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ABSTRACT
Internet traffic classification is an essential task for manag-
ing large networks. Network design, routing optimization, 
quality of service management, anomaly and intrusion de-
tection tasks can be improved with a good knowledge of the 
traffic.

Traditional classification methods based on transport port 
analysis have become inappropriate for modern applications. 
Payload based analysis using pattern searching have privacy 
concerns and are usually slow and expensive in computa-
tional cost.

In recent years, traffic classification based on the statistical 
properties of flows has become a relevant topic. In this work 
we analyze the size of the firsts packets on both directions of 
a flow as a relevant statistical fingerprint. This fingerprint is 
enough for accurate traffic classification and so can be useful 
for early traffic identification in real time.

This work proposes the use of a supervised machine learning 
clustering method for traffic classification based on Support 
Vector Machines. We compare our method accuracy with a 
more classical centroid based approach, obtaining promising 
results.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network 
Operations—Network management, Network monitoring

General Terms
Management, Measurement

Keywords
Traffic identification, Traffic classification, Support Vector 
Machines

1. INTRODUCTION
Identification and classification of Internet traffic is essential
to manage large networks.

Common tasks such as network design, provisioning, opti-
mization and quality of service management, require a good
knowledge of the types of traffic traversing the network.
In the context of network security, such as intrusion and
anomaly detection, traffic identification and classification is
also a relevant topic.

Traffic classification based on simple transport header infor-
mation, like TCP or UDP port numbers, is a well known
method.

This simple approach is inappropriate nowadays, as many
modern applications use dynamic port negotiation or try to
hide themselves using well known ports associated with pop-
ular protocols (like those usually used by HTTP) to have a
higher chance of passing through firewalls and other network
security devices [10, 14, 18].

Classification methods based on payload inspection, like search-
ing for specific patterns within TCP flows, seem to be ac-
curate, but have some disadvantages. First, searching for
patterns within the payload may be a slow task. Second,
they are sometimes questioned because they need access to
private information. Third, those methods do not work for
encrypted traffic [10, 12, 17].

In recent years, traffic classification based on flow statistical
properties has been addressed by many authors. Techniques
based on the analysis of packet sizes, inter arrival time or
other features have been proposed to classify internet traffic
[2, 3, 6, 8, 10, 13, 15].

Other approaches for traffic classification are based on host
behavior analysis. The rationale behind these methods is
focused on coarse grained classification like peer-to-peer vs.
non peer-to-peer. For instance, a peer-to-peer host will be
contacted by many other hosts probably using TCP and
UDP simultaneously, while a Web server will receive multi-
ple client TCP connections to the same port [9].

Families of methods discussed earlier, may be useful for dif-
ferent network management tasks. Particulary, traffic clas-
sification for QoS mapping, policy routing or anomaly de-



tection need to be on-line; off-line traffic classification may
be useful for design and provisioning. On-line classification
must be fast, a restriction not present in off-line classifica-
tion [16, 20].

This work focuses on on-line traffic classification, looking to-
wards simple and fast statistical analysis methods. Our pro-
posal implies the use of a supervised based machine learning
method by means of Support Vector Machines (SVM) [5, 19].
SVM is a well known machine learning technique not much
used in the context of traffic classification.

We start classifying real traffic taken from an ISP using pay-
load inspection techniques by means of pattern searching.
We apply two different machine learning based methods and
compare their accuracy results.

In the first approach, we use a classical centroid based clas-
sification. In the second approach we use our proposed
method based on SVM, which gives more accurate results.

The remainder of this paper is structured as follows. In
Section 2 we give a methodological overview. In Section 3
we state some features of the collected data. In Section 4
we detail the payload classification method used. In Section
5 we describe the implemented centroid approach and its
results. In Section 6 we detail our proposed implementation
based on SVM and its results. We compare and analyze
the implemented methods and results (Section 7) pointing
out some limitations and trends for future work (Section 8).
Finally, in Section 9 we present the most relevant conclusions
of this work.

2. METHODOLOGY OVERVIEW
We focus our work on simple and and fast methods using
statistical flow behavior that can be implemented on-line.
For this purpose, it is important to decide as fast as posi-
ble the traffic class a flow belongs to. Method speed is an
important requirement. Specifically, our work proposes a
statistical analysis of the size of the first N packets in a flow
by means of a supervised machine learning approach using
Support Vector Machines (SVM) technique. SVM is known
to be an efficient method.

As shown in [3], the size of the first packets in a flow,
can be a reasonable target feature for traffic classification.
Other properties like inter-arrival time, jitter, and variance
of packet size, provide less relevant information.

