptons in the lab frame, using a forward-
backward-like asymmetry to study the e�ects of the di�erent gauge invariant operators.
We also study the pp→ l+i νγ process, which is dominant for low mN masses if tensorial
one-loop generated new physics contributions are present. This channel could be observed
at the LHC with the aid of non-pointing photons observables and cuts on the displacement
between the prompt lepton and the photon.

6.1. Introduction

The inquiry on the Majorana nature of neutrinos has led to dedicated searches for
evidence of lepton number violation (LNV) at hadron colliders in the very well known
same-sign dilepton channel pp → l+i l

+
j + 2 jets [15, 17, 21, 23, 106, 119, 166�173], and

recently including new production mechanisms [174�176]. Also, the chances to discover
heavy Majorana neutrinos in e+e−, e−p, e−γ and γγ colliders have been studied [4, 16,
19, 95, 153�155, 159, 160, 177]. Searches for heavy Majorana neutrinos in the ss-dilepton
channel are currently being performed at the LHC [178�182].

The e�ective model we are working with [15] has been tested in the LHC [181, 182]
for Majorana neutrino masses above 100 GeV in events with high transverse momentum
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objects including two reconstructed leptons and jets, for
√
s = 7 TeV . The data are

found to be in agreement with the expected SM background, leading to limits in the
e�ective couplings and new physics scale for some selected operators. If this kind of
sterile neutrino exists for mN < mW , the produced jets in the �nal state l+i l

+
j + 2 jets

may not pass the cuts required to reduce backgrounds, as pointed out, for example,
in [183].

Indeed, for masses mN around a few GeV the Majorana neutrino we are considering
behaves as a long-lived neutral particle, with a measurable decay length, as we showed
in �g.4.12. This gives us a new means for probing the e�ective new physics at this lower
mass scale, taking advantage of displaced vertices techniques. Recent works use displaced
vertices for studying heavy sterile neutrinos in the LHC [124,127,130,172,184] and future
colliders [129,185].

In our previous work [2] presented in chapter 4, we found that for mN . 30 GeV the
dominant neutrino plus photon N → νγ decay channel is given by the contribution of
e�ective tensorial operators generated at one-loop in the unknown underlying ultraviolet
theory. As this channel cannot shed light on the Majorana or Dirac nature of heavy
neutrinos, we �rst tackle the LNV same-sign dilepton signals for low Majorana neutrino
masses neglecting the contribution of the one-loop generated operators. This enables us
to test the capability to discern between the di�erent gauge invariant operators contri-
bution to the pp→ l+i l

+
j + 2 jets process, using a forward-backward like asymmetry, and

imposing displaced-vertices cuts that reject the SM background.
In spite of not being a LNV signal, a study of the dominant neutrino plus photon

decay channel is included in this chapter, motivated by the �nding that long-lived neutral
radiatively decaying particles like the Majorana neutrinoN could explain the MiniBooNE
[138, 139] and SHALON [140] anomalies [2], following sterile neutrino explanations for
these experimental puzzles [141] as we saw in sec 4.4. The radiative N → νγ channel
can be observed by the signature of an isolated electromagnetic cluster together with
missing transverse energy, where the photon originates in a displaced vertex1. New
physics searches involving displaced photons and missing transverse energy have been
performed at the LHC [123,151], mainly dedicated to SUSY searches, and searches with
the same �nal state: lepton, photon and missing ET [186].

Again, as I mentioned in chapter 5, the basic concepts on particle detection and
kinematical variables for hadron colliders are introduced and discussed in the appendix
B, and the reader is referred there for many de�nitions not included in the text.

6.2. E�ective model

In this chapter we study the well known same-sign dilepton Majorana neutrino signal
pp → l+i l

+
j jj schematically depicted in �g.6.2, and the new pp → l+i νγ neutrino plus

photon channel shown in �g.6.7. The relevant e�ective lagrangian terms contributing to
the studied processes are discussed in the following.

1Hence the name non-pointing photon.
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For the production vertex I in �gs.6.2 and 6.7, and the decay vertex II in �g.6.2,
we have tree-level generated contributions from the e�ective lagrangian coming from
the operators in (3.7), related to the spontaneous symmetry breaking process, and four-
fermion contributions from the operators in (3.8):

Ltreeeff =
1

Λ2

{
−mW v√

2
α

(i)
W W † µ NRγµeR,i + α

(i)
V0
d̄R,iγ

µuR,iNRγµeR,i+

α
(i)
S1
d̄L,iuR,iNeL,i − α(i)

S2
ēL,iNRūL,idR,i + α

(i)
S3
ūL,iNRēL,idR,i

}
+ ...+ h.c. (6.1)

where the sum over the families i is understood and the constants α(i)
J are associated to

speci�c operators according to sec.3.3.
For the N → νγ decay vertex II in �g.6.7 the considered lagrangian terms are

generated by one-loop level tensorial operators in (3.18):

L1−loop
eff =

−i
√

2v

Λ2
(α

(i)
L1
cW + α

(i)
L3
sW )(P (A)

µ ν̄L,iσ
µνNR Aν) + ...+ h.c. (6.2)

where −P (A) is the four-momentum of the outgoing photon and a sum over the family
index i is understood again. The coupling constants α(i)

L1,3
are associated to the speci�c

operators:

α
(i)
L1

= α
(i)
NB, α

(i)
L3

= α
(i)
NW .

The e�ective operators can be classi�ed by their structure into scalar, vectorial and
tensorial. The scalar and vectorial operators contributing to the studied processes are
those appearing in (6.1) with couplings named αS1, 2, 3 and αW, V0 respectively. They
play a role in the production and decay vertices for the pp→ l+i l

+
j + 2 jets process, and

only in the production vertex for the l+i νγ channel. The one-loop tensorial operators in
(6.2) drive the N → νγ decay2.

6.2.1. E�ective coupling bounds summary

As I introduced in sec.3.4, in order to put reliable bounds for the e�ective couplings,
we take into account existing experimental constraints on sterile-active neutrino mixings,
relating the UlN mixings in Type-I seesaw models with our e�ective couplings by the
relation (3.21)

U2
lN '

(
αv2

2Λ2

)2

. (6.3)

For the couplings involving the �rst fermion family the most stringent are the 0νββ-decay
bounds obtained by the KamLAND-Zen Collaboration [112] which give us an upper limit
αbound0νββ ≤ 3.2× 10−2

(
mN

100 GeV

)1/2 for Λ = 1 TeV .

2Equations (6.1) and (6.2) show explicitly only the lagrangian terms contributing to the studied
processes.
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Concerning the second fermion family, for sterile neutrino masses 2 GeV . mN .
10 GeV the upper limits come from the DELPHI Collaboration [97] leading to the value
αboundDELPHI . 2.3. In the lower mass region the kinematic searches we commented in sec.
2.6.3 also give competitive constraints. The Belle [110] and LHCb [111] Collaborations
�nd upper bounds in the 2 GeV . mN . 5 GeV region. However, it must be taken
into account that these results depend heavily on the considered decay modes for the
sterile N [187�191]. The bound from Belle is still the most stringent, giving a value
αboundBelle . 0.3.

For higher masses in the range mW . mN the upper limits come from electroweak
precision data (EWPD) and radiative lepton �avor violating (LFV) decays as µ → eγ
[13, 93,98,104] giving a bound αboundEWPD ≤ 0.32.

In order to simplify the discussion, for the numerical evaluation we only consider the
most stringent bounds, taking the couplings associated to the operators that contribute
to the 0νββ-decay for the �rst family as restricted by the corresponding bound αbound0νββ ,
and the other constants are restricted to the value αbound ≤ 0.3. For the 1-loop generated
operators we consider the coupling constant as 1/(16π2) times the corresponding tree-
level coupling: α1−loop = αtree/(16π2). Thus, for example, for the operator ONW , which
contributes to 0νββ-decay we have

α
(1)
L3

=
1

16π2
αbound0νββ .

6.2.2. Low mN kinematic features

As we mentioned in the introduction, Majorana neutrinos with masses of a few GeV
are found to be long-lived neutral particles that could be searched for in the LHC with
displaced vertices techniques. In this chapter we exploit this long decay length in order
to search for the production of Majorana neutrinos.

In higher mN regions the same-sign dilepton (l+l+jj) signal has been thoroughly
studied in colliders and, as we mentioned in the introduction, this signal has been studied
in the e�ective framework we consider here [15], and searched for in the LHC [181,182] for
mN above 100GeV . Up to now, all LHC searches for heavy Majorana neutrinos [178�182]
in these �nal states are performed without considering the possibility of a su�ciently long
heavy neutrino lifetime making the decay vertex to be displaced from the production
point.

The decay length of the Majorana neutrino, and its �ight direction in the lab frame
can be determined as:

~lN =
~kN

|~kN |
τN βN =

~kN

|~kN |

(
(EN/mN )2 − 1

)1/2

ΓN
. (6.4)

Here kN is the N momentum, τN is its lifetime, and βN is the N speed in units of the
speed of light. E2

N = |~kN |2 +m2
N and ΓN is the N decay width.

In order to make a preliminary survey we study the same-sign dileptons plus jets
and the lepton and neutrino plus photon channels making a parton level Monte Carlo
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simulation with the RAMBO [143] routine. The e�ective new physics energy scale Λ in
(3.4) is taken to be Λ = 1 TeV and the c.m. energy of the hard processes

√
s ≤ Λ to

insure the validity of the e�ective lagrangian approach. The numerical values for the
e�ective couplings are taken as explained in sec.6.2.1. In this work we only consider
Majorana neutrinos with masses mN . 10 GeV because these are the values leading to
an N decay length -and thus a vertex displacement- measurable in the LHC. This was
shown in chapter 4. In �gure 4.12b we found that the decay length of the Majorana
neutrinos, for energies EN ≤ 5 GeV , lies in the detectable range (10−3 − 1) m in the
LHC for masses3 mN . 10 GeV .

The measurable decay length of the few-GeV mass Majorana neutrino will be ex-
ploited by considering two distinct observables: for the ss-dilepton signal, we �nd that
the vertex displacement can be measured by obtaining the distance between the traces
(in the detector lab frame) of both outgoing leptons, a prompt one coming from the N
production vertex, and the other originated in the decay vertex. For the neutrino plus
photon channel, we consider the distance between the prompt outgoing lepton and the
displaced photon traces, and also the non-pointing photon observables de�ned in recent
new physics searches in ATLAS [123,151].
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Figure 6.1: Total cross sections for the pp → l+νγ + X and pp → l+l+ + 2 j + X
processes.

In the e�ective framework we are working with, the dominant decay channel in the
few-GeV mN mass region is the N → νγ channel. Considering on shell N production, the
cross-section for the ss-dilepton process can be written in the narrow width approximation
as the product of the production cross-section by the decay channel branching ratio:
σ(pp → lljj) ' σ(ud̄ → lN)Br(N → ljj). Taking into account non-zero values for the

3for the couplings set A which is the one corresponding to the numerical values considered in this
work.
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scalar, vectorial and tensorial couplings, the cross sections for the l+l+jj and the l+νγ
�nal states are shown in �g.6.1, for the �nal prompt anti-muon (a) and positron (b)
channels, respectively.

The radiative N -decay channel completely dominates the low mass region and is
driven by tensorial one-loop operators. Then, for the study of the LNV same-sign dilep-
tons plus jets signal, we �x the one-loop generated couplings to zero α1−loop = 0. This
allows us to focus our interest in distinguishing the e�ects of the vectorial and scalar
operators on the signal, as it is not sensitive to the tensorial operators e�ect.

In �g.6.1 one can also appreciate the diminishing e�ect of the αbound0νββ value on the
l+ = e+ channel: the cross-section for the second family l+ = µ+ is appreciably higher,
due to the more relaxed bound αboundBelle .

6.3. Same sign dilepton signal

For calculating the scattering cross-section of the pp → l+N → l+l+jj process, we
consider the hard scattering of quark partons inside the colliding protons in the LHC
beams. The hard scattering of protons is studied in detail in the appendix B. There
it is argued that due to the dependence of the parton distribution functions of valence
quarks inside the proton on the scaling momentum fraction x shown in �g. B.1, one can
consider, in a �rst approximation, the parton hard scatterings we take into account in
the diagrams in �g.6.2.

Thus, using the e�ective lagrangian in (6.1), we calculate the cross-section for the
production of the Majorana neutrino for the ud̄ hard process.

u

d̄

kN

l+1

l+2

ū
III

d

Figure 6.2: Diagrams contributing to the process pp→ l+l+jj.

Considering that the leading contribution to the process takes place when the Majo-
rana neutrino is produced as a resonance, we can treat it in the narrow width approxi-
mation studied in sec. A.1.2. Then the corresponding amplitude for the process can be
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written as the product of the production and decay amplitudes (see (A.12)):

M =
−imN

Λ4
PN (k2

N )
{

ΠW (q2
2)α

(i)
W ū(lu)γνPRv(ld)ū(l2)γν + α

(i)
V0
ū(lu)γνPLv(ld)ū(l2)γν

+α
(i)
S1
ū(lu)PRv(ld)ū(l2)− α(i)

S2
ū(lu)PLv(ld)ū(l2) + α

(i)
S3
ū(l2)PLv(ld)ū(lu)

}
×
{
−ΠW (q2

1)α
(i)
W γµPRv(l1)v̄(pd)γ

µPLu(pu) + α
(i)
V0
γµPRv(l1)(̄pd)γ

µPRu(pu)

+α
(i)
S1
PLv(l1)v̄(pd)PRu(pu)− α(i)

S2
PLv(l1)v̄(pd)PLu(pu)

+α
(i)
S3
PLu(pu)v̄(pd)PLv(k1)

}
, (6.5)

where l1 and l2 are the four-momenta of the �nal leptons, pu and pd are the four-momenta
of the initial quarks and, lu and ld stand for the four-momenta of the �nal quarks. The
W propagator is encoded in ΠW :

ΠW (q2) =
m2
W

q2 −m2
W

, q1 = pu + pd, q2 = lu + ld, (6.6)

and kN is the four-momentum of the intermediate Majorana neutrino, and its propagator
contribution is written as in (A.12):

PN (k2
N ) =

1

(k2
N −m2

N )2 + (mNΓN )2
. (6.7)

Taking the center of mass energy
√
s = 14 TeV, σ̂ and ŝ to be the parton level

scattering cross-section and squared center of mass energy, and x1 and x2 the scaling
fractions for the initial partons u and d̄ respectively, we obtain

σ(pp→ l+l+ + 2jets) =

∫ 1

xm

∫ 1

xm/x1

dx1dx2(fu(x1)fd̄(x2) + fu(x2)fd̄(x1))σ̂i(x1x2s)(6.8)

where the minimum value for x1 and x2 is xm = m2
N/s and the function fq(x) represents

the q(x) parton distribution function (PDF), as in sec.B.2.1. The parton level scattering
cross-section is written as usually4:

σ̂i(ŝ = x1x2s) =

∫ |M|2
2ŝ

dΦ4, (6.9)

withM in (6.5), the four particle phase-space in (A.1) and mp the proton mass.