In this work we use the size of the first N packets on both
directions of a flow as a statistical fingerprint. This finger-
print can be used for clustering, considering that traffic flows
of the same class have similar fingerprints [3]. We believe
that a supervised learning method is the right approach for
this kind of problem, so we discuss two supervised machine
learning methods for clustering.

Supervised machine learning methods need a training phase
and a testing phase. In the first phase, part of the pre-
classified traffic is used to define clusters. In the testing
phase, we verify if a flow belongs to any of the identified
clusters. Comparing the pre-classified traffic class with the
traffic class provided by the testing phase, we can calculate

the accuracy of the classification method.

All the data manipulation was done using mostly perl based
scripts and C++ for payload classification. The base pre-
classification of traffic was done using a payload inspection
technique. We implemented a classifying architecture based
on Linux L7-Filter [1] to achieve our goals.

As stated, we implement two supervised machine learning
classification methods. The first one uses a centroid ap-
proach, applying the euclidean distance to assign flows to de-
fined clusters [2, 3]. The second one, our proposed method,
is based on the use of Support Vector Machines for cluster-
ing traffic classes. Several parameters had to be tuned for
best results.

Finally, we compare the classification accuracy of both meth-
ods.

3. COLLECTED DATA
The data was taken using tcpdump/wireshark (pcap format)
from an Uruguayan ISP’s network in July 2008 and contain
over 400,000 flows of residential traffic. Captured data con-
tains all (no sampled) bidirectional flows. The capture was
limited to 200 bytes per packet. This data has multiple
protocol hierarchy: 2 VLAN levels, Ethernet, PPPoE, PPP,
IP, TCP/UDP, Application. Because of this, after stripping
packet headers, we are left with only 130 bytes of layer 7 pay-
load for TCP traffic. This fact may reduce the accuracy of
the payload based classification method used to pre-classify
traffic.

It should be noted that most free available applications im-
plementing pattern searching can’t cope with multiple VLAN
levels, so we had to overcome this.

4. PAYLOAD BASED CLASSIFICATION
Supervised machine learning methods require pre-classified
traffic. We accomplished this based on the well known pat-
tern matching scheme named L7-Filter [1] implemented in
the Linux kernel. Traffic data was captured in pcap format,
so a packet classification architecture was developed.

No free application was found for re-sending traffic with mul-
tiple VLAN levels, so we developed a perl based script to
extract IP packets from the available pcap captured data.
This task included the extension of some perl modules. The
extracted IP packets were re-sent to a modified L7-Filter
engine via a UNIX socket. This modified engine was ac-
complished by adapting the core functionality of L7-Filter
(pattern searching) to read IP packets from a UNIX socket
instead of reading them through hooks in the kernel. The
classification results were saved in a text file and then used
to populate a database for better manipulation.

We kept the relevant data of each flow: source and desti-
nation address, source and destination port, protocol, flow
identification and class assigned by L7 Filter engine. We also
extract the size of the first 20 packets in each flow direction
for later analysis and discussion.

The traffic classes defined by pattern inspection inside the
payload, are our input data to train, test and compare the



accuracy of implemented classification methods.

5. CENTROID CLUSTERING
For centroid clustering we need to define the centroid that
characterizes each traffic type. We have traffic classes de-
fined by payload based classification so we can calculate the
centroid of each traffic class. We also use the standard de-
viation to improve accuracy.

A flow of traffic class m can be described as a vector:

vm = (vu
1 , vu

2 , ..vu
N , vd

1 , vd
2 , ..vd

N )

where:

m is the traffic mark assigned by L7 classifica-
tion,
N is the number of packets in each flow direction,
vu

i and vd
i are the sizes of the ith packet in up-

stream and downstream respectively, ∀i = 1 . . . N

In the training phase, we consider T vectors vm
j to define

the centroid vector for traffic class m.
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We also define a standard deviation vector:

sm(T ) = (su
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where
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Each traffic class m can then be represented by the couple
cm(T ) and sm(T ).

In the testing phase, given a test vector wl, not used for
training and pre-classified with traffic class l:

wl = (wu
0 , wu

1 , ..wu
N , wd

0 , wd
1 , ..wd

N )

the machine learning system will assign it to one of the
known (learned in training phase) traffic classes.

This method assigns any unknown flow to the ”closer” traffic
class, based on a distance criterium.

The first considered distance was the classical euclidean dis-
tance to the centroid of each known traffic class. As the
accuracy results were very low (near 30%) we improved the
distance definition by including the standard deviation to
weigh up distances on high variable coordinates.