In view of the discussion given in the introduction, we study the few-GeV mN region
for the ss-dilepton signal taking into account the separate e�ects of the scalar and vec-
torial operators, neglecting the tensorial operators contribution. To see the e�ects from
the scalar operators we set the coupling constants corresponding to the vector operators

4The de�nition is given in (B.2).



92 CHAPTER 6. N AT LHC

αW and αV0 equal to zero. Similarly, to study the contribution from the class of vector
operators we set the couplings αS1 , αS2 and αS3 equal to zero. Throughout this section
we present our numerical results summing over the �nal leptons possibilities (l+1 l

+
2 = eµ,

µe, ee, µµ).
As the considered signal is a LNV process, it is strictly forbidden in the SM, and the

background always involves additional light neutrinos in the �nal state that escape the
detectors as missing energy. The SM backgrounds have been extensively discussed in the
literature [23,106,119,173], and in recent experimental searches [178,179].

The background for these searches can be classi�ed into prompt leptons, charge-�ip
opposite-sign dileptons and misidenti�ed leptons. The �rst are SM events resulting in two
genuine same-sign leptons. These include the following processes. Diboson production
(WZ, ZZ) giving ss-dileptons when both Z andW decay leptonically and one lepton from
Z decay cannot be isolated or is missed out of the detector coverage. Also, tt̄-plus boson
(tt̄W , tt̄W , tt̄Z) processes contributing to the signal when the tops decay hadronically
and the bosons decay leptonically. Triboson (W±W±W∓) and double W -sstrahlung
(WWjj) as well as double parton scattering (qq′ →W ). The charge-�ip events originate
in opposite-sign dileptons signals in which an electron undergoes bremsstrahlung in the
tracker volume and the associated photon converts into a e+e− pair. Here the opposite
sign electron can be misidenti�ed as the primary electron if it carries a large fraction
of the original electron's energy. This e�ect is negligible for muons. The last group
includes objects misidenti�ed as prompt leptons, originated in B-hadrons decays5, light
quark or gluon jets and photon conversions, and mainly tt̄ in which a top quark yields
a prompt isolated lepton (t→ Wb→ lνb) and the other same charge lepton arises from
b quark decay or a jet misidenti�ed as an isolated prompt lepton. This is the dominant
background for the mN < mW region [106,178] and it cannot be easily eliminated in the
few-GeV mN region, as the cuts imposed on the �nal leptons pT in order to reject those
coming from b decays can also a�ect the signal. Distributions on the invariant mass of
the l+2 jj system M(l+2 jj) ∼ mN could help to distinguish the signal from backgrounds
[171,183].

Taking into account the vertex displacement could help to reduce the background,
and this is why we study this very interesting feature for the low mass region. Recent
LHC searches exploiting the long-lived particles displaced vertex feature in �nal states
with charged leptons and jets [125,192�194] originally intended for SUSY particles [195]
are currently being used for studying models with right handed massive neutrinos [130].

We calculate the distance between the traces of the charged leptons, which, almost
always, is di�erent from zero since the vertices are displaced. A sketch in �g. 6.3a shows
the Ll

+l+ distance de�nition.
In our parton level Monte Carlo numerical simulation the distance between the

straight line containing the �ight direction of the prompt lepton produced in the pri-
mary vertex and the one for the displaced secondary lepton can be found as the length
of the segment orthogonal to and crossing both traces: n̂l+1 and n̂l+2 in �g.6.3a. This line

5The B-hadrons are those containing b quarks.



6.3. SAME SIGN DILEPTON SIGNAL 93

P Px1 x2

l+1

l+2
N

jj

I

IIL

n̂
l
+
1

n̂
l+
2

(a) Schematic representation of the distance Ll
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Figure 6.3: Ll
+l+ de�nition and di�erential distribution.

has the direction of the unit vector n̂ = n̂l+1
× n̂l+2 /|n̂l+1 × n̂l+2 | and the distance Ll

+l+ can

be calculated as Ll
+l+ = n̂ ·~lN , with the de�nition given in (6.4).

The distribution of the signal distances between the lepton's �y directions is shown
in �g.6.3b for various few-GeV mN masses. In order to reject the prompt ss-dilepton
background, we set this cut up to Ll

+l+ = 1 mm, which is approximately the precision
of the detector, discarding events for which the distance between the traces of the �nal
leptons is less than 1 mm. In this way, we conveniently eliminate the background, since
the distance between the traces would be zero if this �nal state (up to additional non-
detectable neutrinos) comes from standard interactions. In �g.6.4 we show the scalar and
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contribution of the vectorial and scalars operators.

vectorial operators contribution to the ss-dilepton cross-section, for di�erent mN values,
as a function of the cut in the minimal displacement distance Ll

+l+
min .

Once the displacement between the Majorana production and decay vertices is used
to reduce the background in the few-GeV mN region, we are interested in testing the
separated contributions of the vectorial and scalar operators to the process, in order to
obtain information about the new physics behind these e�ects.

Using the angular distribution dσ/d cos θ where θ is the angle between the outgoing
leptons tracks in the lab frame, we construct a forward-backward-like asymmetry Al

+l+

FB

as a function of the number of events in each hemisphere:

Al
+l+

FB =
N+ − N−
N+ + N−

(6.10)

where N+ is the number of events 0 ≤ θ ≤ π/2 and N− is the number of events with
π/2 ≤ θ ≤ π. This asymmetry does not require the prompt lepton assignment needed
for calculating the usual AFB for the underlying production process pp → l+N , also
avoiding the identical colliding beams problem [15].

As can be seen in �g.6.5, where we show the angular distribution for a mass of mN =
5 GeV , the contributions from both the scalar and vector operators lead to an unbalance.
In order to estimate the chances of disentangling the contributions corresponding to the
scalar and vector classes of operators, we study the angular asymmetry Al

+l+

FB , taking



6.4. DISPLACED PHOTON SIGNAL 95

 

A F
B

−1

−0.5

0

0.5

1

 
mN [GeV]

2 3 4 5 6 7

Vectorial

(a) Contribution of the Vectorial Operators.

 

A F
B

−1

−0.5

0

0.5

1

 

mN [GeV]
2 3 4 5 6 7

3

Scalar

(b) Contribution of the Scalar Operators.

Figure 6.6: Asymmetry in the angular distribution between the �nal leptons, with the
errors estimates as de�ned in the text.

into account the error

∆Al
+l+

FB =

√√√√(∂Al+l+FB

∂N+

)2

(∆N+)2 +

(
∂Al

+l+
FB

∂N−

)2

(∆N−)2. (6.11)

Assuming the number of events to be Poisson distributed, we write

∆N+ =
√
N+ and ∆N− =

√
N−

and a straightforward calculation leads to

∆Al
+l+

FB =

√
1− (Al

+l+
FB )2

N+ +N−
. (6.12)

The results for the Al
+l+

FB observable for the vectorial and scalar operators cases are
shown in �gs.6.6a and 6.6b. We �nd that for the scalar set of operators the asymmetry
is compatible with zero, but the vectorial set shows a clear e�ect, di�erent from zero, by
several standard deviations. All the �gures include the Ll

+l+
min > 1 mm cut.

6.4. Prompt lepton and displaced photon
plus missing ET signal

As we found in chapter 4, the N → νγ decay channel dominates the low mN region
and is driven by one-loop generated tensorial operators. If one includes these in the N
decay width calculation, this decay mode would overshadow the ss-dilepton signal. So in
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the case that new physics involving tensorial modes is present, in this section we explore
the chances to observe the pp→ l+νγ process in the LHC.

The cross-section for the production and decay of the heavy Majorana neutrino hard
process we study can be written as:

σ̂ud̄→l+νγ(ŝ) =

∫
1

2ŝ
|M|2dΦ3

Here the squared scattering amplitude in the narrow width approximation is

|M|2 =
π

2ΓNmN
δ(k2

N −m2
N )|MI |2|MII |2

with the amplitude for the production vertex I in �g.6.7 being

|MI |2 =
4

Λ4

[
(l1.kN )(pd.pu)[α

(i)2
S1

+ α
(i)
S2

(α
(i)
S2
− α(i)

S3
)]

+(l1.pu)(pd.kN )[α
(i)
S2
α

(i)
S3

+ 4α
(i)2
V0

]

+(l1.pd)(pu.kN )[α
(i)
S3

(α
(i)
S3
− α(i)

S2
) + 4α

(i)2
W |ΠW |2]

]
(6.13)

(i is the family index for the �nal charged anti-lepton l+1 ) and the amplitude for the
decay vertex II being

|MII |2 =
16v2

Λ4

[
(k.p)2(α

(j)
L1
cW + α

(j)
L3
sW )2

]
(6.14)

where j = 1, 2 is the family index for the �nal neutrino.
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Figure 6.7: Schematic momenta in Eqs.(6.13) and (6.14).

The background for the l+νγ �nal state has been studied in SUSY searches in events
with a photon, a lepton and missing transverse momentum at the LHC [186] for high mo-
mentum regions and considering signals where all �nal particles are produced promptly.
It is classi�ed as misidenti�ed photons or leptons and SM-electroweak background. The
�rst arises when electrons or jets are misidenti�ed as photons and comes from events
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where a photon converts into an e+e− pair and an electron fails to register track seeds
due to detector ine�ciencies, or a jet is misidenti�ed as a photon when a large fraction
of its energy is carried by mesons decaying into photons. Misidenti�ed leptons are re-
constructed leptons not arising from W or Z boson decays, and come primarily from
heavy-�avor quark decays and hadrons misidenti�ed as leptons. The SM-electroweak
background is dominated by Z,W − γ events that have the same signature as the signal
events: a photon, a lepton and missing transverse energy (EmissT ) from neutrinos. In the
case of the dominant SM-electroweak background, leptons arise mostly from W → νl
decays, and the EmissT peaks nearly at mW /2. In our case, for few-GeV mN this back-
ground could be reduced imposing a cut on the ν − γ system transverse mass MT . mN

as de�ned in [186]. Also, the invariant mass6 of the eγ system can be required to be
di�erent from the nominal Z boson mass, to reduce the background in the l+ = e+

channel.
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zPV zDCA

beamline x = y = 0
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Figure 6.8: Schematic representation of the pp→ l+νγ process and the zDCA observable.

For our signal, the smoking gun for the production and �ight of the N is its decay
length, that leads to a �nite separation between the primary and secondary vertex. We
are mostly interested in exploiting this distinctive displaced vertex feature, in this case
measuring the distance between the prompt lepton track and the displaced photon �ight
direction, in order to reduce the backgrounds in the low mN region.

In the LHC, observables using non-pointing photons have been de�ned and new
physics searches were performed involving photons originating from a displaced vertex
due to the decay of a long-lived particle into a photon and an invisible particle. This
non-pointing photons and EmissT �nal state searches [123,151] are oriented to the discov-
ery of long-lived SUSY particles, but as it is the case for this work, they could also serve
to the purpose of discovering heavy Majorana neutrinos as well. The analysis technique
developed exploits the capabilities of the ATLAS electromagnetic calorimeter to make
precise measurements of the �ight direction of photons. This direction can be determined
by measuring precisely the lateral and the longitudinal positions of the photon-originated

6The invariant and transverse mass variables are de�ned in the appendix sec.B.2.3.
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shower in the front and middle layers of the EM calorimeter. The variable used as a mea-
sure of the degree of non-pointing of the photon is called zDCA, the di�erence between the
z coordinate of the photon extrapolated back to its distance of closest approach (DCA)
to the beamline (i.e. x = y = 0) and zPV , the z coordinate of the primary vertex [196],
as can be seen in �g.6.8.
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Figure 6.9: zDCA distribution for the l+νγ channel, for di�erent mN values.

The distance of closest approach of the displaced photon can be calculated using the
decay length of the Majorana neutrino de�ned in (6.4). Taking zPV = 0, in �g.6.9 we plot
the normalized di�erential cross-section as a function of the distance of closest approach
zDCA for the l+ = e+, µ+ channels.

We �nd our signal leads to zDCA values comparable to those measured in ATLAS
[123, 151] (for a very di�erent studied signal consisting of a diphoton �nal state) and
could be searched for, with the aid of other mN -dependent mentioned cuts suitable for
our signal's �nal state.

Indeed, as suggested in sec.6.3, cuts on the displacement distance Ll
+γ between the

prompt lepton and the displaced photon traces could also be implemented, helping to
reduce the backgrounds. In �g.6.10 we show the normalized di�erential cross-section of
the signal for the l+ = e+, µ+ channels as a function of the displacement distance Ll

+γ

de�ned equivalently as in sec.6.3, for di�erent Majorana neutrino masses.
We �nd that a cut Ll

+γ > 10mm would not seriously a�ect our signal in both �avor
charged lepton channels, for mN up to 5 GeV .

6.5. Final remarks and perspectives

In this chapter we studied the e�ects of a heavy sterile Majorana neutrino in the
processes pp → l+i l

+
j jj and pp → l+i νγ in the LHC, modeling the N interactions with

the standard particles by the e�ective lagrangian studied in chapter 3. As the e�ective
model we consider has already been tested in the LNV ss-dilepton signal for Majorana
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masses over a hundred GeV , and in fact the model predicts that a low mass N behaves
as a long-lived neutral particle with a detectable decay length, in this chapter we focus
on the complementary study of the ss-dilepton channel for low mN , using displaced
vertices observables to diminish the backgrounds. As for a few-GeV mN masses the
dominant decay channel for the N is N → νγ, driven by tensorial one-loop generated
operators, for the study of the ss-dilepton signal we assume the new physics does not
involve tensorial contributions, and study the di�erences between the vectorial and scalar
operators using a forward-backward-like asymmetry in the angle between the outgoing
leptons. Making a statistical analysis we �nd the contributions from the two operators
groups could be distinguished, and the vectorial operators give an asymmetry clearly
distinct from zero. Including all the operator's contributions we study the dominant low
mN regime pp→ l+i νγ process, �nding the signal distribution in the non-pointing photon
observable zDCA could allow for the discovery of the signal in the LHC, with the aid of
cuts in the displacement between the prompt lepton and the outgoing photon to reject
the backgrounds.
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Figure 6.10: Ll
+γ di�erential distribution for the l+νγ channel, for di�erent mN values.

Our �ndings suggest to deepen this preliminary parton level study in order to ac-
curately model the signals and backgrounds in the LHC with Monte Carlo simulations
including hadronization and detector simulation techniques. The not-that-heavy Majo-
rana neutrinos could be discovered at the LHC in the case the triggers and analyses for
Run II dedicated searches keep reconstruction thresholds su�ciently low to e�ciently
tag displaced vertices form signal processes.





Chapter 7

E�ects of Majorana Physics on the

UHE ντ Flux Traversing the Earth

Neutrino astrophysics is the newest frontier in the �eld, and neutrino telescopes will
map out the sky in the following years, probing further back in time and deeper into
the ultra high energy astrophysical neutrino sources. In this chapter I present a study
on the phenomenology of the e�ective Majorana neutrino model we are working with in
connection to neutrino astrophysics, searching for the possibility to detect its e�ects in
the IceCube neutrino telescope: a huge array in the south pole, covering 1 km3 of ice
with photomultipliers that detect the Cherenkov radiation of charged particles produced
by incoming high energy neutrinos. A brief introduction on the IceCube experiment,
its detection principles, the relevant observables, and the incident neutrino �uxes on the
Earth can be found in the appendix C.

In this chapter we study the e�ects produced by sterile Majorana neutrinos on the
ντ �ux traversing the Earth, considering the interaction between the Majorana neutrinos
and the standard matter as modeled by the e�ective lagrangian introduced in chapter
3. The surviving tau-neutrino �ux is calculated using transport equations that take into
account the Majorana neutrino production and decay. We compare our results with the
pure SM interactions, computing the surviving �ux for di�erent values of the e�ective
lagrangian couplings, considering the detected �ux by IceCube for an operation time of
ten years, and Majorana neutrinos with mass mN near the tau lepton mass mτ . This
chapter is based on the paper [6].

7.1. Introduction

The discovery of neutrino �avor oscillations still remains as one of the most com-
pelling evidence for physics beyond the SM. While many proposals have been posed to
explain the tiny ordinary neutrino masses, the seesaw mechanism stays as one of the
most straightforward ideas for solving the neutrino mass problem, as we saw in chapter
2. This mechanism introduces right-handed sterile neutrinos that can have a Majorana
mass term leading to the tiny known masses for the standard neutrinos, as long as the

101
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Yukawa couplings between the right-handed Majorana neutrinos and the standard ones
remain small, and this fact leads to the decoupling of the Majorana neutrinos, due to
a negligible left-right neutrino mixing UlN . Thus, as suggested in [15], the detection of
Majorana neutrinos (N) would be a signal of physics beyond the minimal seesaw mech-
anism, and its interactions could be better described in a model-independent approach
based on an e�ective theory, considering a scenario with only one Majorana neutrino N
and negligible mixing with the νL, as we introduced in chapter 3.

On the other hand, in the recent years the observation of ultra high energy (UHE)
astrophysical neutrinos in the IceCube telescope [197], with a yet unknown speci�c origin,
energy spectral shape and �avor composition, as well as the non-�nding of tau-neutrinos
in still primary searches performed within these data [198], raise the question on tau-
neutrino detection in neutrino telescopes.

Moreover -as we introduced in chapter 4- anomalies found in short baseline (SBL)
neutrino oscillation experiments like LSND and MiniBoone [138,139,147,199] have driven
the introduction of light, almost sterile neutrinos which mix poorly with the known light
mass states and could help to accommodate the oscillation data introducing a third
mass splitting. The IceCube Collaboration has searched for these sterile neutrinos [200]
probing light sterile neutrino 3 + 1 models [201,202] and recently led to new bounds for
the sterile-active muon-neutrino mixing.

As the mixing parameters for the second fermion family with a sterile Majorana
neutrino νµ−νs are strongly constrained within the framework of 3+1 scenarios [93,203],
and motivated by the lack of tau-neutrinos in the UHE cosmic �ux in IceCube, in this
chapter we study the possibilities that UHE tau-neutrinos from astrophysical sources may
provide a signature for Majorana neutrino production by giving a surviving �ux after
traversing the Earth which may di�er from the standard one. In particular the non-
observation of ντ going up signal could be a manifestation of a sterile neutrino modifying
the ντ �ux.

We study the possibility that the existence of Majorana neutrinos coupled to the
tau-neutrinos modi�es their interactions with nucleons in matter, and thus change the
surviving ντ �ux after traversing the Earth. We have studied the bounds on the e�ective
Majorana neutrino coupling strengths obtained from di�erent experimental data, and
we �nd these couplings can have appreciable e�ects on the ντ �ux attenuation at high
energies. This fact may have an impact on the detection of astrophysical ντ �ux. IceCube
has recently analyzed high energy neutrino events [204, 205], and found, although with
large uncertainty, consistency with equal fractions of all �avors, but without including a
speci�c tau-neutrino identi�cation algorithm. If ντ events are �nally found, due to the
increase of detection time augmenting the statistics, then the data can be used to place
bounds on the heavy Majorana neutrino e�ects we are showing in this chapter.

Many recent papers have studied the IceCube UHE astrophysical events with expla-
nations involving dark matter models with right-handed neutrinos [206�209] and non-
standard e�ective interactions [210], and also the chances to probe sterile- tau-neutrino
mixings have been considered [211]. The e�ects of dark matter and new physics on ντ
propagation has been studied by our research group in [212�214].
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In sec.7.3.1 we discuss the relevant processes and the results obtained for the cross-
sections and decay rates. In Sec.7.3.2, we review the passage of high energy tau-neutrinos
through the Earth using transport equations including the e�ects of Majorana neutrinos.
We solve these equations taking into account the neutral-current regeneration and the
regeneration by the decay of the Majorana neutrino, for di�erent values of ζ which, as we
will de�ne in the next section, is a combination of the e�ective couplings and the energy
scale associated with the new interactions. This enables us to compare the surviving �ux
with the one obtained using SM physics only. In particular we go to a Majorana mass
region where the e�ective couplings are less constrained, maximizing the e�ect on the
survival �ux. Finally, in sec.7.4 we present the results and in sec.7.5 a short discussion
with our conclusions.

7.2. E�ective model summary

In order to study the e�ects on the ντ propagation through the Earth due to the
existence of Majorana neutrinos N , we consider the dominant processes responsible for
the change in the ν, τ and N �uxes. Besides the SM processes involving ordinary
neutrinos, we have new contributions related with the production and scattering of the
Majorana neutrinos N interacting with matter nucleons (N ):

νN → NX, NN → lX, NN → νX, NN → NX. (7.1)

As we studied in chapter 3, the e�ective lagrangian terms contributing to this pro-
cesses are mainly four-fermion interactions in (3.12) and those mediated by W and Z
exchange, combining the SM electroweak charged and neutral-current vertices in (1.56)
and (1.61) with the SV B lagrangian terms

LtreeSV B =
1

Λ2

{
αZ(N̄Rγ

µNR)
(vmZ

2
Zµ

)
− α

(i)
W (N̄Rγ

µlR,i)

(
vmW√

2
W+
µ

)
+ · · ·+ h.c.

}
.

In this chapter we make a change in our four-fermion e�ective couplings, allowing for
family mixing, in order to probe the interactions between the Majorana neutrino N and
�rst family quarks u, d in matter nuclei in the Earth, the tau lepton and tau-neutrinos
and how their �uxes are modi�ed. Thus, we allow for family mixing in the interactions
involving two or more SM leptons, writing the corresponding e�ective couplings in (3.12)
as α(i,j), with the indices i, j representing the three di�erent lepton families.

Also, we will take into account the Majorana neutrino decay contribution to the
di�erent �uxes. For the low Majorana neutrino mass region, the dominant decay was
found to be N → γ ν, as we saw in chapter 4. For completeness we include in �g.7.1 a
plot with the N branching ratios in the low mass region, where the numerical values for
the coupling constants are those given in (7.16).

The shown reactions (7.1) contribute to the transport equations to be presented in
sec.7.3, where the relative relevance of the di�erent terms for the considered mass region
will be discussed.
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Figure 7.1: Branching ratios
for the Majorana neutrino
decay channels in the low
mass region. The labels rep-
resent the decays
(a) N → νiγ, (b) N →
dd̄νi(ν̄i), (c) N → uūνi(ν̄i),
(d) N → leptons and (e)

N → ud̄li. Here we sum in
families for i = 1− 3.
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Experimental bounds on the e�ective couplings

As we discussed in sec.3.4, the current experimental bounds on the UlN mixings can
be re-interpreted in terms of the e�ective couplings considering a particular combination
of the couplings and the new physics scale Λ which we call ζO:

ζO =

(
αOv

2

2Λ2

)2

(7.2)

where v = 250 GeV represents the Higgs �eld vacuum expectation value.
For our analysis in this chapter we will consider the three sets of operators called

OSV B, O4−f , O1−loop, de�ned as the sets of couplings coming from operators in each
set, as we introduced them in sec.3.3, and the existent bounds on their values. In this
chapter we re�ne our treatment, calculating explicitly the contributions from di�erent
experiments to the values of the couplings in the three sets of e�ective operators. We
found that for a Majorana neutrino with mass near the tau lepton mass value mN ∼ mτ

the bounds on the couplings allow for a sizable e�ect on the tau-neutrino surviving �ux
Φντ , as we will show in the following.

The couplings ζSV B can be bounded taking into account LEP and τ lepton univer-
sality tests results. We consider the LEP bounds on single Z → νN and pair Z → N N
sterile neutrino production searches [96]. Conservative limits for any mN mass [96] are

Br(Z → NN)Br2(N → ν(ν̄)γ) < 5× 10−5 (7.3)

Br(Z → νN)Br(N → ν(ν̄)γ) < 2.7× 10−5. (7.4)

This results are model-independent and hold for the production of a single and a pair
of neutral objects decaying into a photon and a light invisible particle. For the decay
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Process / Coupling ζSV B ζ4−f ζ1−loop

Z → NN � < 7.56× 10−4 - -
e+e− → νN � - < 2.85× 10−1 -
e+e− → NN � - < 2.63× 10−1 -
Z → νN � - - < 6.75× 10−4

Table 7.1: Experimental bounds on the e�ective couplings.
�LEP Ref. [96].

Z → N N we have a direct contribution from the tree level operator ONNφ, giving

Γ(Z → NN) =
1

24π

(
αZv

2

2Λ2

)2
m3
Z

v2
. (7.5)

For the low mN values considered here, we can take Br(N → ν(ν̄)γ) ' 1 and then the
corresponding bound is

ζZ < 7.56× 10−4. (7.6)

The process Z → νN has no contributions from the operators OSV B.
Another observable that can put restrictive bounds on the OSV B is the universality

test from the τ -decay, in the mass range mµ ≤ mN ≤ mτ . Following [93] we de�ne the
quotient Rτ in the e�ective model as

Reffτ =
Γ(τ → ντ (N) + eν̄e)

Γ(µ→ νµ + eν̄e)
=

Γ(τ → ντ + eν̄e) + Γ(τ → N + eν̄e)

Γ(µ→ νµ + eν̄e)

=

(
mτ

mµ

)5(g(yτ )

g(yµ)
+
h(yN , ζS0, ζW )

8g(yµ)

)
(7.7)

The function g(x) = 1− 8x+ 8x3−x4− 12x2 ln(x) is the SM result for the τ → ντ + eνe
and µ → νµ + eνe decays, with yτ = (me/mτ )2 and yµ = (me/mµ)2 respectively. The
τ → N + eνe process receives O4−f and OSV B contributions, encoded in the function

h(yN , ζS0, ζW ) = (1− y2
N )(9ζS0(1 + y2

N ) + 12 ζS0(yN − 1)2 + 2ζW (y2
N − 8yN + 1))

+12 yN ln(yN )(3ζS0 − 2ζW ) (7.8)

with yN = (mN/mτ )2. The observed value for the quotient is Robsτ = (1.349±0.004)×106

[93,107]. This imposes stringent bounds on both the SV B ζW and the four-fermion ζS0

couplings, but if we take the mass of the sterile N to be right below mτ , these bounds
can be relaxed because the partial decay width is kinematically canceled.