Considering the standard deviation, the distance of flow wl

to traffic class m characterized by cm(T ) and sm(T ), can be
expressed as:

dm(N) =

√√√√
N∑

i=1

(
wu

i − cu
i
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i

)2 +

N∑
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(
wd
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)2

In the testing phase we calculate the distance of flow wl to
all traffic classes. We define m∗ as the class with minimum
distance to flow wl.

Analyzing this information we can define the classification
accuracy of this approach. We can analyze global accuracy
and per-flow accuracy. We can also analyze the influence of
the quantity of flows used to calculate the centroid and the
impact of the number of packets considered in each direction.

This analysis shows that considering more than 5 packets in
each direction does not improve accuracy. This is consistent
with the results stated in [2, 3].

It can be also stated that 45 or 50 flows are enough to char-
acterize traffic clusters. This information is clearly shown in
figure 1.
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Figure 1: Centroid accuracy

Moreover it can be seen from figure 2 that different traf-
fic classes exhibit different accuracies and that the overall
accuracy is underneath 60% (0.6).

6. SVM CLUSTERING
This Section describes our proposal for traffic clustering
based on Support Vector Machines (SVM). This technique
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Figure 2: Centroid accuracy by traffic type

has recently been proposed for traffic classification [11, 18,
21], with other goals or using other traffic features and cer-
tainly not applicable in the context of early traffic classifi-
cation.

In the next Section we present a brief introduction to SVM.

6.1 Brief introduction to SVM
SVM is a supervised learning tool well known for its dis-
criminative power. SVM starts separating the data with a
hyperplane and then extends this procedure to non-linear
decision boundaries using the kernel trick described below.

Consider a training sample (X1, Y1) . . . (Xn, Yn). Let us
start analyzing the case where the pairs (Xi, Yi) ⊂ Rd × R,
and first we look for a linear classifier, that is an hyperplane
(H) of the form:

H = {x : f(x) = xtβ + β0 = 0} ⊂ Rd

where β is a vector in Rd ortonormal to the hyperplane and
β0 is real.

Suppose first that the variables Yi take values in {−1, 1}.
This assumption simplifies the following explanation and
SVM can be easily extended to the general multi-class case.

SVMs select the hyperplane where the distance of the hy-
perplane from the closest data points is as large as possible
This classification problem can be transformed in the fol-
lowing convex optimization problem:

minβ,β0
1
2
||β̃||2

subject to:

Yi(< Xi, β̃ > +β̃0) ≥ 1 , ∀i = 1 . . . n

A key assumption in the previous optimization problem is
that a feasible solution exists. Obviously, this is not always
true. To find feasible solutions, we must allow some classi-
fication error enabling the possibility that some points can

be misclassified. Then, the problem can be reformulated in
the following way:

minβ,β0,ζi
1
2
||β̃||2 + C

∑n
i=1 ζi

subject to:

Yi(< Xi, β̃ > +β̃0) ≥ 1− ζi ,

ζi ≥ 0 , ∀i = 1 . . . n

where C is a parameter that penalizes the training error.

This problem can be solved more easily by the dual formu-
lation. Using the Lagrangian and the KKT (Karush-Khun-
Tucker) conditions, it can be shown that:

β∗ =

n∑
i=1

α0
i YiXi

and the classifier will be

f(x) = sign(

n∑
i=1

α0
i Yi < Xi, x > +β∗0 )

where α0
i are the Lagrange multipliers. Only the points with

Lagrange multipliers α0
i 6= 0 are needed. These points are

called the “support vectors”.

The classification problem solution using SVM depends only
on the dot product between the data. This means that to
apply SVM in a general space F it is only necessary to know
the form of the dot product in such space. Therefore, the
idea for the non-linear case is to map the input data to a
higher dimensional space F by a function ϕ : Rd → F .
Then, we can apply the linear classification procedure ex-
plained above but in the space F (called the feature space).
This lead us to the following classifier:

f(x) = sign(

Ns∑
i=1

α0
i Yi < ϕ(Xi), ϕ(x) > +β∗0 )

f(x) = sign(

Ns∑
i=1

α0
i YiK(Xi, x) + β∗0 )

where Ns is the number of support vectors and K(Xi, x) is
a kernel function. A function is called a Kernel if it corre-
sponds to a dot product in the feature space:

K(x, x
′
) =< ϕ(x), ϕ(x

′
) >

In different works, several kernels are used. In this work we
use a radial basis function (rbf) as kernel due to the good
performance shown in different applications:



K(x, x1) = e−γ||x−x1||2

6.2 SMV classification process
For SVM classification we use the LibSVM implementation
[4]. Using the same flow representation stated in Section 5
the recommended classification process is as follows [7]:

• Convert flow data into LibSVM vector format

• Separate train and test vectors

• Scale vectors for better accuracy

• Train and test adjusting parameters for better accu-
racy

• Calculate classification accuracy

SVM classification process depends on C and γ shown in
previous section.