We study now the case of the e�ective four-fermion interactions. Here we have again
contributions to the LEP process e−e+ → νN and e−e+ → NN but in this case without
the Z resonance, and then we expect weaker bounds than those imposed on the ζSV B
couplings.
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We consider �rst the reaction e+e− → νN calculated at the Z-pole

σνN =
12π

m2
Z

Br(Z → e+e−)Br(Z → νN) (7.9)

where Br(Z → e+e−) ' 3.4× 10−2 and the upper bound for the branching ratio for the
channel Z → νN obtained from (7.4) is Br(Z → νN) ≤ 2.7× 10−5 [96]. Thus, we have

σνN . 4.1× 10−9GeV −2 (7.10)

and, as the four-fermion contribution to the cross-section is

σνN =

(
αS0v

2

2Λ2

)2
m2
Z

48πv4

the bound for the corresponding coupling is ζS0 6 2.85× 10−1.
On the other hand, we have the reaction e−e+ → NN with the bound obtained by

LEP and shown in (7.3). Using the general expression for the cross-section at the Z-pole

σNN =
12π

m2
Z

Br(Z → e+e−)Br(Z → NN)

and in the low mass limit where Br(N → ν(ν̄)γ) = 1 we have

σNN . 8.2× 10−9 GeV −2. (7.11)

In the e�ective theory we are considering, the operators that contribute to the Majorana
neutrino pair production are the four-fermion operators OLN , OeNN and OLNN and the
corresponding cross sections are

σNN =

(
αOv

2

2Λ2

)2
m2
Z

bOπv4
, (7.12)

where beNN = 24, bLNN = 24 and bLN = 96. Thus, using (7.11) the most restrictive
bound obtained is ζ4−f . 2.63× 10−1.

In the case of one-loop operators we have contributions to the Z-decay Z → νN

Γ(Z → νN) =

(
α1−loopv2

2Λ2

)2
(cW − sW )2

6π

m3
Z

v2
(7.13)

and with the experimental bound for the Branching ratio [96]

Br(Z → νN) =
Γ(Z → νN)

Γ(Z −→ all)
. 2.7× 10−5 (7.14)

we obtain Γ(Z → νN) ≤ 6.7× 10−5 GeV , and thus

ζ1−loop =

(
α1−loopv2

2Λ2

)2

. 6.75× 10−4. (7.15)
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For the Lepton-Flavor-Violating processes e.g. µ → eγ, µ → e+e−e and τ → e+e−e
induced by the quantum e�ect of the heavy neutrinos, we have very weak bounds for
mN < mW [13, 95]. As we already discussed in sec.4.3.2 and sec.6.2.1 there is a clear
dominance of the neutrino plus photon decay channel. From �g.7.1 we can conclude that
the beam-dump and rare LNV experiments bounds are inapplicable, beacuse this decay
mode to invisible particles is not considered in those analyses and it can considerably
alter the number of events found for N decays inside the detectors [93,94].

The results on the bounds for the di�erent sets of coupling constants ζO are summa-
rized in table 7.1. In consequence, for the Majorana neutrino mass around mτ we can
avoid the most stringent bounds, and we will consider for simplicity the following set of
limits for the operators of the respective sets:

ζSV B . 7.6× 10−4

ζ4−fermion . 2.7× 10−1

ζ1−loop . 7.0× 10−4. (7.16)

7.3. Neutrino propagation through the Earth

7.3.1. Relevant processes

In this section we study the di�erent reactions taking place in the transport of tau-
neutrinos in their journey through the Earth. We classify the produced e�ects as absorp-
tion and regeneration processes.

Absorption e�ects are all the processes that take out of the �ux tau-neutrinos of
energy E, and regeneration e�ects are those adding tau-neutrinos with energy E to the
�ux. We must consider that beside ordinary neutrinos we have Majorana neutrinos and
tau-leptons produced by the former when they pass through the Earth.

The standard interactions of ordinary neutrinos with the nucleons N forming the
Earth are ντN → l±X and ντN → ντX. Here the charged-current and neutral-current
reactions contribute to the absorption e�ects of ordinary tau-neutrinos and neutral-
current reactions contribute to the regeneration e�ects as we will discuss in the next
section.

The production of Majorana neutrinos is driven by the collision of ordinary neutrinos
with nucleons in the Earth, ντN → NX. This reaction absorbs ordinary tau-neutrinos
producing Majorana neutrinos.

Next, we have to take into account the interaction of Majorana neutrinos with the
nucleons forming the Earth, NN → NX, NN → l±X and NN → ντX. In the same
way as for the ordinary neutrinos, these reactions produce absorption e�ects of Majorana
neutrinos, as well as regeneration e�ects for ordinary neutrinos and charged leptons.

Finally we have the Majorana neutrino dominant decay: N → ν γ causing Majo-
rana neutrino absorption and ordinary neutrino regeneration, and the standard τ -decay
leading to τ absorption and ντ regeneration.
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As we will discus in the next section, only some processes are relevant for the ντ
propagation in the Earth. We do not show explicitly expressions for the di�erent cross-
sections because it is a standard calculation. We prefer to show the results as plots for
the interaction and decay lengths for the SM scatterings ντN → lX, ντN → ντX, the τ -
decay, the Majorana production process ντN → NX, and the N -decay, as they give the
relevant contributions to the transport equations. In the case of Majorana interactions
the dominant contribution is given by the four-fermion operators O4−f .

These lengths are de�ned in terms of the associated process cross-sections as:

Ltot,SM
int (E) =

1

〈ρn〉(σνN→l+X + σνN→νX)

LMaj
int (E) =

1

〈ρn〉σνN→NX

Lτ−decay
decay (E) =

1

〈ρn〉Στ

LN−decay
decay (E) =

1

〈ρn〉ΣN
. (7.17)

Here 〈ρn〉 is the average number density of nucleons along the column depth on the path
with inclination θ with respect to the nadir direction, as it will be shown in (7.32). The
number density is de�ned as ρn = NAρ where NA is the Avogadro constant and ρ is the
Earth mass density. The decay functions ΣN (τ) are de�ned in (7.27).

In �g.7.2 we show the corresponding interaction and decay lengths, along the nadir
direction, as a fraction of the Earth radius, when the couplings take the upper values
shown in (7.17).

In order to take into account the contribution of the N decay to the regeneration
through theN → ντγ channel, we follow the approach of Gaisser [215], which is developed
in the appendix sec.C.4. We also take into account the regeneration e�ects coming from
the τ -decay according to expressions obtained by Gaisser [215] and also shown in [216]. In
�g.7.2b we show for comparison the interaction length for the other interactions involved.

In the following section we will discuss the relative importance between the di�erent
contributions to the ντ propagation.

7.3.2. Surviving neutrino �ux

The neutrinos traveling through the Earth may su�er charged-current (CC) and
neutral-current (NC) interactions with the nucleons in their path (see [217, 218] and
references therein). Neutrino oscillation within the Earth can be neglected for energies
higher than 1 TeV [219]1.

As we mentioned above, the change in neutrino �ux Φντ (E,χ) as it traverses the
Earth can be divided into two e�ects: absorption and regeneration. In the SM we have
the total cross-section σSM

tot ντ (E) = σCC(E) + σNC(E), which represents a probability of

1This is because the oscillation length (2.7) is greater than the Earth's diameter for energies above
this value.
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CC or NC standard tau-neutrino interactions. When neutrinos pass through an amount
of matter dχ = ρn(z)dz in a distance dz along the neutrino beam path, where ρn(z) is
the Earth's number density, the change in the �ux Φντ (E,χ) due only to absorption is
proportional to Φντ (E,χ) and to the cross-section:

dΦντ (E,χ)

dχ
= −σSM

tot ντ (E)Φντ (E,χ). (7.18)

Here χ(z) is the amount of material found up to a depth z, that is,

χ(z) =

∫ z

0
dz′ρn(z′), (7.19)

where the number density is the Avogadro constant times the density, ρn(z′) = NAρ(z′).
In order to consider the complete transport e�ect for UHE neutrinos, we have to add

to (7.18) the e�ect of regeneration, which accounts for the possibility that neutrinos of
energies E′ > E may end up with energy E due to NC interactions with the nucleons,
adding neutrinos to the �ux of energy E. Then the SM transport equation for neutrinos
reads

∂Φντ (E,χ)

∂χ
= −σSM

tot ντ (E)Φντ (E,χ) +

1∫
0

dy

(1− y)
Φντ (E/(1− y), χ)

dσντN→ντX(E, y)

dy
.

(7.20)
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Here the usual change of variables y = (E′ − E)/E′ has been made.
On the other hand, taking into account the sterile Majorana neutrinos production and

decay processes, we have new contributions to the absorption and regeneration e�ects on
the ντ -�ux. Also, if we consider the ντ transport, it is important to take into account
the transport of the τ lepton which regenerates the ντ by τ -decay. In the same way,
the Majorana neutrino decay can regenerate the ντ �ux. So in principle one needs to
simultaneously solve a system of three coupled integro-di�erential equations:

∂Φντ (E,χ)

∂χ
= −σt

ντ (E)Φντ (E,χ) + σt
ντ (E)

∫ 1

0

dy

(1− y)
Φντ (Ey, χ)KNC

ντ (E, y)

+ σt
τ (E)

∫ 1

0

dy

(1− y)
Φτ (Ey, χ)Kcc

τ (E, y) + σt
N (E)

∫ 1

0

dy

(1− y)
ΦN (Ey, χ)KNN→ντX

N (E, y)

+ Στ (E)

∫ 1

0

dy

(1− y)
Φτ (Ey, χ)Kdec

τ (E, y) + ΣN (E)

∫ 1

0

dy

(1− y)
ΦN (Ey, χ)Kdec

N (E, y)

(7.21)

∂Φτ (E,χ)

∂χ
= −σt

τ (E)Φτ (E,χ)− ΣτΦτ (E,χ) +
d

dE
(Eβ(E)Φτ (E)) +

σt
τ (E)

∫ 1

0

dy

(1− y)
Φτ (Ey, χ)KNC

τ (E, y) + σντ (E)

∫ 1

0

dy

(1− y)
Φντ (Ey, χ)Kcc

ντ (E, y)

+σN (E)

∫ 1

0

dy

(1− y)
ΦN (Ey, χ)KNN→τX

N (E, y) (7.22)

∂ΦN (E,χ)

∂χ
= −σt

N (E)ΦN (E,χ)− ΣN (E)ΦN (E,χ)

+ σt
ντ (E)

∫ 1

0

dy

(1− y)
Φντ (Ey, χ)KντN→NX

ντ (E, y)

+ σt
τ (E)

∫ 1

0

dy

(1− y)
Φτ (Ey, χ)KτN→NX

τ (E, y)

+ σt
N (E)

∫ 1

0

dy

(1− y)
ΦN (Ey, χ)KNN→NX

N (E, y) (7.23)

In (7.21) the right hand side terms correspond to the absorption, neutral-current
regeneration, charged-current regeneration by τ interaction, regeneration by Majorana
neutrino interaction, and regeneration by τ and N decays.

Equation (7.22) corresponds to the τ transport with absorption by interaction and
decay, and regeneration by τ neutral-current, ντ charged-current and by the interaction
of Majorana neutrinos through the NN → τX reaction. The third term represents the
energy loss due to electromagnetic interactions.
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In eq.(7.23) we have absorption terms by interaction and by N decay. The other
terms represent the N -�ux regeneration by the ντ , τ and N interactions with nucleons.

In the above equations the cross-sections in the absorption by interaction terms are

σt
ντ (E) = σSM

tot ντ (E) + σντN→NXντ (E) (7.24)

and σt
N (E) and σt

τ (E) include all the Majorana neutrino interactions in (7.1).
The di�erent cross-section regeneration kernels are

KNC
ντ (E, y) =

1

σt
ντ (E)

dσντN→ντX(Ey, y)

dy

KCC
τ (E, y) =

1

σt
τ (E)

dστN→ντX(Ey, y)

dy

KNN→ντX
N (E, y) =

1

σt
N (E)

dσNN→ντX(Ey, y)

dy

KNC
τ (E, y) =

1

σt
τ (E)

dστN→τX(Ey, y)

dy

KCC
ντ (E, y) =

1

σt
ντ (E)

dσντN→τX(Ey, y)

dy

KNN→τX
N (E, y) =

1

σt
N (E)

dσNN→τX(Ey, y)

dy

KντN→NX
ντ (E, y) =

1

σt
ντ (E)

dσντN→NX(Ey, y)

dy

KτN→NX
τ (E, y) =

1

σt
τ (E)

dστN→NX(Ey, y)

dy

KNN→NX
N (E, y) =

1

σt
N (E)

dσNN→NX(Ey, y)

dy

(7.25)

with Ey = E′ = E/(1− y).
The decay kernels for the Majorana neutrino N or τ -lepton are calculated in the

appendix sec.C.4 and in [216] respectively:

Kdec
N(τ)(E, y) = (1− y)

dnN(τ)(1− y)

dy
(7.26)

and the decay-length functions are

ΣN(τ)(E) =

(
E

mN(τ)
〈ρn〉TN(τ)

)−1

(7.27)



112 CHAPTER 7. N AT ICECUBE

where TN(τ) = (Γtotrest N(τ))
−1 is the N(τ) lifetime in its rest frame, with

Γtotrest N =
1

4π

[
3∑
i=1

(
αiL1

cW + αiL3
sW
)2] v2

mN

(mN

Λ

)4
(7.28)

as for the N low mass range the dominant decay is N → νγ.
Some of the terms in the equations above can be neglected in the considered energy

range. The τ and N interactions are neglected against their decays. The τ interactions
begin to be dominant at an energy around Eντ = 108 GeV [216]. For the N interactions,
the contributions of the di�erent processes are compared in �g.7.2 as a plot for the
ratio between the interaction and decay lengths and the Earth radius. We neglect the
regeneration terms coming from the τ and N interactions, which are proportional to the τ
and N �ux, in comparison with those due to NC interactions of ντ and those originated in
the τ and N decay. Under these conditions, for the ντ transport equation (7.21) we take
into account the absorption and neutral-current regeneration terms and the regeneration
by τ and N -decay. For the τ -transport equation, we consider absorption by τ -decay
and regeneration by ντ scattering by nucleons, which is the source of the appereance of τ
leptons. In the case of the Majorana neutrino transport equation, absorption by N -decay
and also regeneration by ντ scattering by nucleons are included, the last process being
the source for the N -�ux.

Finally, the equations we need to solve are

∂Φντ (E,χ)

∂χ
= −σt

ντ (E)Φντ (E,χ) + σt
ντ (E)

∫ 1

0

dy

(1− y)
Φντ (Ey, χ)KNC

ντ (E, y)

+ Στ (E)

∫ 1

0

dy

(1− y)
Φτ (Ey, χ)Kdec

τ (E, y)

+ ΣN (E)

∫ 1

0

dy

(1− y)
ΦN (Ey, χ)Kdec

N (E, y) (7.29)

∂Φτ (E,χ)

∂χ
= −Στ (E)Φτ (E,χ) + σt

ντ (E)

∫ 1

0

dy

(1− y)
Φντ (Ey, χ)KCC

ντ (E, y) (7.30)

∂ΦN (E,χ)

∂χ
= −ΣN (E)ΦN (E,χ) + σt

ντ (E)

∫ 1

0

dy

(1− y)
Φντ (Ey, χ)KντN→NX

N (E, y)

(7.31)

The system of transport equations (7.29)-(7.31) must be solved with the initial con-
ditions Φντ (E,χ = 0) = Φ0

ντ (E, θ), Φτ (E,χ = 0) = 0 and ΦN (E,χ = 0) = 0, where
Φ0
ντ (E, θ) is the initial neutrino �ux, as introduced in the appendix sec.C.2.
Taking the column depth on the path with inclination θ respective to the nadir

direction taken from the down-going normal to the neutrino telescope as T (θ):

T (θ) = χ(2R cos θ) =

2R cos θ∫
0

ρn(z)dz,
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Figure 7.3: (a) The nadir angle θ, and the traversed matter distance z = 2R cos(θ). (b)
Earth density as given by the PREM [220].

with R as the Earth radius, we de�ne 〈ρn〉 as the average number density along the
column,

〈ρn(θ)〉 =
T (θ)

2R cos θ
. (7.32)

The Earth density is given by the Preliminary Reference Earth Model (PREM) [220]. In
�g.7.3b we present the Earth density pro�le.

In accordance with [221], and following the treatment in [213, 216, 222], we solve
eqs. (7.30) and (7.31) considering the terms dependent of the ντ �ux Φντ (E,χ) as
non-homogeneities, and replace those solutions in (7.29), dividing by Φντ (E,χ). Then
we make an approximation, taking the �uxes quotient (7.35) as the ones solving the
corresponding homogeneous equations [221]. Finally, we write the solution for the sur-
viving τ -neutrino �ux traversing a path of length T (θ) through the Earth in terms of
σeff(E, T (θ)) as

Φντ (E, T (θ)) = Φντ (E, 0) exp[−σeff(E, T (θ))T (θ)], (7.33)
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with

σeff(E, T (θ)) = σtντ (E)− σtντ (E)

∫ 1

0
dyξ(E, y)KNC

ντ (E, y)D(Ey, E)

−
∫ 1

0
dydy′ξ(E, y)ξ(Ey, y

′)
Στ (E)Kdec

τ (E, y)σtντ (Ey)K
CC
τ (Ey, y

′)

∆τ (Ey, Eyy′)

(D(Eyy′ , E)−Dτ (Ey, E))

−
∫ 1

0
dydy′ξ(E, y)ξ(Ey, y

′)
ΣN (E)Kdec

N (E, y)σtντ (Ey)K
ντN→NX
ντ (Ey, y

′)

∆N (Ey, Eyy′)

(D(Eyy′ , E)−DN (Ey, E)).

(7.34)

Here Eyy′ = E/((1− y)(1− y′)) and the �ux quotients are

ξ(E, y) =
1

(1− y)

Φ0
ντ (Ey)

Φ0
ντ (E)

, ξ(Ey, y
′) =

1

(1− y′)
Φ0
ντ (Eyy′)

Φ0
ντ (E)

(7.35)

with

D(E1, E2) =
[1− exp(−∆(E1, E2)T (θ))]

∆(E1, E2)T (θ)
, ∆(E1, E2) = σtντ (E1)− σtντ (E2)

Dτ (E1, E2) =
[1− exp(−∆τ (E1, E2)T (θ))]

∆τ (E1, E2)T (θ)
, ∆τ (E1, E2) = Στ (E1)− σtντ (E2)

DN (E1, E2) =
[1− exp(−∆N (E1, E2)T (θ))]

∆N (E1, E2)T (θ)
, ∆N (E1, E2) = ΣN (E1)− σtντ (E2).

7.4. Numerical results

In this section we present our results assuming a Majorana neutrino contribution with
mN ∼ mτ . In order to obtain numerical results for the surviving ντ �ux including Majo-
rana neutrino e�ects, we consider a particular choice for the e�ective coupling constants
ζ, with the upper values presented in (7.16). Also, for the initial ντ �ux we have consid-
ered the best �t of IceCube Φ0

ντ = 2.3 × 10−18(E/100TeV )−2.6 GeV −1 cm−2 s−1 sr−1

[204,205].
The idea is to see whether the e�ect of the Majorana neutrinos modi�es the ντ

surviving �ux and to what extent it should be distinguishable from the standard surviving
�ux when a detection is performed in a neutrino telescope, which will clearly depend on
the uncertainty involved.

First, in �g.7.4, we compare the surviving ντ �ux with Majorana neutrino e�ects,
taking into account both absorption and regeneration, with the SM prediction. In �g.7.4a,
we show the comparison with the SM, showing the quotient RSM (θ,Eντ ) = Φντ /Φ

SM
ντ

for di�erent nadir angles θ. We also include a �gure (�g.7.4b) with the quotient between
the surviving �ux and the initial �ux, R0(θ,Eντ ) = Φντ /Φ

0
ντ .
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Figure 7.4: Ratio between ντ �uxes for di�erent angles.

In order to calculate the capability of IceCube to detect the e�ects of Majorana
neutrinos physics, we have considered an approximated number of events2 as given by

N = nT

∫
dt

∫
dΩ

∫
dE Φντ (E, θ) σCCντ (E) (7.36)

where nT is the number of target nucleons in the e�ective volume, and σCCντ is the charged-
current cross-section, adequate in order to consider ντ double-bang3 events. The function
Φντ (E, θ) is the τ -neutrino �ux in the vicinity of the detector. We consider the number of
events in the region 0◦ < θ < 60◦ around the nadir direction, for an observation time of 10
years. We have taken the energy interval binning as ∆log10E = 0.25. To appreciate the
size of the e�ect of Majorana neutrino production, we consider the percentage deviation
between the non-standard and the SM event numbers (∆% = 100× (NSM−NMaj)/NSM),
with NMaj the number of events including the Majorana neutrino e�ects, and we compare
it with the percentage relative error (δ% = 100/

√
NSM) for Poisson distributed events.

The results are shown in �g.7.5a for di�erent values of the dominant coupling ζ4−f . The
solid circles indicate the center of each energy bin. We consider the variations in this
e�ective coupling due to the dominant contribution of the four-fermion interactions to
the deviation in the Φντ �ux. As we can see from this �gure, there is a region in the
parameter space where the e�ect of Majorana neutrinos would be distinguishable from
the SM background, i.e. the percentage deviation ∆% is bigger than the SM error δ%.

2The de�nition of this observable is given in the appendix sec.C.1.1.
3The double-bang topology is de�ned in the appendix sec. C.3.1.
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Figure 7.5: Parameter-space region where the studied e�ects could have an impact in
IceCube observations.

In �g.7.5b we show the region in the (Eν , ζ4−f ) plane where the phenomena studied
could have a detectable impact. The region is limited by the curve for which ∆% equals
the SM error δ% and the horizontal straight line, representing the upper bound for the
four-fermion coupling. As the Majorana e�ects decrease with lower energy, higher values
for the ζ4−f coupling are allowed. On the other hand, due to the spectral index (−2.6),
the incident �ux strongly decreases with growing energy, and this reduces the number of
events, thus increasing the SM error. This gives bigger values for the e�ective coupling
at higher energies, in order to have ∆% = δ%.

7.5. Final remarks

We have studied how the production of sterile Majorana neutrinos would a�ect the
attenuation of cosmic ντ neutrinos when they pass through the Earth. For the propaga-
tion, we considered a system of transport equations for ordinary and Majorana neutrinos
and the τ charged lepton, presenting our results for the �ux attenuation with and with-
out Majorana e�ects, and we show the percentage deviation between the SM �ux and
the �ux with Majorana attenuation. Our results can serve as a complementary tool to
explore the e�ects of sterile neutrino physics, by directly studying the e�ects of UHE
neutrino interactions with the nucleons of the Earth using neutrino telescopes. Over
the coming years, new neutrino telescopes are planned to be working in the Northern
hemisphere. In particular the European project KM3NeT [223�225], originated from the
projects ANTARES, NEMO, and NESTOR will be installed in the Mediterranean sea
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with an instrumented volume of several cubic kilometers. This telescope along with the
Baikal-GVD upgrade [226, 227] will improve the statistics, increasing the signi�cance of
the observations to bound new physics e�ects as the ones we discussed in this chapter.





Chapter 8

Conclusions and perspectives

This thesis was dedicated to the study of distinct phenomenological consequences
of the introduction of an e�ective lagrangian approach to model the interactions of a
heavy sterile Majorana neutrino. We consider that the sterile N interacts with the
light neutrinos by higher dimension e�ective operators, and take this interaction to be
dominant in comparison with the mixing through the Yukawa couplings, in contrast to
the usual viewpoint in which the mixing with the standard neutrinos is assumed to govern
the N production and decay mechanisms.

The lagrangian parameterizes the e�ects of new physics beyond the SM by a set
of dimension 6 operators constructed with the SM and the Majorana neutrino �elds as
e�ective degrees of freedom, satisfying the standard SU(2)L×U(1) gauge symmetry. This
o�ers a model-independent and broader view of the kind of physics leading to massive
neutrinos and lepton number violation phenomena.

The aim of the thesis was to study the possibility to produce and discover Majorana
neutrinos through lepton number violating signals in high energy colliders and also to
explore the possible e�ects of the existence of Majorana neutrinos in the propagation of
tau-neutrinos through the Earth, which can be detected in neutrino telescopes.

We calculated the total decay width and branching ratios for the Majorana neutrino
in two distinct mass regimes: �rst restricting ourselves to a mass region below the SM
weak bosons mass: mN < mW [2], which reduces the possible decay channels, and for a
broader mass interval mN < 1 TeV in [3], where the decay width to known particles was
obtained. For the lower mass region, we found the neutrino plus photon decay channel
N → νγ is clearly dominating. This decay mode is due to tensorial terms in the e�ective
lagrangian, which are generated at one-loop in the unknown underlying full theory. This
kind of radiative neutrino decay modes have been invoked in the literature [141] as an
answer to the puzzle posed by the MiniBoone oscillation experiment results [138, 139],
which do not �t in the three-neutrino oscillations framework. We found that the excess
encountered by MiniBoone in νµ → νe conversion could be explained by the existence
of Majorana neutrinos with a dominant radiative decay mode in which the �nal photon
would be converted into an e+e− pair with a small opening angle, indistinguishable from
an electron in the detector, which fakes a signal not coming from νe charged-current
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interactions. Also, this kind of neutrino could explain the appearance of unexpected sub-
horizontal air-shower events in the SHALON telescope [140]. This results were presented
in chapter 4.

The production of Majorana neutrinos in high energy colliders was studied in chapters
5 and 6. In a �rst work [4] we investigated the possibility of detecting Majorana neutri-
nos at the Large Hadron-electron Collider (LHeC), an electron-proton collision mode at
CERN, studying the l+j + 3jets (lj ≡ e, µ, τ) �nal states which are, due to leptonic num-
ber violation, a clear signature for intermediate Majorana neutrino contributions. We
presented our results for the total cross section as a function of the Majorana neutrino
mass, the e�ective couplings and the new physics scale in the e�ective lagrangian. We
also showed the possible discovery region as a function of the Majorana neutrino mass
and the e�ective couplings values. Our results showed that the LHeC may be able to
discover Majorana neutrinos with masses lower than 700 GeV and 1300 GeV for electron
beams settings of energies Ee = 50 GeV and Ee = 150 GeV, respectively.

In the case of the LHC [5] we studied the well known same-sign dilepton signal
pp → l+i l

+
j + 2 jets (lj ≡ e, µ). As Majorana neutrinos with masses of a few GeV

are long-lived neutral particles, we took advantage of their measurable decay length,
exploiting this fact to impose cuts that help reject the SM background. We used a
forward-backward-like asymmetry in the distribution of the angle between both �nal
leptons, in order to distinguish the e�ects of vectorial and scalar operators. For the
scalar contributions, the asymmetry is found to be compatible with zero, but in the
case of vector operators, we found a clear non-zero contribution. We also studied the
pp→ l+i νγ process, which is dominant for low mN masses if tensorial one-loop generated
new physics contributions are present. We found the signal distribution in the non-
pointing photon observable zDCA [123,151] could allow for the discovery of the signal in
the LHC, with the aid of cuts in the displacement between the prompt lepton and the
outgoing photon to reject the backgrounds.

Finally, our work on the e�ects of the existence of a Majorana neutrino on the ντ
propagation in the Earth [6] was presented in chapter 7. This e�ect could be measured
in the IceCube neutrino telescope as a deviation for the number of ντ detected events
from the SM-only expectations. The surviving tau-neutrino �ux was calculated using
transport equations including Majorana neutrino production and decay. We compared
our results with the pure SM interactions, computing the surviving �ux for di�erent val-
ues of the e�ective lagrangian couplings, considering the detected �ux by IceCube for an
operation time of 10 years, and Majorana neutrinos with mass mN near the mτ mass.
We showed the region in the (Eν , ζ4−f ) plane where the Majorana physics e�ects could
be detectable by the IceCube experiment.

Regarding our working perspectives, in the case of the study of the Majorana neu-
trino phenomenology for the same-sign-dilepton and displaced-photon signals in the LHC
studied in chapter 6, an interesting and challenging task is to be able to give quantitative
predictions for the experiment's sensitivity to these signals. Our next goal is to be able
to simulate signal and SM background events in a format that allows us to implement
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kinematical cuts in the �nal phase-space, in order to perform a detailed study of the
e�ciency of our studied signal, in a similar fashion to what we did in chapter 5. This is
a much more involved task for proton-proton collision simulations, due to QCD and elec-
tromagnetic showering e�ects related to the process in which our theoretical �nal-state
partons, leptons and photons actually convert into the observed particles in the LHC
detectors.