LibSVM author recommends a grid-search varying C and γ
as the best method to find the pair values that maximize
classification accuracy.

Testing recommended values of C and γ for different number
of packets in each direction and different number of training
flows, we found a smooth behavior of the accuracy near the
maximum (Figure 3).

SVM classification accuracy varying C and γ
Using 5 packets per flow direction, 45 training flows
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Figure 3: SVM accuracy

The maximum achievable accuracy depends on C and γ as
seen in Table 1. For 5 or 6 packets considered in each direc-
tion and 40 to 50 flows used for training, we found maximum
accuracy for combinations of C = 128, C = 512 and γ = 1,
γ = 2.

As done in centroid classification, we analyze the influence
of the number of packets considered in each flow direction
and the number of flows used for training. As can be seen
in figure 4 and 5 for different combinations of C and γ,
the number of flows used for training has little influence on

the accuracy of the method. We can also state that 5 or 6
packets are enough for SVM classification.

This result is consistent with centroid based classification
and previously cited publications.
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Figure 4: SVM accuracy
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Figure 5: SVM accuracy

As we saw in centroid analysis, accuracy is highly variable
with the traffic class. Figure 6 shows those differences.

The proposed method achieves a global accuracy around
80% (0.8).

7. RESULTS

packets in Number of training flows

each direction 40 45 50 55 60

5 C = 128 C = 512 C = 128 C = 2048 C = 128
γ = 2 γ = 2 γ = 1 γ = 1 γ = 0.5

6 C = 512 C = 512 C = 512 C = 512 C = 128
γ = 1 γ = 2 γ = 2 γ = 2 γ = 0.5

7 C = 8192 C = 32768 C = 128 C = 128 C = 128
γ = 0.5 γ = 0.5 γ = 0.5 γ = 0.5 γ = 0.5

Table 1: C and γ for maximum SVM accuracy
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In previous sections we detail the procedure and results of
both implemented methods for traffic classification. Now we
will compare the results of both methods.

Both methods yield similar results: 5 or 6 packets in each
flow direction are enough for classification and a training set
of 45 to 50 flows are enough to characterize a traffic class.

Comparing global accuracy considering 5 packets in each
flow direction (see Figure 7), we can see that our proposed
method based on SVM performs better for all the training
sets tested.
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The accuracy per traffic type shows also better behavior as
seen in Figure 8.

8. FUTURE WORK
Work was carried out within some restrictions which are
briefly analyzed, identifying trends for future work.

Maximum captured packet size was limited to 200 bytes, so
some patterns may have gone undetected, which led to an in-
accurate payload based classification. This was a limitation
of available captured data. We would like to get full packet
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size traffic traces to improve the L7-filter pre-classification
phase.

We have not filtered flows initiated before the start of the
captured data. Most probably these flows were not detected
by payload analysis so they were probably excluded of clus-
tering analysis. Detecting them and filtering out, may lead
to better results.

We have not filtered initial SYN packets for TCP connec-
tions either, so for TCP flows the first packets do not pro-
vide relevant information since they have zero size. This
obviously does not apply to UDP traffic.

We are not taking care of unordered packets. Captured data
may have a small amount of unordered packets that may lead
to inaccurate payload classification.

We do not analyze the case of unknown traffic. In this study
every pre-classified flow is assigned to one of the known traf-
fic classes.

Other sources of captured data traffic should be included in
future work.

Although it is known that the SVM technique is fast, the
computational cost of both tested methods was not analyzed
in this work.

Besides these limitations and restrictions the methodology
proved powerful, and results are promising.

9. CONCLUSIONS
The results of this work reaffirm that size of first packets in
both direction of a data flow is a statistical feature effective
for traffic classification. This implies that we can think of
a simple and fast method for real-time usage. Moreover it
was shown that only the size of the first 5 o 6 packets are
enough for accurate results.

The results show that the proposed clustering method based
on SMV yields more accurate results than the classical cen-



troid based approach.

From this work, SMV emerges as a promising technique to
improve present day methods of traffic classification.
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