During the years of this thesis work, the big experimental collaborations in the LHC
and theoretical research groups in the associated universities have developed very sophis-
ticated software for the numerical simulation of scattering events in the LHC, comprising
a coherent set of physics models for the evolution from a few-body hard-scattering process
to a complex multi-particle �nal state, including the parton's hadronization process, and
the development of decay showers for leptons and photons after the primary collision,
between other features as detector simulation. The use of this kind of software allows for
passing from purely theoretical predictions from distinct new physics models, to concrete
simulated events, bringing them closer to the format in which truly experimental data
are analyzed in new physics searches.

Our current working perspective is to implement the Majorana neutrino e�ective
lagrangian model in the software package FeynRules [228,229] and move ahead to inter-
phase it with sophisticated Monte Carlo event generators as MadGraph5_aMC@NLO
[230] in order to simulate our signal. Then, we plan to implement the simulation of
showers for leptons and photons in the �nal states, as well as the hadronization into jets
of the outgoing quarks using programs like Pythia [231, 232]. The aim is to be able to
make precise numerical predictions, regarding the implementation of the displaced ver-
tices observables in the fashion we presented in our analyses for the LHC in chapter 6,
and include the reconstruction e�ciencies for the displaced vertices observables, which
would need a detector simulation to be correctly taken into account.

The use of this simulation software will allow us to broaden our research. One possible
direction is to deepen the study of the phenomenology of the Majorana neutrino e�ective
lagrangian we studied in this thesis in order to include new signals in new experimental
facilities and also perform more dedicated studies on the possible constraints to the
e�ective couplings.

The program of experimental research in neutrino physics extends beyond 2030. In
the coming years a wealth of new data is expected from the energy, intensity and cosmic
frontiers. This new information is expected to shed light on the fundamental aspects of
neutrino physics: the nature -Dirac or Majorana- of massive neutrinos, the status of CP
symmetry in the lepton sector and the baryon asymmetry of matter, the absolute neutrino
mass scale, the origin of the observed patterns of the neutrino masses and mixing, and,
eventually, on the mechanism of neutrino mass generation. Just as the past history of
neutrinos physics has been full of surprises, I look forward for more!





Appendix A

Kinematics and phase-space

In this appendix I introduce the basic tools for the calculation of the decay rates and
scattering cross-sections presented in chapters 4, 5 and 6. It includes a discussion on �nal
state phase-space integrations and basic kinematical de�nitions, which can be found in
the PDG review [1].

A.1. Phase-space

The Lorentz-invariant phase-space element for an n-particle �nal state can be written
as

dΦn ≡ (2π)4 δ4

(
P −

n∑
i=1

pi

)
n∏
i=1

1

(2π)3

d3~pi
2Ei

. (A.1)

The δ4 imposes the constraint on the phase-space by the four-momentum conservation
of the initial state total momentum P . The phase-space factor gives the properly nor-
malized �number of �nal states� to have �nal particle's momenta ~p′j in a volume element

d3p′1, ..., d
3p′k around (~p′1, ...,

~p′k). Each �nal state particle satis�es an on-shell condition
p2
i = m2

i and the total c.m. energy squared is s = P 2 = (
∑n

i=1 pi)
2 .

The phase-space element for one-particle �nal state is

dΦ1 ≡ (2π)
d3~p1

2E1
δ4(P − p1) = π|~p1|d~p1δ

3(~P − ~p1) =
2π

s
δ(1− m1√

s
). (A.2)

Here the variable E1 has been integrated out, which leads to Ecm1 =
√
s in the c.m. frame.

The coe�cient of the phase-space element is called �phase-space volume� after integrating
out all the variables. Here it is 2π for one-particle �nal state in our convention.
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A.1.1. Two-body kinematics

For a two-particle �nal state with the momenta ~p1, ~p2 respectively, the Lorentz-
invariant phase-space element is given by

dΦ2 ≡ 1

(2π)2
δ4 (P − p1 − p2)

d3~p1

2E1

d3~p2

2E2
= dΩcm

λ1/2(s,m2
1,m

2
2)

32π2s
.

where the �two-body kinematic function� is de�ned as

λ(x, y, z) = (x− y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz. (A.3)

The two-body phase-space element is dimensionless, and thus no dimensionful vari-
ables remain un�xed. The two-body phase-space weight is constant and the magnitudes
of the energy-momentum of the two particles are fully determined by the four-momentum
conservation. As we mentioned in the introduction for the case of the beta nuclear de-
cay, in two-body �nal states the particle energy spectrum is monochromatic. So in the
c.m. frame the momenta and energies are �xed to

|~p1| = |~p2| =
λ1/2(s,m2

1,m
2
2)

2
√
s

, Ecm1 =
s+m2

1 −m2
2

2
√
s

, Ecm2 =
s+m2

2 −m2
1

2
√
s

,

While the momentum magnitude is the same for the two daughter particles in the
parent rest-frame, the more massive the particle is, the larger its energy is.

From (A.2) and (A.3) one can see that the phase-space volume of two particles is
scaled down with respect to that of one particle by a factor

dΦ2

s dΦ1
≈ 1

(4π)2
. (A.4)

One can roughly consider that the phase-space volume with each additional �nal-state
particle (properly normalized by the dimensionful unit s) scales down by this similar
factor. This explains why most of the time the three-body decays have lower widths
than two-body decays, and so on. It is interesting to note that it is just like the scaling
factor with each additional loop integral.

A recursion relation can be written in order to decompose the n-body phase-space
into phase-spaces of less particles:

dΦn(P ; p1, ..., pn) = dΦn−1(P ; p1, ..., pn−1,n)×

dΦ2(pn−1,n; pn−1, pn)
dm2

n−1,n

2π
, (A.5)

with m2
n−1,n = m2

n−1 +m2
n.

This recursion relation is particularly useful to write the intermediate mass integral
for a resonant state (see next section).
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A.1.2. Breit-Wigner resonance and the narrow width approximation
(NWA)

The propagator contribution of an unstable particle of mass mV and total width ΓV
is written as

R(s) =
1

(s−m2
V )2 + Γ2

Vm
2
V

. (A.6)

This is the Breit-Wigner Resonance.
Consider a very general case of a virtual particle V ∗ in an intermediate state,

a→ bV ∗ → b p1p2. (A.7)

An integral over the virtual mass can be obtained by the reduction formula in the last
section (A.5). Together with kinematical considerations, the resonant integral reads∫ (mmax∗ )2=(ma−mb)2

(mmin∗ )2=(m1+m2)2

dm2
∗. (A.8)

The integral is rather singular near the resonance. Thus a variable change is e�ective for
the practical purpose,

tan θ =
m2
∗ −m2

V

ΓVmV
, (A.9)

resulting in a �at integrand over θ∫ (mmax∗ )2

(mmin∗ )2

dm2
∗

(m2
∗ −m2

V )2 + Γ2
Vm

2
V

=

∫ θmax

θmin

dθ

ΓVmV
, (A.10)

where θ = tan−1(m2
∗ −m2

V )/ΓVmV . In the limit

(m1 +m2) + ΓV � mV � ma − ΓV , (A.11)

then θmin → −π and θmax → 0. This is the condition for the narrow-width approxima-
tion (NWA) [233]:

1

(m2
∗ −m2

V )2 + Γ2
Vm

2
V

≈ π

ΓVmV
δ(m2

∗ −m2
V ). (A.12)

The NWA allows to neglect non-resonant as well as non-factorizable amplitude contribu-
tions, thus leading to signi�cant simpli�cations for calculations.

The phase-space recursion in (A.5) together with the narrow width approximation
in (A.12) allows us to write the partial decay width of an unstable particle decaying
as in (A.7) as the product of the �rst decay width and the branching fraction for the
considered V decay channel:

Γ(a→ bV ∗ → b p1p2) ∼ Γ(a→ bV ).Br(V → b p1p2) (A.13)

with V being the real boson.
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A.2. Three-body decay phase-space integration

Let us examine here the phase-space integration for three-body decays, as those
presented in chapter 4. In order to �x ideas, consider the decay N → ` 1 2 depicted in
�g.A.1.

Recalling section 4.1.1 we see the di�erential decay width in this case is written

dΓN→` 1 2 =
1

2EN
(2π)4δ4(q − p− p1 − p2)|M|2 d3p

(2π)32p0

d3p1

(2π)32p0
1

d3p2

(2π)32p0
2

.

As is customary, we choose to integrate over the p1,2 momenta, and de�ne the variable
x = 2p0

mN
, where p0 is the lepton's energy in the c.m. frame. There the N is at rest, and

its energy is EN = mN . Taking d3~p = 4π|~p|2d~p and |~p|2 = (p0)2 −m2
` we can write

dΓN→` 1 2

dx
=

mN

4(2π)4

(
x2

4
− y`

)∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

|M|2δ4(q − p− p1 − p2) (A.14)

where y` = m2
`/m

2
N .

For each decay process, the squared matrix element |M|2 will depend on the distinct
scalar products q · p1, q · p2, (q · p1)(q · p2), (p1 · p2) or the identity matrix. Then we will
encounter the following integrals:

I =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

δ4(q − p− p1 − p2)

Ii, α =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

piαδ
4(q − p− p1 − p2) i = 1, 2

Iij, αβ =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

piαpjβδ
4(q − p− p1 − p2) i, j = 1, 2. (A.15)

These are manifestly Lorentz-covariant, due to the invariance of the δ4 and the relation

d3~q

2q0
=

∫
d4qδ(q2 −m2

q)Θ(q0).

When integrating over p1 and p2, due to the momentum-conservation delta, the in-
tegrals in (A.15) will only depend on the four-momentum k = q − p = p1 + p2.

In order to show an example of the general procedure, let's calculate explicitly the
integral Iα1 . It will be needed when integrating the terms where the scalar product q.p1

appears. The integral will be written

qαI
α
1 =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

qαp
α
1 δ4(q − p− p1 − p2).

As Iα1 will only depend on kα = (q − p)α we proceed making the ansatz kαIα1 = Ak2,
with A being some constant. As k2 > 0 we can move to a reference frame where the
four-momentum k takes the form k = k̃ = (k̃0,~0), so that k̃0Ĩ

0
1 = Ak̃2 = Ak2.
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q

N
ℓ p

p1

p2

Figure A.1: Three-body decay N → ` 1 2.
Particle 1 (2) has four-momentum p1 (p2)
and mass m1 (m2). The lepton ` has four-
momentum p and mass m`. The decaying
particle N has four-momentum q and mass
mN .

The expression for Ĩ0
1 is

Ĩ0
1 =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

p0
1δ

4(k̃ − p1 − p2),

where the delta function can be factorized as δ4(k̃− p1− p2) = δ(~p1 + ~p2)δ(p0
1 + p0

2− k̃0).
Writing |~p1,2|2 = (p0

1,2)2 −m2
1,2 we �nd

Ĩ0
1 =

∫
d3 ~p1

4

∫
d3 ~p2

p0
2

δ(~p1 + ~p2)δ(p0
1 + p0

2 − k̃0)

=
1

4

∫
d3 ~p1

∫
d3 ~p2√
|~p2|2 +m2

2

δ(~p1 + ~p2)δ(p0
1 +

√
|~p2|2 +m2

2 − k̃0).

When integrating over ~p2, we substitute |~p2| = |~p1| and we are left with

Ĩ0
1 =

1

4

∫
d3 ~p1√
|~p1|2 +m2

2

δ(p0
1 +

√
|~p1|2 +m2

2 − k̃0).

A last step, putting |~p1|2 = (p0
1)2 −m2

1 and d3~p1 = 4π|~p1|2d|~p1| = 4π
√

(p0
1)2 −m2

1p
0
1dp

0
1

allows ws to write everything in terms of p0
1:

Ĩ0
1 = π

∫ √
(p0

1)2 −m2
1√

(p0
1)2 −m2

1 +m2
2

p0
1 dp

0
1δ(p

0
1 +

√
(p0

1)2 −m2
1 +m2

2 − k̃0).

The delta function can be rewritten using the property δ(f(x)) =
∑

i
δ(x−xi)
|f ′(xi)| , with

f(xi) = 0. So imposing f(p0
1) = 0 leads us to the value p0

1 =
(k̃0)2+m2

1−m2
2

2k̃0
and the

derivative is
df

dp0
1

=

√
(p0

1)2 −m2
1 +m2

2 + p0
1√

(p0
1)2 −m2

1 +m2
2

.

Finally the integral can be written as

Ĩ0
1 = π

∫ √
(p0

1)2 −m2
1√

(p0
1)2 −m2

1 +m2
2 + p0

1

p0
1 dp

0
1δ

(
p0

1 −
(k̃0)2 +m2

1 −m2
2

2k̃0

)
,
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and thus

Ĩ0
1 =

π

k̃0

(
(k̃0)2 +m2

1 −m2
2

2k̃0

)(
((k̃0)2 +m2

1 −m2
2)2

4(k̃0)2
−m2

1

)1/2

=
π

4k̃0

(
(k̃0)2 +m2

1 −m2
2

(k̃0)2

)(
((k̃0)2 +m2

1 +m2
2)2 − 4(k̃0)2m2

1

)1/2
.

Recalling that k̃0Ĩ
0
1 = Ak̃2 = Ak2 and in this frame (k̃0)2 = k2, we change back to k and

�nd the constant

A =
1

k2

π

4

(
k2 +m2

1 −m2
2

k2

)(
(k2 −m2

1 −m2
2)2 − 4m2

1m
2
2

)1/2
.

This �nally leads us to the integral

Iα1 =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

pα1 δ4(q − p− p1 − p2)

=
π

4

(
k2 +m2

1 −m2
2

k4

)(
(k2 −m2

1 −m2
2)2 − 4m2

1m
2
2

)1/2
kα. (A.16)

Performing a similar calculation, the integral I12, αβ in (A.15) can be obtained making
the ansatz I12, αβ = Bk2gαβ +Ckαkβ , with B,C constant. Since the variables p1 and p2

are integrated over, only the second rank tensors gαβ and kαkβ can occur in the result.
Then we can construct the following invariants:

gαβI12, αβ = (4B + C)k2

kαkβI12, αβ = (B + C)k4. (A.17)

We can calculate explicitly the invariants in (A.17)

gαβI12, αβ =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

p1α p
α
2 δ4(q − p− p1 − p2)

kαkβI12, αβ =

∫
d3 ~p1

2p0
1

∫
d3 ~p2

2p0
2

(p1 · k)(p2 · k) δ4(q − p− p1 − p2)

going again to the reference frame where k = k̃ = (k̃0,~0) and performing the integrals,
which allow us to calculate the constants B and C.

The �nal result is given by

I12, αβ =
π

24

[
1− (m1 +m2)2

k2

]1/2 [
1− (m1 −m2)2

k2

]1/2

×
[
gαβk

2

(
1− (m1 +m2)2

k2

)
+ 2kαkβ

(
1 +

m2
1 +m2

2

k2
− 2

(m2
1 −m2

2)2

k4

)]
× Θ(k2 − (m1 +m2)2) (A.18)
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where the step-function assures four-momentum conservation. The other integrals in
(A.15) can be obtained in a similar fashion.

The integration over the x variable in (A.14) has to be done between the kinematically
allowed limits. If we analyze the situation in the rest-frame of the decaying particle N ,
where its four-momentum is q = (mN ,~0) so that k2 = m2

N +m2
` − 2mN p0, we have

x = 1 + y` −
k2

m2
N

.

The minimal value of k2 occurs when the particles 1 and 2 are produced at rest, so

k2
min = m2

1 +m2
2 and xmax = 1 + y` −

k2
min

m2
N

= 1 + y` − (y1 + y2)

with y1,2 = m2
1,2/m

2
N . On the other hand, the maximum value of k2 occurs when p0 is

minimal. This is when the lepton is produced at rest: p0
min = m`. This gives us

k2
max = m2

N +m2
` − 2mNp

O
min = (mN −m`)

2 and xmin = 1 + y` −
k2
min

m2
N

= 2
m`

mN
.

Thus, the integration interval for x is

2
√
y` ≤ x ≤ 1 + y` − y1 − y2. (A.19)





Appendix B

Collider phenomenology

In this appendix I collect the basic concepts on collider phenomenology used in chap-
ters 5 and 6. They are mostly based on the notes [234] and the textbook [235].

B.1. Scattering cross-sections

If we collide two beams made of particles with momenta p1,2 and masses m1,2, the
di�erential scattering cross-section is the number of collision events leading to a particular
�nal state of n particles with momenta p′k (k = 1, ..., n) divided by the �ux of particles
in collision. After the proper normalization of states and the �ux, it can be written, for
two incident beams with collinear momenta ~p1 and ~p2 as:1

dσcoll =
|Mi→f |2

4
√

(p1.p2)2 −m2
1m

2
2

dΦn. (B.1)

Here, the phase-space factor dΦn, de�ned as in (A.1), includes a momentum conservation
delta δ4(P −∑n

i=1 p
′
k) and gives the properly normalized �number of �nal states� to have

�nal particle's momenta ~p′k in a volume element d3p′1, ..., d
3p′n around (~p′1, ...,

~p′n), given
the incoming momenta P = p1 + p2. The matrix element Mi→f gives, as in sec.4.1.1,
the transition amplitude between the speci�c initial and �nal states.

Using the Mandelstam variable s ≡ (p1 + p2)2 and the λ function de�ned in (A.3),
the total cross-section can be put in the usual form

σ(s) =

∫
dσcoll =

∫
dΦn

2
√
λ(s,m2

1,m
2
2)
|Mi→f |2, (B.2)

where the integration takes place over the whole phase-space.

B.2. Hadron colliders

A collider like the LHC at CERN performs proton-proton collisions. Protons are
hadrons composed by quarks and gluons (partons), which are the fundamental degrees of

1This is the situation in the laboratory and the center of mass (c.m.) reference frames.
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freedom participating in strong interactions at high energies. I review here the treatment
of parton collisions.

B.2.1. Hard scattering of partons

The QCD factorization theorem states that the cross-sections for high energy hadronic
reactions with a large momentum transfer can be factorized into a parton-level �hard scat-
tering� convoluted with the parton distribution functions (PDFs). A parton distribution
function can be de�ned as the probability density for �nding a parton with a certain
momentum fraction x at a factorization scale Q2.

For scattering of two hadrons A and B to produce a �nal state F the cross-section can
be formally written as a sum over the sub-process cross-sections from the contributing
partons

σ(AB → F X) =
∑
a,b

∫
dx1dx2 Pa/A(x1, Q

2)Pb/B(x2, Q
2) σ̂(ab→ F ), (B.3)

where X is the inclusive scattering remnant, and Q2 is the factorization scale (or the typ-
ical momentum transfer) in the hard scattering process, much larger than the QCD scale
Λ2
QCD ≈ (200 MeV)2. The parton-level hard scattering cross-section can be calculated

perturbatively, while the parton distribution functions parameterize the non-perturbative
aspects of the collision and can only be obtained by some ansatz and by �tting the data.

Fig. B.1 shows the parton momentum distributions versus the energy fractions x,
taking the CTEQ-5 parton distribution set [236], which is the one used in the calcula-
tions in this thesis. In the �gure the QCD factorization scale is chosen to be Q2=10
GeV2 and 104 GeV2 in the two panels, respectively. It is important to notice that the
valence quarks uv, dv, as well as the gluons carry a large momentum fraction, typically
x ∼ 0.08 − 0.3, and the �sea quarks� (ū = usea, d̄ = dsea, s, c, b) are concentrated in
small x values, and are signi�cantly enhanced at higher Q2. This implies that heavy ob-
jects near the energy threshold are more likely produced by valence quarks, and higher
energy processes (compared to the mass scale of the parton-level subprocess) are more
dominantly mediated via sea quarks and gluons.

B.2.2. Particle detection at colliders

A modern particle detector is an electronic complex, which typically consists of a sec-
ondary displaced vertex detector, a charge-tracking system, electromagnetic calorimetry,
hadronic calorimetry and a muon chamber, etc. The detection of the di�erent particles is
based on their interactions with the matter of which the detectors are made. A simpli�ed
layout is shown in �g. B.2.

The theoretical calculations are made considering the fundamental degrees of freedom
in the lagrangian, namely the quarks, leptons, gauge bosons, etc. But most of them are
not the particles directly �seen� in the detectors. Heavy particles like Z, W, t will
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Figure B.1: Parton momentum distributions for the proton versus their energy fraction
x at two di�erent factorization scales, from CTEQ-5 [236].

promptly decay to leptons and quarks, with a lifetime 1/Γ ∼ 1/(2 GeV) ≈ 3.3× 10−25 s.
Other quarks will fragment into color-singlet hadrons due to QCD con�nement at a time
scale of th ∼ 1/ΛQCD ≈ 1/(200 MeV) ≈ 3.3 × 10−24 s. The individual hadrons left
after fragmentation may behave rather di�erently in the detector depending on their
interactions with matter and their lifetimes. The clusters of hadrons formed from the
outgoing quarks from the hard scattering event are identi�ed as jets. Stable particles
such as p, p̄, e±, γ will show up in the detector as energy deposit in the hadronic and
electromagnetic calorimeters or as charge tracks in the tracking system.

Depending on their lifetime, particles behave in the detector in di�erent ways.

Quasi-stable: fast-moving particles of a life-time τ > 10−10 s can be considered
quasi-stable. Those include the weak-decay particles like the neutral hadrons
n,Λ,K0

L, ... and charged particles µ±, π±,K±, ...

Short-lived resonances: particles undergoing a decay of typical electromagnetic or
strong strength, such as π0, ρ0,±... and very massive particles like Z,W±, t will
decay �instantaneously�. They can only be �seen� from their decay products and
hopefully via a reconstructed resonance.

Displaced vertex: particles of a lifetime τ ∼ 10−12 s, such as B0,±, D0,±, τ±,
may travel a distinguishable distance (cτ ∼ 100 µm.) before decaying into charged
tracks, and thus result in a displaced secondary vertex.

Things not �seen�: those that do not participate in electromagnetic nor strong
interactions, but long-lived as least like the quasi-stable particles will escape from
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Figure B.2: Modern multi-purpose detector at colliders [234].

detection, such as the neutrinos ν. Their presence can be inferred from the measure
of missing energy, as we will see soon.

The di�erent parts of the detector and the electronic system allow to measure the
energy, momentum, and other particle's properties, and record the events data.

Tracking: the tracking chamber determines the trajectories of traversing charged
particles and their electromagnetic energy loss. When combined with a magnetic
�eld they can be used to measure a charged particle's momentum, by measuring
the trajectory's curvature.

Electromagnetic calorimeter: high energy electrons and photons lead to cascade
electromagnetic showers due to bremsstrahlung and pair production. The ECAL
measures this energy deposit.

Hadron calorimeter: The HCAL measures the showers of subsequent hadrons de-
veloped from the high energy incident hadrons (the jets).

Triggering: The trigger is the decision-making process to keep or reject events to be
recorded. It can be designed with many criteria: particle identi�cation, multiplicity,
kinematics, event topology, etc.
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B.2.3. Kinematics at hadron colliders

In performing parton model calculations for hadronic collisions like in (B.3) the par-
tonic c.m. frame is not the same as the hadronic c.m. frame, e. g. the lab frame for the
collider. Let's consider a collision between two hadrons A and B with four-momenta
PA = (EA, 0, 0, pA) and PB = (EA, 0, 0,−pA) in the lab frame. The two partons partic-
ipating in the subprocess have momenta p1 = x1PA and p2 = x2PB. The fractions x1

and x2 are called scaling variables. The parton system moves in the lab frame with a
four-momentum

Pcm = [(x1 + x2)EA, 0, 0, (x1 − x2)pA] (EA ≈ pA), (B.4)

or with a speed βcm = (x1 − x2)/(x1 + x2), or with a rapidity ycm = 1
2 ln x1

x2
.

Let's consider a �nal state particle of momentum pµ = (E, ~p) in the lab frame. Since
the c.m. frame of the two colliding partons is a priori undetermined with respect to the
lab frame, the scattering polar angle θ in these two frames is not a good observable to
describe theory and the experiment. This is why one needs to de�ne kinematical variables
that are invariant under unknown longitudinal boosts.

Transverse momentum and the azimuthal angle

Since the ambiguous motion between the parton c.m. frame and the hadron lab
frame is along the longitudinal beam direction (~z), variables involving only the transverse
components are invariant under longitudinal boosts. It is convenient to write the phase-
space element in cylindrical coordinates as

d3~p

E
= dpxdpy

dpz
E

= pTdpTdφ
dpz
E
, (B.5)

where φ is the azimuthal angle about the ~z axis, and

pT =
√
p2
x + p2

y = p sin θ (B.6)

is the transverse momentum. Both pT and φ are boost-invariant, and so is dpz/E.

The invariant mass variable

Consider an unstable particle V produced by a + b and decaying to 1 + 2 + ... + n.
One can �nd this particle by discovering a resonant signal in the s = (pa + pb)

2 channel.
For a weakly coupled particle ΓV � MV and according to the Breit-Wigner resonance
(A.6), the amplitude develops a kinematical peak near the pole mass value at

(pa + pb)
2 = (

n∑
i

pi )2 ≈M2
V . (B.7)

This is called the invariant mass, and is the most e�ective observable for discovering a
resonance if either the initial momenta or the �nal momenta can be fully reconstructed.
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The transverse mass variable

When the momenta of the outgoing particles cannot be fully reconstructed, as is the
case with �nal-state neutrinos, one needs to de�ne new suitable variables. An important
example of a two-body decay in this thesis is the pure leptonic decay W → eν. The
invariant mass of the leptonic system is

m2
eν = (Ee + Eν)2 − (~peT + ~pνT )2 − (pez + pνz)

2. (B.8)

The neutrino cannot be directly observed by the detector and only its transverse mo-
mentum can be inferred by the imbalance of the observed momenta,

~/pT = −
∑

~pT (observed), (B.9)

called missing transverse momentum, identi�ed as /pT = pνT . Missing transverse energy
is similarly de�ned, and /ET = Eν .

In the case of �nal states with neutrinos, we �nd the invariant mass variable cannot be
reconstructed, so one needs to ignore the (unknown) longitudinal motion of the leptonic
system (or in this example theW boson) and de�ne a transverse mass of the system [237]

m2
eνT = (EeT + EνT )2 − (~peT + ~pνT )2 (B.10)

≈ 2~peT · ~pνT ≈ 2EeT /ET (1− cosφeν),

where φeν is the opening angle between the electron and the neutrino in the transverse
plane. When a W boson is produced with no transverse motion EeT = /ET = meνT /2.
The transverse mass variable is invariant under longitudinal boosts, and it reaches the
maximum meνT = meν , for pez = pνz, so that there is no longitudinal motion for the
electron and the neutrino when boosting to the W -rest frame. In general,

0 ≤ meνT ≤ meν . (B.11)

The Breit-Wigner resonance at meν = mW naturally leads to a kinematical peak near
meνT ≈ mW . In the narrow width approximation (sec.A.1.2), meνT is cut o� sharply at
mW . In practice, the distribution extends beyond mW because of the �nite width ΓW .



Appendix C

Neutrino telescopes phenomenology

In this appendix I collect some basic concepts on neutrino astronomy, which are used
in chapter 7. It reviews the relevant observables in neutrino telescopes, the detection
principles and the incident neutrino �uxes on the Earth.

C.1. Observables

The relevant observable in neutrino telescopes is the number of detected neutrinos,
identifying their �avors, incoming direction and energies, in order to do neutrino astron-
omy and to learn about the neutrino-nucleon interaction cross-sections, where the new
physics could be encoded.

The number of detected neutrinos depends on the number of target nucleons in the
detector volume, the neutrino-nucleon interaction cross-section, and the neutrino �ux
reaching the detector.

The aim of our work in chapter 7 will be to probe the e�ects on the neutrino �uxes
propagating through the Earth, due to the change in the interaction cross-sections pro-
duced by the existence of the Majorana neutrino N with the e�ective interactions intro-
duced in chapter 3.

C.1.1. Number of events

As will be explained in sec.C.3.1, the IceCube neutrino telescope experiment detects
the Cherenkov light produced by charged leptons created by neutrinos arriving into the
detector volume via the charged- and neutral-current interactions studied in sec.1.4.3.

To �rst approximation, a neutrino of energy E incident on a side of area A = L2 will
be detected provided it interacts with some nucleon N within the detector volume, i.e.
within the instrumented distance L (here we think of an L3 instrumented volume). The
probability for that interaction to occur can be given as

P (E) = 1− e
−L
λ(E) ' L

λ(E)
(C.1)
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where the neutrino mean free path1 in the ice is λ(E) = (ρiceNAσνN (E))−1, with ρice =
0.9 gr cm−3, the Avogadro constant given as NA = 6.022× 1023 gr−1 and σνN (E) is the
neutrino-nucleon cross-section at energy E.

If a neutrino �ux Φ(E) (neutrinos per GeV per cm2 per second) crosses a detector
area A(E), then the number of events produced (with an energy detection threshold Eth)
in an operation time T , can be taken as:

Nevents = T

∫
Eth

A(E)P (E)Φ(E)dE ' T
∫
Eth

A(E)L ρiceNAσνN (E) Φ(E)dE, (C.2)

where one identi�es the �e�ective� detector volume Veff = A(E)L [238]. Depending on
the neutrino's energy considered, and on the neutrino �avor one is interested in detecting,
the e�ective volume can be taken equal to the instrumented volume (meaning the volume
covered by the photomultipliers) or more, as will be discussed in sec.C.3.1.

As we will be interested in counting the tau-neutrinos �ux traversing the Earth, we
will need to take into account the amount of matter traversed by the neutrinos in their
journey. That quantity is related to the nadir angle of detection θ as schematically shown
in �g.7.3a.

Then we write the number of events after an operation time T as

Nevents = T nT

∫
dΩ

∫
dE Φ(E, θ) σνN (E) (C.3)

taking nT as the number of target nucleons in the e�ective detector volume considered
(nT = VeffρiceNA). The �surviving� �ux Φ(E, θ) (neutrinos per GeV cm2 sr s) reaching
the telescope's volume at angle θ with an energy E will be our quantity of interest, as it
depends on the distinct interactions the neutrinos encounter while traveling through the
Earth, and on regeneration e�ects, as well as on the incident neutrino �ux on the Earth
from the atmosphere and outer space, as I will discuss in the next section.

In chapter 7 we are interested in the tau-neutrino �ux φντ detected in the IceCube
telescope. As will be seen in the following, the atmospheric ντ sources are very feeble
and the only e�cient ντ source is the oscillation over cosmic distances of the νe and νµ
produced in astrophysical sources.

C.2. Incident neutrino �uxes

The incident neutrino �ux on the Earth comes from various origins, and I will give a
very brief introduction on the subject in this section.

C.2.1. High energy cosmic rays

Cosmic rays (CR) are particles hitting the Earth, mostly composed by ionized nuclei
(90% protons, 9% alpha particles and the remaining 1% are heavy nuclei).

1Or interaction length.
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Figure C.1: Cosmic rays �ux versus energy. Taken from [239].

The spectrum of cosmic rays has been well measured up to energies near 1020 eV
(108 TeV in the laboratory frame) where the experiments become limited by poor statis-
tics. The spectrum consists of a series of power laws that change at energies called as
the �knee� and �ankle� as shown in �g.C.1.

Below the knee, it is believed particles can be accelerated principally by supernova
remnants (SNR) in our galaxy. The shock fronts powered by supernova explosions prop-
agate into the interstellar medium, and by repeated scattering processes across the shock
front particles can gain energy (this is called ��rst-order Fermi acceleration�). Between
the knee and the ankle, the CR origin is less known, and the prevailing explanations claim
they have an extra-galactic origin, possibly gamma ray bursts (GRB) or active galac-
tic nuclei (AGN). Beyond the ankle, in the ultra-high energy zone, the cosmic rays are
believed to be mostly protons (or nuclei) with energies above an EeV , of extra-galactic
origin, given that the gyro-radius of the proton exceeds the size of the galaxy.
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Waxman-Bahcall di�use neutrino �ux

High-energy neutrino production is thought to be associated with the interactions of
high-energy protons that produce energetic charged pions by pγ or by pp̄ interactions. In
sources that are optically thin to meson-nucleon interactions, the π+ → µ+νµ decays and
subsequent µ+ → e+νe ν̄µ decays (and corresponding π− decay chain) lead to high-energy
neutrinos. Assuming that the ultra-high energy cosmic rays are extragalactic protons and
lose their energy in interactions producing pions, as the ones above, Waxman and Bahcall
(WB) [240,241] estimated a neutrino �ux from astrophysical sources to be

E2
νΦWB ≡ E2

νΦν . 2× 10−8 GeV cm−2 sr−1 s−1. (C.4)

Cosmogenic neutrino �ux

Over a 50 × 1018 eV (50 EeV ) energy threshold, the cosmic ray protons will un-
dergo inelastic interactions, mainly pγ → ∆+ → nπ+ and pπ0 on the cosmic microwave
background (CMB). This threshold is known as the Greisen-Zatsepin-Kuzmin energy
(EGZK) [242,243]. At these energies the gyro-radius of a proton in the galactic magnetic
�eld is larger than the size of the galaxy, and therefore it is expected that these cosmic
ray protons are of extra-galactic origin. Since the attenuation caused by this reaction
has a length scale of about 50 Mpc 2, a strong suppression in the cosmic ray spectrum
is expected above EGZK (�the GZK cut�). The decays of charged pions produced in the
GZK process are a source of cosmogenic neutrinos, predicted by Berezinski and Zatsepin
(BZ) [244].

Both cosmogenic and Waxman-Bahcall �uxes are considered to arrive at the Earth
with a 1 : 1 : 1 (electron: muon: tau) �avor composition, due to oscillation during the
traveled distances.

Atmospheric neutrinos

The interactions of cosmic rays with the nucleons N in the atmosphere produce pions
and kaons that decay to νµ, νe and their anti-neutrinos:

p N → π+(K+...)→ νµµ
+ → νµe

+νeν̄µ

n N → π−(K−...)→ ν̄µµ
− → ν̄µe

−ν̄eνµ. (C.5)

On average there are twice as many νµ as νe at GeV energies, although the νe tend to be
at somewhat lower energies since they are produced only on a secondary decay. These are
called �conventional� atmospheric neutrinos. This �ux is negligible for neutrino energies
over 105 GeV .

The atmospheric neutrino �ux is well understood: the normalizations are known to
20% or better, and ratios of �uxes are known to 5%. For energies beyond 105 GeV ,
there are also neutrinos coming from charmed and bottom mesons decays, which can

250 Mpc ∼ 150× 1022m.
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Figure C.2: Detection principles for muon tracks (left) and cascades (right) in underwa-
ter/ice detectors. Taken from [246].

produce tau-neutrinos (in a ten times smaller rate than muon neutrinos). This is called
the �prompt� �ux [60,245].

The �avor ratio of conventional atmospheric neutrinos before oscillation is 1 : 2 : 0
(electron: muon: tau). The �ux of tau-neutrinos from atmospheric neutrino oscillation
on the baseline of the Earth's diameter peaks near 25 GeV , which is much lower than
the PeV energy at which IceCube can identify tau-neutrinos. The prompt neutrino �ux
has a nonzero tau-neutrino component, but the prompt tau-neutrino �ux is an order of
magnitude lower than the prompt muon-neutrino �ux, and is below IceCube's sensitivity.

C.3. IceCube telescope

The IceCube neutrino detector is located at the Amundsen-Scott South Pole Station
near the geographic South Pole. The detector instruments one cubic kilometer of antarc-
tic ice with 86 electrical cables, called strings, deployed on a hexagonal grid one square
kilometer in area. Each string contains 60 Digital Optical Modules (DOMs) deployed be-
tween 1450 m and 2450 m deep. The DOM is a glass pressure vessel containing a 10-inch
photomultiplier tube (PMT) with digitizing and time stamping electronics, and 12 LED
�ashers for in situ calibration. Eight of the strings near the center form the DeepCore
sub-detector, with closer string-to-string and DOM-to-DOM spacing than the rest of the
IceCube strings. The IceCube construction was complete as of December 2010, and its
primary goal is to detect astrophysical neutrinos from potential cosmic ray acceleration
sites such as active galactic nuclei, gamma ray bursts and supernovae.

C.3.1. Detection principles

IceCube is sensitive to all three �avors of neutrinos. When a neutrino interacts with
a nucleus in the ice, the DOMs detect the Cherenkov light deposited by the interaction
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and by the daughter particles. The amount of light and arrival time at each DOM are
used to reconstruct the properties of the neutrino. In the case of a charged-current (CC)
interaction, the neutrino �avor determines the event topology.

A muon-neutrino CC interaction inside or near the detector's instrumented volume
results in a muon which deposits a �track� of light in the detector's PMTs as the muon
passes through. An electron-neutrino CC interaction, as well as a neutral-current inter-
action of any �avor, results in a spherical �cascade� of light centered on the interaction
point, since the electron quickly interacts with surrounding matter, as is shown in �g.C.2.

Muons from cosmic ray air showers dominate the background in the southern hemi-
sphere sky, which is above IceCube's horizon. These muons appear as down going tracks
which originate outside of the instrumented volume. Muons cannot penetrate the Earth,
so the neutrinos produced in cosmic ray interactions are the background from the north-
ern hemisphere sky.

Tau neutrinos detection topologies

A tau-neutrino CC interaction above about 1 PeV in energy may produce a �double-
bang� signal; this happens when the initial cascade from the CC interaction producing
a tau lepton and the �nal cascade from the tau decay can be resolved by IceCube. The
two cascades would be connected by a track associated with the tau lepton. However,
it is likely that only one of the cascades is fully contained in the detector, as shown in
�g.C.3, where several additional tau-neutrino signals are shown. These are explained in
detail in the following [247].

The signal topology for a τ lepton produced by a ντ CC interaction depends on the
energy. One can write the tau decay length as lτ ∼ 50 m× ( Eτ

106 GeV
). Thus, for energies

beyond 20 PeV the tau lepton saturates the detector size. Depending on the energy
of the produced tau lepton, its production or decay vertices can be observed, or both.
As the tau lepton can decay leptonically through the channels τ → eν̄eντ (∼ 18%) or
τ → µν̄µντ (∼ 18%) or mostly hadronically to neutral and charged pions and kaons
(∼ 64%), the topology of the produced events will also depend on the tau decay modes.

In the �double-bang� topology, an hadronic shower occurs when the tau is produced
by CC interactions, then it travels a certain distance within the detector, and decays
producing another shower, 82% of the time if it decays to e or hadronically. The �lol-
lipop� topology occurs when the tau is produced outside the instrumented volume, and
the penetrating track along with the decay shower are detected. The inverse is called
�popillol� topology. A �sugardaddy� topology occurs when the tau is created outside the
detector, but decays into a muon inside the detector, and the muon track is recorded.
The only topology that is a clear signal of tau-neutrinos, almost without background, is
the double-bang.
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Figure C.3: Summary of ντ channels possibly accessible to IceCube, shown as a func-
tion of energy and approximate tau decay length, with indications of background level,
acceptance, angular and energy resolutions, and speci�c anticipated background. Taken
from [247].

C.4. N decay in the laboratory

Here in this section we follow the development shown in the book of T.K. Gaisser [215],
in our case for the N → γν decay, used in chapter 7. First we obtain the N decay width
in its rest frame, and then boost the result to the laboratory frame. In the N rest frame
we have the following expression:

1

Γrest

dΓrest

dx d cos θν
= 2 (f0(x)− Pf1(x) cos θν) , (C.6)

where θν is the direction of motion of the �nal ν taken from the Majorana neutrino N
moving direction, and P = cos θP where θP is the angle between the Majorana neutrino
spin direction in its rest frame, and its moving direction seen from the laboratory frame.
The variable x represents the quotient between the �nal neutrino energy in the rest frame
of the N and the mass of the Majorana neutrino: x = k0/mN . The functions f0(x) and
f1(x) are

f0(x) = x(1− x)δ(x− 1/2)

f1(x) = x2δ(x− 1/2), (C.7)

To obtain the corresponding expression in the laboratory frame, we make the appropriate
Lorentz transformations. Denoting by Eν and EN the laboratory energies of the �nal
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neutrino and the Majorana neutrino, respectively, we have

z = x(1− βN cos θν), (C.8)

with z = Eν/EN and βN =
√

1−mN
2/E2

N ' 1.
We implement the Lorentz transformation with the help of the δ-function, yielding

1

ΓLAB

dΓLAB

dz dx d cos θν
= 2 (f0(x)− Pf1(x) cos θν) δ [z − x (1 + βN cos θν)] , (C.9)

where P = +1 for the right-handed Majorana neutrinos.
We �rst integrate over θν and next we integrate over x in the interval (xmin, xmax)

with xmin = z/(1 + βN ) and xmax = min(1, z/(1− βN )), obtaining

1

ΓLAB

dΓLAB
dz

= 2(1− z)Θ(1/2− x(z)min)Θ(x(z)max − 1/2). (C.10)

For the low mass range considered in this work the clearly dominant decay channel is
the neutrino plus photon mode, and Γtot

LAB(E) =
∑

i=e,µ,τ ΓN→νiγLAB (E). Then we consider
the ντ decay channel, leading to the �nal ντ neutrinos distribution in the laboratory
frame:

1

ΓtotLAB(E)

dΓN→ντγLAB

dz
≡ dn(z)

dz
. (C.11)

Thus, after the indicated integrations in the evolution equations, the useful expression
that we obtain is

dn(z)

dz
=
dn(1− y)

dy
=

2

3
y. (C.12)

Here y ≡ (1− z).
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